人才队伍
李彤阳
李彤阳 研究员/助理教授

+86 (0)10 6276-6141

tongyangli

静园五院103-1

量子算法设计(特别是量子机器学习、量子优化算法)、量子复杂性理论、量子模拟、量子游走 https://www.tongyangli.com

李彤阳

简介

  李彤阳,现任北京大学前沿计算研究中心助理教授,博士生导师,北京大学博雅青年学者,国家自然科学基金面上项目、重大研究计划培育项目负责人。他于2015年在清华大学交叉信息研究院(姚班)和数学科学系分别获得工学士学位和理学士学位,2020年在美国马里兰大学获得博士学位,之后在美国麻省理工学院从事博士后研究工作,于2021年7月加入北京大学前沿计算研究中心并工作至今。他的科研围绕量子计算、人工智能、理论计算机的交叉领域展开,研究成果已在Nature Physics、Nature Communications、Journal of the ACM、Physical Review Letters、IEEE Transactions on Information Theory、STOC、ICML、NeurIPS、ICLR 等期刊、会议发表论文四十余篇;9次在国际量子信息方向的权威会议 QIP 上作报告;担任量子科学领域期刊 Quantum的期刊编辑,AQIS 2025会议共同主席,AQIS 2021, TQC 2022, QCTIP 2022, QIP 2023, ICLR 2024, QCTIP 2024, TQC 2024, NeurIPS 2024, ICLR 2025, NeurIPS 2025, ICLR 2026, QIP 2026, ICML 2026, TQC 2026会议的程务委员会成员/领域主席,以及相关领域多家顶级期刊和会议的审稿人。

发表论著

■ (by contribution) Yecheng Xue, Rui Yang, Zhiding Liang, and Tongyang Li. DC-MBQC: A Distributed Quantum Compilation Framework for Measurement-Based Quantum Computing. Accepted by the 32nd IEEE International Symposium on High Performance Computer Architecture (HPCA 2026).

■ Tongyang Li, Xinzhao Wang, and Yexin Zhang. Near-Optimal Quantum Algorithms for Computing (Coarse) Correlated Equilibria of General-Sum Games. Accepted by the 39th Annual Conference on Neural Information Processing Systems (NeurIPS 2025).

■ (by contribution) Rui Yang, Ziruo Wang, Yuntian Gu, Yitao Liang, and Tongyang Li. QCircuitBench: A Large-Scale Dataset for Benchmarking Quantum Algorithm Design. Accepted by the 39th Annual Conference on Neural Information Processing Systems (NeurIPS 2025).

■ (by contribution) Yexin Zhang*, Shuo Zhou*, Xinzhao Wang*, Ziruo Wang, Ziyi Yang, Rui Yang, Yecheng Xue, and Tongyang Li. Efficient classical sampling from Gaussian boson sampling distributions on unweighted graphs. Nature Communications, Vol. 16, No. 1, 9335, 2025.

■ (by contribution) Shankar Balasubramanian, Tongyang Li, and Aram Harrow. Exponential speedups for quantum walks in random hierarchical graphs. Communications in Mathematical Physics, Vol. 406, No. 9, 209, 2025.

■ Tongyang Li, Yuexin Su, Ziyi Yang, and Shengyu Zhang. Quantum Approximate Optimization Algorithms for Maxmimum Cut on Low-Girth Graphs. Physical Review Research, 7, 033014, 2025.

■ Tongyang Li, Quantum computers quickly find local minima, Nature Physics, 21, 512–513, 2025. (News & Views)

■ (by contribution) Weiyuan Gong*, Chenyi Zhang*, and Tongyang Li, Robustness of Quantum Algorithms for Nonconvex Optimization. Accepted by the 13th International Conference on Learning Representations (ICLR 2025). 

■ (by contribution) Zherui Chen*, Yuchen Lu*, Hao Wang, Yizhou Liu, and Tongyang Li. Quantum Langevin Dynamics for Optimization.Communications in Mathematical Physics, Vol. 406, No. 3, 52, 2025.

