[SODA 2020] Dominantly Truthful Multi-task Peer Prediction with a Constant Number of Tasks

In the setting where participants are asked multiple similar possibly subjective multi-choice questions (e.g. Do you like Panda Express? Y/N; do you like Chick-fil-A? Y/N), a series of peer prediction mechanisms are designed to incentivize honest reports and some of them achieve dominantly truthfulness: truth-telling is a dominant strategy and strictly dominate other "non-permutation strategy" with some mild conditions. However, a major issue hinders the practical usage of those mechanisms: they require the participants to perform an infinite number of tasks. When the participants perform a finite number of tasks, these mechanisms only achieve approximated dominant truthfulness. The existence of a dominantly truthful multi-task peer prediction mechanism that only requires a finite number of tasks remains to be an open question that may have a negative result, even with full prior knowledge.


This paper answers this open question by proposing a new mechanism, Determinant based Mutual Information Mechanism (DMI-Mechanism), that is dominantly truthful when the number of tasks is at least 2C and the number of participants is at least 2. C is the number of choices for each question (C=2 for binary-choice questions). In addition to incentivizing honest reports, DMI-Mechanism can also be transferred into an information evaluation rule that identifies high-quality information without verification when there are at least 3 participants. To the best of our knowledge, DMI-Mechanism is the first dominantly truthful mechanism that works for a finite number of tasks, not to say a small constant number of tasks.



More information





SODA is jointly sponsored by the SIAM Activity Group on Discrete Mathematics and the ACM Special Interest Group on Algorithms and Computation Theory. ACM-SIAM Symposium on Discrete Algorithms (SODA20) will take place at Hilton Salt Lake City Center, Salt Lake City, Utah, U.S., from January 5 to January 8, 2020.