
Deep Belief Nets

Geoffrey Hinton

Engineering Fellow,
Google Brain Team

Chief Scientific Adviser,
Vector Institute

Stochastic binary neurons

• These have a state of 1
or 0.

• The probability of
turning on is determined
by the weighted input
from other neurons
(plus a bias)

The picture can't be displayed.

0
0

1

å--+
==

j
jiji

i wsb
sp

)exp(1
)(1
1

å+
j

jiji wsb

)(1=isp

Belief Nets
• A belief net is a directed acyclic

graph composed of stochastic
variables.

• We get to observe some of the
variables and we would like to
solve two problems:

• The inference problem: Infer
the states of the unobserved
variables.

• The learning problem: Adjust
the interactions between
variables to make the network
more likely to generate the
observed data.

stochastic
hidden
cause

visible
effect

We will use nets
composed of layers of
stochastic binary variables
with weighted connections

Learning Belief Nets
• It is easy to generate an

unbiased example at the
leaf nodes, so we can see
what kinds of data the
network believes in.

• It is hard to infer the
posterior distribution over
all possible configurations
of hidden causes.

• It is hard to even get a
sample from the posterior.

• So how can we learn deep
belief nets that have
millions of parameters?

stochastic
hidden
cause

visible
effect

The learning rule for sigmoid belief nets

• Learning is easy if we can
get an unbiased sample
from the posterior
distribution over hidden
states given the observed
data.

• For each unit, maximize
the log probability that its
binary state in the sample
from the posterior would be
generated by the sampled
binary states of its parents.

å-+
==º

j
jij

ii ws
spp

)exp(1
)(1
1

j

i

jiw

)(iijji pssw -=D e

is

js

Explaining away (Judea Pearl)

• Even if two hidden causes are independent, they can
become dependent when we observe an effect that they can
both influence.
– If we learn that there was an earthquake it reduces the

probability that the house jumped because of a truck.

truck hits house earthquake

house jumps

20 20

-20

-10 -10

Why it is usually very hard to learn
sigmoid belief nets one layer at a time

• To learn W, we need the posterior
distribution in the first hidden layer.

• Problem 1: The posterior is typically
very complicated because of
explaining away.

• Problem 2: The posterior depends
on the prior as well as the likelihood.
– So to learn W, we need to know

the weights in higher layers, even
if we are only approximating the
posterior. All the weights interact.

• Problem 3: We need to integrate
over all possible configurations of
the higher variables to get the prior
for first hidden layer. Yuk!

data

hidden variables

hidden variables

hidden variables

likelihood W

prior

Two types of generative neural network

• If we connect binary stochastic neurons in a directed
acyclic graph we get a Sigmoid Belief Net (Radford Neal
1992).

• If we connect binary stochastic neurons using symmetric
connections we get a Boltzmann Machine (Hinton &
Sejnowski, 1983).

visible units

hidden units

The energy function of a Boltzmann Machine

• The global energy is the sum of many contributions. Each
contribution depends on one connection weight and the binary
states of two neurons:

• This simple quadratic energy function makes it possible for
each unit to compute locally how it’s state affects the global
energy:

E = − si
i
∑ bi − sis j wij

i< j
∑

Energy gap = ΔEi = E(si = 0)−E(si = 1) = bi + s jwij
j
∑

How to generate samples from a Boltzmann machine

• Repeatedly update the states of the stochastic binary
units using the update:

• Eventually, we will sample each global state with a
probability proportional to exp(-E).

å--+
==

j
jiji

i wsb
sp

)exp(1
)(1
1

• We want to maximize the product of the probabilities that
the Boltzmann machine assigns to the binary visible
vectors in the training set.
– This is equivalent to maximizing the sum of the log

probabilities that the Boltzmann machine assigns to
the training vectors.

• It is also equivalent to maximizing the probability that we
would obtain exactly the N training vectors if we did the
following
– Let the network settle to its stationary distribution N

different times with no external input.
– Sample the visible vector once each time.

The goal of learning in a Boltzmann Machine

w2 w3 w4

Why the learning could be difficult

Consider a chain of units with visible units at the ends

If the training set consists of (1,0) and (0,1) we want the
product of all the weights to be negative.
So to know how to change w1 we must know w3.

hidden

visible
w1 w5

hidden

visible

A very surprising fact
• Everything that one weight needs to know about

the other weights and the data is contained in
the difference of two correlations.

