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Stochastic binary neurons

• These have a state of 1 
or 0.

• The probability of 
turning on is determined 
by the weighted input 
from other neurons     
(plus a bias)

The picture can't be displayed.
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Belief Nets
• A belief net is a directed acyclic 

graph composed of stochastic 
variables.

• We get to observe some of the 
variables and we would like to 
solve two problems:

• The inference problem: Infer 
the states of the unobserved 
variables.

• The learning problem: Adjust 
the interactions between 
variables to make the network 
more likely to generate the 
observed data.
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We will use nets 
composed of layers of 
stochastic binary variables 
with weighted connections



Learning Belief Nets
• It is easy to generate an 

unbiased example at the 
leaf nodes, so we can see 
what kinds of data the 
network believes in.

• It is hard to infer the 
posterior distribution over 
all  possible configurations 
of hidden causes.

• It is hard to even get  a 
sample from the posterior.

• So how can we learn deep 
belief nets that have 
millions of parameters?
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The learning rule for sigmoid belief nets

• Learning is easy if we can 
get an unbiased sample 
from the posterior 
distribution over hidden 
states given the observed 
data.

• For each unit, maximize 
the log probability that its 
binary state in the sample 
from the posterior would be 
generated by the sampled 
binary states of its parents. 
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Explaining away (Judea Pearl)

• Even if two hidden causes are independent, they can 
become dependent when we observe an effect that they can 
both influence. 
– If we learn that there was an earthquake it reduces the 

probability that the house jumped because of a truck.

truck hits house earthquake

house jumps
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Why it is usually very hard to learn     
sigmoid belief nets one layer at a time

• To learn W, we need the posterior 
distribution in the first hidden layer.

• Problem 1: The posterior is typically 
very complicated because of 
explaining away.

• Problem 2: The posterior depends 
on the prior as well as the likelihood. 
– So to learn W, we need to know 

the weights in higher layers, even 
if we are only approximating the 
posterior. All the weights interact.

• Problem 3: We need to integrate 
over all possible configurations of 
the higher variables to get the prior 
for first hidden layer. Yuk!
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Two types of generative neural network

• If we connect binary stochastic neurons in a directed 
acyclic graph we get a Sigmoid Belief Net (Radford Neal 
1992).

• If we connect binary stochastic neurons using symmetric 
connections we get a Boltzmann Machine (Hinton & 
Sejnowski, 1983).

visible units

hidden units



The energy function of a Boltzmann Machine

• The global energy is the sum of many contributions. Each 
contribution depends on one connection weight and the binary 
states of two neurons:

• This simple quadratic energy function makes it possible for 
each unit to compute locally how it’s state affects the global 
energy:

E = − si
i
∑ bi − sis j wij

i< j
∑

Energy gap = ΔEi = E(si = 0)−E(si = 1) = bi + s jwij
j
∑



How to generate samples from a Boltzmann machine

• Repeatedly update the states of the stochastic binary 
units using the update:

• Eventually, we will sample each global state with a 
probability proportional to exp(-E).
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• We want to maximize the product of the probabilities that 
the Boltzmann machine assigns to the binary visible 
vectors in the training set.
– This is equivalent to maximizing the sum of the log 

probabilities that the Boltzmann machine assigns to 
the training vectors.

• It is also equivalent to maximizing the probability that we 
would obtain exactly the N training vectors if we did the 
following
– Let the network settle to its stationary distribution N 

different times with no external input.
– Sample the visible vector once each time.

The goal of learning in a Boltzmann Machine



w2                  w3                  w4

Why the learning could be difficult

Consider a chain of units with visible units at the ends

If the training set consists of  (1,0) and (0,1) we want the 
product of all the weights to be negative. 
So to know how to change w1 we must know w3.
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A very surprising fact
• Everything that one weight needs to know about 

the other weights and the data is contained in 
the difference of two correlations.

