研究方向
主动视觉计算与学习
可视信息是人类、智能机器进行日常生活和交流的关键,为后者提供理解和分析。因此,视觉计算和学习被运用在许多新兴技术领域,包括无人系统、增强现实、机器人操作和数字创作等。当前主动式视觉感知和学习正在成为研究趋势,智能体通过渐近式地与外界交互不断提升自身的感知和认知能力。
代表性科研成果
- Xiangyu Kong, Bo Xin, Yizhou Wang, Gang Hua, “Collaborative Deep Reinforcement Learning for Joint Object Search,” IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, USA, July 21-26, 2017.
- Tianyang Zhao, Yifei Xu, Mathew Monfort, Wongun Choi, Chris Maker, Yibiao Zhao, Yizhou Wang, Yingnian Wu, "Multi-Agent Tensor Fusion for Contextual Trajectory Prediction," IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, USA, June 16-20, 2019.
- Yingming Zuo, Weichao Qiu, Lingxi Xie, Fangwei Zhong, Yizhou Wang, Alan Yuille, "CRAVES: Controlling Robotic Arm With a Vision-Based Economic System," IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, USA, June 16-20, 2019.
- Wenhan Luo, Peng Sun, Fangwei Zhong, Tong Zhang, Yizhou Wang, "End-to-end Active Object Tracking and Its Real-world Deployment via Reinforcement Learning," IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), Vol. 22, No. 6, pp. 1634-1646, June 2020.
- Siyan Dong, Kai Xu, Qiang Zhou, Andrea Tagliasacchi, Shiqing Xin, Matthias Nießner, Baoquan Chen, "Multi-Robot Collaborative Dense Scene Reconstruction," ACM Transactions on Graphics (TOG), Vol. 38, No. 4, pp. 84: 1-16, July 2019.
计算经济学
作为计算机和经济学的交叉方向,我们的兴趣在于社会经济科学,大规模市场设计,纳什均衡计算,多智能体信息系统,区块链经济等具体方向。在以上方向的研究中,我们将重点放在广义方法论和系统的开发中。我们用到的工具将包括博弈论,密码学,信息论,机器学习,统计,随机算法,理论经济学等。
代表性科研成果
- Yuqing Kong, "Dominantly Truthful Multi-task Peer Prediction with a Constant Number of Tasks," ACM-SIAM Symposium on Discrete Algorithms (SODA), Salt Lake City, USA, January 5-8, 2020.
- Xiaotie Deng, Tao Lin and Tao Xiao, "Private Data Manipulation in Optimal Sponsored Search Auction," the Web Conference (WWW), Taipei, April 20-24, 2020.
智能交互计算
智能交互计算通过研发新的计算理论方法与技术,赋能人、智能体(机器、智能软件系统)、与环境,提升人、智能体和环境间的协同合作功效。通过建立不同学科之间的桥梁,发展复合型学科,既服务于医疗健康、智能制造、经济金融、网络安全等国家重大需求,也惠及人们的日常生活与工作,如智慧城市、社交娱乐与人文艺术等。
代表性科研成果
- Fangwei Zhong, Peng Sun, Wenhan Luo, Tingyun Yan, Yizhou Wang, "AD-VAT+: An Asymmetric Dueling Mechanism for Learning and Understanding Visual Active Tracking," IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2019.
- Jing Li, Jing Xu, Fangwei Zhong, Xiangyu Kong, Yu Qiao and Yizhou Wang, "Pose-Assisted Multi-Camera Collaboration for Active Object Tracking," the Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI), New York, USA, February 7-12, 2020.
- Yunhai Wang, Mingliang Xue, Yanyan Wang, Xinyuan Yan, Baoquan Chen, Chi-Wing Fu, Christophe Hurter, "Interactive Structure-aware Blending of Diverse Edge Bundling Visualizations," IEEE Transactions on Visualization and Computer Graphics (TVCG), Vol. 26, No. 1, pp. 687-696, January 2020.
量子计算
量子计算是计算机科学、信息科学与量子物理相结合而产生的新兴交叉学科,为人类提供后摩尔时代的信息处理技术,为二十一世纪信息科学的发展提供新的原理和方法,是未来物理学和信息学发展的重大方向之一。量子计算利用量子物理不同于经典物理的特性为计算机科学、信息科学提供了新的应用,超越经典算法的量子算法、量子传感和量子精密测量等。同时,量子计算理论使用了信息论的数学、理论计算机的语言与工具解决量子物理中的问题。这种多学科领域的交叉对各个学科领域提供了全新的理解角度,进而反哺量子物理、计算理论等基础研究。
代表性科研成果
- Jinzhao Sun, Xiao Yuan, Takahiro Tsunoda, Vlatko Vedral, Simon C. Benjamin, Suguru Endo, "Mitigating Realistic Noise in Practical Noisy Intermediate-Scale Quantum Devices," Physical Review Applied, Vol. 15, No. 3, 034026 (2021) , March 9, 2021.
- Suguru Endo, Zhenyu Cai, Simon C. Benjamin, Xiao Yuan, "Hybrid Quantum-Classical Algorithms and Quantum Error Mitigation," Journal of the Physical Society of Japan , Vol. 90, No. 3, 032001 (2021) , February 1, 2021.
-
Pengfei Wang, Chun-Yang Luan, Mu Qiao, Mark Um, Junhua Zhang, Ye Wang, Xiao Yuan, Mile Gu, Jingning Zhang, Kihwan Kim, "Single Ion Qubit with Estimated Coherence Time Exceeding One Hour," Nature Communication, Vol. 12, pp. 233, January 2021.