■ (by contribution) Jiyu Jiang, Zongqi Wan, Tongyang Li, Meiyue Shao, and Jialin Zhang. Shadow Tomography of Quantum States with Prediction. Frontiers of Computer Science, Vol. 19, No. 7, pp. 1-12, 2025.

■ Xinyi Chen, Elad Hazan, Tongyang Li, Zhou Lu, Xinzhao Wang, and Rui Yang, Adaptive Online Learning of Quantum States. Quantum, 8:1471, 2024.

■ (by contribution) Weiyuan Gong*, Shuo Zhou*, and Tongyang Li. Complexity of Digital Quantum Simulation in the Low-Energy Subspace: Applications and a Lower Bound. Quantum, 8:1409, 2024.

■ (by contribution) Han Zhong*, Jiachen Hu*, Yecheng Xue, Tongyang Li, and Liwei Wang. Provably Efficient Exploration in Quantum Reinforcement Learning with Logarithmic Worst-Case Regret. Accepted by the 41st International Conference on Machine Learning (ICML 2024).

■ (by contribution) Yexin Zhang*, Chenyi Zhang*, Cong Fang, Liwei Wang, and Tongyang LiQuantum Algorithms and Lower Bounds for Finite-Sum Optimization. Accepted by the 41st International Conference on Machine Learning (ICML 2024).

■ (by contribution) Xinzhao Wang, Shengyu Zhang, and Tongyang LiA Quantum Algorithm Framework for Discrete Probability Distributions with Applications to Rényi Entropy Estimation. To appear in IEEE Transactions on Information Theory, 2024.

■ Jiachen Hu, Tongyang Li, Xinzhao Wang, Yecheng Xue, Chenyi Zhang, and Han Zhong. Quantum Non-Identical Mean Estimation: Efficient Algorithms and Fundamental Limits. Accepted by the 19th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2024).

■ Wenhao He, Tongyang Li, Xiantao Li, Zecheng Li, Chunhao Wang, and Ke Wang. Efficient Optimal Control of Open Quantum Systems. Accepted by the 19th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2024).

■ (by contribution) Zhiding Liang*, Zhixin Song*, Jinglei Cheng*, Hang Ren*, Tianyi Hao*, Rui Yang*, Yiyu Shi, and Tongyang LiSpacePulse: Combining Parameterized Pulses and Contextual Subspace for More Practical VQE. Accepted by the 61st Design Automation Conference (DAC 2024).

■ (by contribution) Hao Wang*, Chenyi Zhang*, and Tongyang LiNear-Optimal Quantum Algorithm for Minimizing the Maximal Loss. Accepted by the 12th International Conference on Learning Representations (ICLR 2024).

■ Minbo Gao, Zhengfeng Ji, Tongyang Li, and Qisheng Wang, Logarithmic-Regret Quantum Learning Algorithms for Zero-Sum Games. Accepted by the 37th Conference on Neural Information Processing Systems (NeurIPS 2023).

■ (by contribution) Yizhou Liu, Weijie J. Su, and Tongyang LiOn Quantum Speedups for Nonconvex Optimization via Quantum Tunneling Walks. Quantum, 7:1030, 2023.

■ (by contribution) Yecheng Xue*, Xiaoyu Chen*, Tongyang Li, and Shaofeng H.-C. Jiang, Near-Optimal Quantum Coreset Construction Algorithms for Clustering. Accepted by the 40th International Conference on Machine Learning (ICML 2023).

■ (by contribution) Chenyi Zhang and Tongyang LiQuantum Lower Bounds for Finding Stationary Points of Nonconvex Functions. Accepted by the 40th International Conference on Machine Learning (ICML 2023).

■ (by contribution) Yan Zhu, Ge Bai, Yuexuan Wang, Tongyang Li, and Giulio Chiribella, Quantum autoencoders for communication-efficient quantum cloud computing. Quantum Machine Intelligence, Vol. 5, No. 27, 2023.