∂ log p(v)
∂wij

= sis j v − sis j model

Derivative of  log 
probability of one 
training vector, v 
under the model.

Expected value of 
product of states at 
thermal equilibrium 
when v is clamped 
on the visible units

Expected value of 
product of states at 
thermal equilibrium 
with no clamping

Δwij ∝ sis j data
− sis j model



The obvious way to collect the statistics for learning
Hinton and Sejnowski (1983)

• Positive phase: Clamp a data vector on the visible units 
and set the hidden units to random binary states.
– Update the hidden units one at a time until the 

network reaches thermal equilibrium at a temperature 
of 1.  

– Sample                 for every  connected pair of units.
– Repeat for all data vectors in the training set and 

average.

• Negative phase: Set all the units to random binary states.
– Update all the units one at a time until the network 

reaches thermal equilibrium at a temperature of 1.  
– Sample                 for every  connected pair of units.
– Repeat many times (how many?) and average to get 

good estimates.
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Why is the derivative so simple?

−
∂E
∂wij

= si s j

• The probability of a global configuration at thermal 
equilibrium is an exponential function of its energy.
– So settling to equilibrium makes the log probability 

a linear function of the energy.
• The energy is a linear function of the weights and 

states, so:

• The process of settling to thermal equilibrium 
propagates information about the weights.
– We don’t need backpropagation.



Why do we need the negative phase?
(two ways to win a horse race)

The positive phase finds 
hidden configurations that 
work well with v and lowers 
their energies.

The negative phase finds 
the joint configurations that 
are the best competitors 
and raises their energies. 
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Why Boltzmann machines are hard to learn

• We need to settle to the stationary distribution with each 
training vector clamped on the visible units.

• We need to settle to the stationary distribution with the 
visible units unclamped.
– This is a highly multimodal distribution.

• The learning signal is the difference between two noisy 
statistics.
– The difference is very noisy.



Restricted Boltzmann Machines
• We restrict the connectivity to make 

learning easier.
– Only one layer of hidden units.

• We will deal with more layers later

– No connections between hidden units.
• In an RBM, the hidden units are 

conditionally independent given the 
visible states.  
– So we can quickly get an unbiased 

sample from the posterior distribution 
when given a data-vector.

– This is a big advantage over directed 
belief nets
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A picture of the maximum likelihood learning 
algorithm for an RBM
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Start with a training vector on the visible units.

Then alternate between updating all the hidden units in 
parallel and updating all the visible units in parallel.

a fantasy



A quick way to learn an RBM
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Start with a training vector on the 
visible units.

Update all the hidden units in 
parallel

Update the all the visible units in 
parallel to get a “reconstruction”.

Update the hidden units again. 

This is not following the gradient of the log likelihood. But it works well. 

It is approximately following the gradient of another objective function.

reconstructiondata



Training a deep network

• First train a layer of features that receive input directly 
from the pixels.

• Then treat the activations of the trained features as if 
they were pixels and learn features of features in a 
second hidden layer.

• It can be proved that each time we add another layer of 
features we improve a variational lower bound on the log 
probability of the training data.
– The proof is slightly complicated. 
– But it is based on a neat equivalence between an 

RBM and a deep directed model (described later)



The generative model after learning 3 layers

• To generate data: 
1. Get an equilibrium sample 

from the top-level RBM by 
performing alternating Gibbs 
sampling.

2. Perform a top-down pass to 
get states for all the other 
layers.

So the lower level bottom-up 
connections  are not part of 
the generative model. They 
are just used for inference.
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Why does greedy learning work?
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The weights, W,  in the bottom level RBM define 
p(v|h) and they also, indirectly, define p(h).

So we can express the RBM model as

If we leave p(v|h) alone and improve p(h), we will 
improve p(v). 

To improve p(h), we need it to be a better model of 
the aggregated posterior distribution over hidden 
vectors produced by applying W to the data.



What does each RBM achieve?