∂ log p(v)
∂wij

= sis j v − sis j model

Derivative of log
probability of one
training vector, v
under the model.

Expected value of
product of states at
thermal equilibrium
when v is clamped
on the visible units

Expected value of
product of states at
thermal equilibrium
with no clamping

Δwij ∝ sis j data
− sis j model

The obvious way to collect the statistics for learning
Hinton and Sejnowski (1983)

• Positive phase: Clamp a data vector on the visible units
and set the hidden units to random binary states.
– Update the hidden units one at a time until the

network reaches thermal equilibrium at a temperature
of 1.

– Sample for every connected pair of units.
– Repeat for all data vectors in the training set and

average.

• Negative phase: Set all the units to random binary states.
– Update all the units one at a time until the network

reaches thermal equilibrium at a temperature of 1.
– Sample for every connected pair of units.
– Repeat many times (how many?) and average to get

good estimates.

>< ji ss

>< ji ss

Why is the derivative so simple?

−
∂E
∂wij

= si s j

• The probability of a global configuration at thermal
equilibrium is an exponential function of its energy.
– So settling to equilibrium makes the log probability

a linear function of the energy.
• The energy is a linear function of the weights and

states, so:

• The process of settling to thermal equilibrium
propagates information about the weights.
– We don’t need backpropagation.

Why do we need the negative phase?
(two ways to win a horse race)

The positive phase finds
hidden configurations that
work well with v and lowers
their energies.

The negative phase finds
the joint configurations that
are the best competitors
and raises their energies.

åå

å
-

-

=

u g

gu,
h

hv,

v)(

)(

)(E

E

e

e
p

Why Boltzmann machines are hard to learn

• We need to settle to the stationary distribution with each
training vector clamped on the visible units.

• We need to settle to the stationary distribution with the
visible units unclamped.
– This is a highly multimodal distribution.

• The learning signal is the difference between two noisy
statistics.
– The difference is very noisy.

Restricted Boltzmann Machines
• We restrict the connectivity to make

learning easier.
– Only one layer of hidden units.

• We will deal with more layers later

– No connections between hidden units.
• In an RBM, the hidden units are

conditionally independent given the
visible states.
– So we can quickly get an unbiased

sample from the posterior distribution
when given a data-vector.

– This is a big advantage over directed
belief nets

hidden

i

j

visible

A picture of the maximum likelihood learning
algorithm for an RBM

0>< jihv
¥>< jihv

i

j

i

j

i

j

i

j

t = 0 t = 1 t = 2 t = infinity

¥><-><=
¶

¶
jiji

ij
hvhv

w
vp 0)(log

Start with a training vector on the visible units.

Then alternate between updating all the hidden units in
parallel and updating all the visible units in parallel.

a fantasy

A quick way to learn an RBM

0>< jihv 1>< jihv

i

j

i

j

t = 0 t = 1

)(10 ><-><=D jijiij hvhvw e

Start with a training vector on the
visible units.

Update all the hidden units in
parallel

Update the all the visible units in
parallel to get a “reconstruction”.

Update the hidden units again.

This is not following the gradient of the log likelihood. But it works well.

It is approximately following the gradient of another objective function.

reconstructiondata

Training a deep network

• First train a layer of features that receive input directly
from the pixels.

• Then treat the activations of the trained features as if
they were pixels and learn features of features in a
second hidden layer.

• It can be proved that each time we add another layer of
features we improve a variational lower bound on the log
probability of the training data.
– The proof is slightly complicated.
– But it is based on a neat equivalence between an

RBM and a deep directed model (described later)

The generative model after learning 3 layers

• To generate data:
1. Get an equilibrium sample

from the top-level RBM by
performing alternating Gibbs
sampling.

2. Perform a top-down pass to
get states for all the other
layers.

So the lower level bottom-up
connections are not part of
the generative model. They
are just used for inference.

h2

data

h1

h3

2W

3W

1W

Why does greedy learning work?

å=
h

hvphpvp)|()()(

The weights, W, in the bottom level RBM define
p(v|h) and they also, indirectly, define p(h).

So we can express the RBM model as

If we leave p(v|h) alone and improve p(h), we will
improve p(v).

To improve p(h), we need it to be a better model of
the aggregated posterior distribution over hidden
vectors produced by applying W to the data.

What does each RBM achieve?

• It divides the task of modeling the data into
two tasks and leaves the second task to the
next RBM
– Task 1: Learn generative weights that can

convert the posterior distribution over the
hidden units into the data.