■ Shouvanik Chakrabarti, Andrew M. Childs, Shih-Han Hung, Tongyang Li, Chunhao Wang, and Xiaodi Wu, Quantum algorithm for estimating volumes of convex bodies. ACM Transactions on Quantum Computing Vol. 4, No. 3, 1-60, 2023; also a single-track contributed talk at the 23rd Annual Conference on Quantum Information Processing (QIP 2020; 17 among 283 submissions).

■ (by contribution) Qi Zhao, You Zhou, Alexander F. Shaw, Tongyang Li, and Andrew M. Childs, Hamiltonian simulation with random inputs. Physical Review Letters, Vol. 129, 270502, 2022; also a contributed talk at the 25th Conference on Quantum Information Processing (QIP 2022).

■ (by contribution) Zongqi Wan, Zhijie Zhang, Tongyang Li, Jialin Zhang, and Xiaoming Sun, Quantum Multi-Armed Bandits and Stochastic Linear Bandits Enjoy Logarithmic Regrets. Proceedings of the 37th AAAI Conference on Artificial Intelligence (AAAI 2023), Vol. 37, No. 8, 10087-10094, 2023.

■ (by contribution) Xiao-Ming Zhang, Tongyang Li, and Xiao Yuan, Quantum State Preparation with Optimal Circuit Depth: Implementations and Applications. Physical Review Letters, Vol. 129, 230504, 2022.

■ Nai-Hui Chia, András Gilyén, Tongyang Li, Han-Hsuan Lin, Ewin Tang, and Chunhao Wang, Sampling-based sublinear low-rank matrix arithmetic framework for dequantizing quantum machine learning, Journal of the ACM, Vol. 69, No. 5, 1-72, 2022. Previous conference version published in the Proceedings of the 52nd Annual ACM Symposium on Theory of Computing (STOC 2020), 387–400, 2020; also a contributed talk at the 23rd Annual Conference on Quantum Information Processing (QIP 2020).

■ Andrew M. Childs, Jiaqi Leng, Tongyang Li, Jin-Peng Liu, and Chenyi Zhang, Quantum simulation of real-space dynamics. Quantum, 6:860, 2022.

■ Andrew M. Childs, Tongyang Li, Jin-Peng Liu, Chunhao Wang, and Ruizhe Zhang, Quantum Algorithms for Sampling Log-Concave Distributions and Estimating Normalizing Constants. Proceedings of the 36th Conference on Neural Information Processing Systems (NeurIPS 2022), 23205-23217, 2022; also a contributed talk at the 26th Conference on Quantum Information Processing (QIP 2023).

Tongyang Li and Ruizhe Zhang, Quantum Speedups of Optimizing Approximately Convex Functions with Applications to Logarithmic Regret Stochastic Convex Bandits. Proceedings of the 36th Conference on Neural Information Processing Systems (NeurIPS 2022), 3152-3164, 2022.

■ (by contribution) Chenyi Zhang and Tongyang LiEscape saddle points by a simple gradient-descent based algorithm. Proceedings of the 35th Conference on Neural Information Processing Systems (NeurIPS 2021), 8545-8556, 2021.

■ (by contribution) Chenyi Zhang*, Jiaqi Leng*, and Tongyang Li, Quantum algorithms for escaping from saddle points. Quantum, 5:529, 2021.