• It divides the task of modeling the data into 
two tasks and leaves the second task to the 
next RBM
– Task 1: Learn generative weights that can 

convert the posterior distribution over the 
hidden units into the data.

– Task 2: Learn to model the posterior 
distribution over the hidden units that is 
produced by applying the transpose of the 
generative weights to the data

• Task 2 is guaranteed to be easier (for the next 
RBM) than modeling the original data.
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Fine-tuning for discrimination

• First learn one layer at a time greedily.
– This does not require labeled data.

• Then add an output layer to the top and use 
backpropagation to fine-tune the model for 
better discrimination.
– This overcomes many of the limitations of 

standard backpropagation.



Greedy pre-training makes backprop work better

• We do not start backpropagation until we already have 
sensible weights that already do well at the task.
– So the initial gradients are sensible and backprop only 

needs to perform a local search.

• Most of the information in the final weights comes from 
modeling the distribution of input vectors. 
– The precious information in the labels is only used for 

the final fine-tuning. It slightly modifies the features. It 
does not need to discover features.

– This type of backpropagation works well even if most of 
the training data is unlabeled. The unlabeled data is 
still very useful for discovering good features.



Another view of why layer-by-layer    
learning works

• There is an unexpected equivalence between 
RBM’s and directed networks with many layers 
that all use the same weights.
– This equivalence also gives insight into why 

contrastive divergence learning works.



An infinite sigmoid belief net 
that is equivalent to an RBM

• The distribution generated by this 
infinite directed net with replicated 
weights is the equilibrium distribution 
for a compatible pair of conditional 
distributions: p(v|h) and p(h|v) that 
are both defined by W
– A top-down pass of the directed 

net is exactly equivalent to letting 
a Restricted Boltzmann Machine 
settle to equilibrium.

– So this infinite directed net  
defines the same distribution as 
an RBM.
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• The variables in h0 are conditionally 
independent given v0.
– Inference is trivial. We just 

multiply v0 by W transpose.
– The model above h0 implements 

a complementary prior.
– Multiplying v0 by W transpose

gives the product of the likelihood 
term and the prior term.

• Inference in the directed net is 
exactly equivalent to letting a 
Restricted Boltzmann Machine 
settle to equilibrium starting at the 
data.

Inference in a directed net 
with replicated weights

W
v1

h1

v0

h0

v2

h2

TW

TW

TW

W

W

etc.

+

+

+

+



• The learning rule for a sigmoid belief 
net is:

• With replicated weights this becomes:
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• First learn with all the weights tied
– This is exactly equivalent to 

learning an RBM
– Contrastive divergence learning 

is equivalent to ignoring the small 
derivatives contributed by the tied 
weights between deeper layers.

Learning a deep directed 
network
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• Then freeze the first layer of weights 
in both directions and learn the 
remaining weights (still tied 
together).
– This is equivalent to learning 

another RBM, using the 
aggregated posterior distribution 
of h0 as the data.
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What happens when the weights in higher layers 
become different from the weights in the first layer?

• The higher layers no longer implement a complementary 
prior.
– So performing inference using the frozen weights in 

the first layer is no longer correct. 
– Using this incorrect inference procedure gives a 

variational  lower bound on the log probability of the 
data. 

• We lose by the slackness of the bound.

• The higher layers learn a prior that is closer to the 
aggregated posterior distribution of the first hidden layer.
– This improves the network’s model of the data.

• Hinton, Osindero and Teh (2006) prove that this improvement 
is always bigger than the loss.



Summary
• Restricted Boltzmann Machines provide a simple way to 

learn a layer of features without any supervision.
– Maximum likelihood learning is computationally 

expensive because of the normalization term, but 
contrastive divergence learning is fast and usually works 
well for learning good features.

• Many layers of representation can be learned by treating 
the hidden states of one RBM as the visible data for training 
the next RBM.

• This creates good generative models that can then be fine-
tuned discriminatively.
– In 2009, this led to a breakthrough in speech recognition



THE  END