– Task 2: Learn to model the posterior
distribution over the hidden units that is
produced by applying the transpose of the
generative weights to the data

• Task 2 is guaranteed to be easier (for the next
RBM) than modeling the original data.

h

v
W

Fine-tuning for discrimination

• First learn one layer at a time greedily.
– This does not require labeled data.

• Then add an output layer to the top and use
backpropagation to fine-tune the model for
better discrimination.
– This overcomes many of the limitations of

standard backpropagation.

Greedy pre-training makes backprop work better

• We do not start backpropagation until we already have
sensible weights that already do well at the task.
– So the initial gradients are sensible and backprop only

needs to perform a local search.

• Most of the information in the final weights comes from
modeling the distribution of input vectors.
– The precious information in the labels is only used for

the final fine-tuning. It slightly modifies the features. It
does not need to discover features.

– This type of backpropagation works well even if most of
the training data is unlabeled. The unlabeled data is
still very useful for discovering good features.

Another view of why layer-by-layer
learning works

• There is an unexpected equivalence between
RBM’s and directed networks with many layers
that all use the same weights.
– This equivalence also gives insight into why

contrastive divergence learning works.

An infinite sigmoid belief net
that is equivalent to an RBM

• The distribution generated by this
infinite directed net with replicated
weights is the equilibrium distribution
for a compatible pair of conditional
distributions: p(v|h) and p(h|v) that
are both defined by W
– A top-down pass of the directed

net is exactly equivalent to letting
a Restricted Boltzmann Machine
settle to equilibrium.

– So this infinite directed net
defines the same distribution as
an RBM.

W
v1

h1

v0

h0

v2

h2

TW

TW

TW

W

W

etc.

• The variables in h0 are conditionally
independent given v0.
– Inference is trivial. We just

multiply v0 by W transpose.
– The model above h0 implements

a complementary prior.
– Multiplying v0 by W transpose

gives the product of the likelihood
term and the prior term.

• Inference in the directed net is
exactly equivalent to letting a
Restricted Boltzmann Machine
settle to equilibrium starting at the
data.

Inference in a directed net
with replicated weights

W
v1

h1

v0

h0

v2

h2

TW

TW

TW

W

W

etc.

+

+

+

+

• The learning rule for a sigmoid belief
net is:

• With replicated weights this becomes:

W
v1

h1

v0

h0

v2

h2

TW

TW

TW

W

W

etc.

0
is

0
js

1
js

2
js

1
is

2
is

¥¥

+-

+-

+-

ij

iij

jji

iij

ss

sss

sss

sss

...)(

)(

)(

211

101

100

TW

TW

TW

W

W

)ˆ(iijij sssw -µD

• First learn with all the weights tied
– This is exactly equivalent to

learning an RBM
– Contrastive divergence learning

is equivalent to ignoring the small
derivatives contributed by the tied
weights between deeper layers.

Learning a deep directed
network

W

W
v1

h1

v0

h0

v2

h2

TW

TW

TW

W

etc.

v0

h0

W

• Then freeze the first layer of weights
in both directions and learn the
remaining weights (still tied
together).
– This is equivalent to learning

another RBM, using the
aggregated posterior distribution
of h0 as the data.

W
v1

h1

v0

h0

v2

h2

TW

TW

TW

W

etc.

frozenW

v1

h0

W

T
frozenW

What happens when the weights in higher layers
become different from the weights in the first layer?

• The higher layers no longer implement a complementary
prior.
– So performing inference using the frozen weights in

the first layer is no longer correct.
– Using this incorrect inference procedure gives a

variational lower bound on the log probability of the
data.

• We lose by the slackness of the bound.

• The higher layers learn a prior that is closer to the
aggregated posterior distribution of the first hidden layer.
– This improves the network’s model of the data.

• Hinton, Osindero and Teh (2006) prove that this improvement
is always bigger than the loss.

Summary
• Restricted Boltzmann Machines provide a simple way to

learn a layer of features without any supervision.
– Maximum likelihood learning is computationally

expensive because of the normalization term, but
contrastive divergence learning is fast and usually works
well for learning good features.

• Many layers of representation can be learned by treating
the hidden states of one RBM as the visible data for training
the next RBM.

• This creates good generative models that can then be fine-
tuned discriminatively.
– In 2009, this led to a breakthrough in speech recognition

THE END