■ Andrew M. Childs, Shih-Han Hung, and Tongyang Li, Quantum query complexity with matrix-vector products. To appear in the 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021). arXiv:2102.11349
■ Troy Lee, Tongyang Li, Miklos Santha, and Shengyu Zhang, On the cut dimension of a graph. To appear in the 2021 Computational Complexity Conference (CCC 2021). arXiv:2011.05085
■ (by contribution) Tongyang Li∗, Chunhao Wang∗, Shouvanik Chakrabarti, and Xiaodi Wu, Sublinear classical and quantum algorithms for general matrix games. To appear in the 35th AAAI Conference on Artificial Intelligence (AAAI 2021). arXiv:2012.06519
■ (by contribution) Daochen Wang∗, Xuchen You∗, Tongyang Li, and Andrew M. Childs, Quantum exploration algorithms for multi-armed bandits. To appear in the 35th AAAI Conference on Artificial Intelligence (AAAI 2021); also a contributed talk at the 4th Annual Conference on Quantum Techniques in Machine Learning (QTML 2020). arXiv:2007.07049
■ Nai-Hui Chia, Tongyang Li, Han-Hsuan Lin, and Chunhao Wang, Quantum-inspired sublinear algorithm for solving low-rank semidefinite programming. Proceedings of the 45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020), Vol. 170, 23:1–23:15, Leibniz International Proceedings in Informatics, 2020. arXiv:1901.03254
■ Nai-Hui Chia, András Gilyén, Tongyang Li, Han-Hsuan Lin, Ewin Tang, and Chunhao Wang, Sampling-based sublinear low-rank matrix arithmetic framework for dequantizing quantum machine learning. Proceedings of the 52nd Annual ACM Symposium on Theory of Computing (STOC 2020), 387–400, 2020; also a contributed talk at the 23rd Annual Conference on Quantum Information Processing (QIP 2020). arXiv:1910.06151
■ András Gilyén and Tongyang Li, Distributional property testing in a quantum world. Proceedings of the 11th Annual Conference on Innovations in Theoretical Computer Science (ITCS 2020), Vol. 151, 25:1–25:19, Leibniz International Proceedings in Informatics, 2020. arXiv:1902.00814
■ (by contribution) Shouvanik Chakrabarti∗, Yiming Huang∗, Tongyang Li, Soheil Feizi, and Xiaodi Wu, Quantum Wasserstein generative adversarial networks. Proceedings of the 33rd Annual Conference on Neural Information Processing Systems (NeurIPS 2019), 6778–6789, 2019. arXiv:1911.00111
■ (by contribution) Tongyang Li, Shouvanik Chakrabarti, and Xiaodi Wu, Sublinear quantum algorithms for training linear and kernel-based classifiers. Proceedings of the 36th International Conference on Machine Learning (ICML 2019), 3815–3824, 2019. arXiv:1904.02276
■ Shouvanik Chakrabarti, Andrew M. Childs, Tongyang Li, and Xiaodi Wu, Quantum algorithms and lower bounds for convex optimization, Quantum, 4:221, 2020; also a contributed talk at the 22nd Annual Conference on Quantum Information Processing (QIP 2019). arXiv:1809.01731
Tongyang Li and Xiaodi Wu, Quantum query complexity of entropy estimation. IEEE Transactions on Information Theory Vol. 65, no. 5, 2899–2921, 2019. arXiv:1710.06025
■ Fernando G.S.L. Brandão, Amir Kalev, Tongyang Li, Cedric Y.-Y. Lin, Krysta M. Svore, and Xiaodi Wu, Quantum SDP Solvers: Large Speed-ups, Optimality, and Applications to Quantum Learning. Proceedings of the 46th International Colloquium on Automata, Languages and Programming (ICALP 2019), Vol. 132, 27:1–27:14, Leibniz International Proceedings in Informatics, 2019; also a contributed talk at the 22nd Annual Conference on Quantum Information Processing (QIP 2019). arXiv:1710.02581
■ Andrew M. Childs and Tongyang Li, Efficient simulation of sparse Markovian quantum dynamics. Quantum Information & Computation 17 (2017), no. 11-12, 901–947,arXiv:1611.05543
■ (by contribution) Tongyang Li, Lei Song, Yongcai Wang, and Haisheng Tan, On Target Counting by Sequential Snapshots of Binary Proximity Sensors. In Proceedings of the 12th European Conference on Wireless Sensor Networks (EWSN 2015), pp. 19-34.

实验室

  量子算法实验室由李彤阳博士于2021年创立。该实验室专注于研究量子计算机上的算法,主要探讨机器学习、优化、统计学、数论、图论等方向的量子算法及其相对于经典计算的量子加速;也包括近期 NISQ (Noisy, Intermediate-Scale Quantum Computers) 量子计算机上的量子算法。更多信息可前往:https://cfcs.pku.edu.cn/research/research_labs/240405.htm