
Camera Keyframing with Style and Control

HONGDA JIANG, CFCS, Peking University, China
MARC CHRISTIE, University Rennes, Inria, CNRS, IRISA, France
XI WANG, University Rennes, Inria, CNRS, IRISA, France
LIBIN LIU, CFCS, Peking University, China
BIN WANG∗, Beijing Institute for General Artificial Intelligence, China
BAOQUAN CHEN†, CFCS, Peking University, China

Fig. 1. Our proposed deep-learning framework for camera keyframing offers both high-level style specification and low-level keyframe control. The designer
specifies a desired camera style extracted from a reference movie clip (left side) together with a set of camera keyframes as constraints (red cameras in the
middle image), and our framework automatically generates in-between camera motions which comply with the specified style while satisfying the keyframe
constraints (snapshots on the right). As displayed, different input styles (from Donen, Stanley. 1963. Charade. Universal Pictures, hereinafter “Charade, 1963”)
correspond to different camera motions.

We present a novel technique that enables 3D artists to synthesize camera
motions in virtual environments following a camera style, while enforc-
ing user-designed camera keyframes as constraints along the sequence. To
solve this constrained motion in-betweening problem, we design and train a
camera motion generator from a collection of temporal cinematic features
(camera and actor motions) using a conditioning on target keyframes. We
further condition the generator with a style code to control how to perform
the interpolation between the keyframes. Style codes are generated by train-
ing a second network that encodes different camera behaviors in a compact
latent space, the camera style space. Camera behaviors are defined as tem-
poral correlations between actor features and camera motions and can be
extracted from real or synthetic film clips. We further extend the system by
incorporating a fine control of camera speed and direction via a hidden state
mapping technique. We evaluate our method on two aspects: i) the capacity
to synthesize style-aware camera trajectories with user defined keyframes;

∗corresponding author
†corresponding author

Authors’ addresses: Hongda Jiang, jianghd@pku.edu.cn, CFCS, Peking University,
China; Marc Christie, marc.christie@irisa.fr, University Rennes, Inria, CNRS, IRISA,
France; XiWang, xi.wang@inria.fr, University Rennes, Inria, CNRS, IRISA, France; Libin
Liu, libin.liu@pku.edu.cn, CFCS, Peking University, China; Bin Wang, binwangbuaa@
gmail.com, Beijing Institute for General Artificial Intelligence, China; Baoquan Chen,
baoquan@pku.edu.cn, CFCS, Peking University, China.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
© 2021 Association for Computing Machinery.
0730-0301/2021/12-ART209 $15.00
https://doi.org/10.1145/3478513.3480533

and ii) the capacity to ensure that in-between motions still comply with
the reference camera style while satisfying the keyframe constraints. As a
result, our system is the first style-aware keyframe in-betweening technique
for camera control that balances style-driven automation with precise and
interactive control of keyframes.

CCS Concepts: • Computing methodologies → Procedural animation.

Additional Key Words and Phrases: Virtual Cinematography, Camera Behav-
iors, Machine Learning

ACM Reference Format:
Hongda Jiang, Marc Christie, Xi Wang, Libin Liu, Bin Wang, and Baoquan
Chen. 2021. Camera Keyframing with Style and Control. ACM Trans. Graph.
40, 6, Article 209 (December 2021), 13 pages. https://doi.org/10.1145/3478513.
3480533

1 INTRODUCTION
Designing a camera trajectory in a virtual environment is a demand-
ing task generally achieved by a skilled artist through a sequence
of keyframe refinements (placing camera keyframes and tangents,
checking results visually, and moving the keyframes until comple-
tion). In the literature, only a few techniques have been proposed
to ease this design stage. Based on algebraic methods [Blinn 1988],
visual servoing [Marchand and Courty 2000], motion planning [Os-
kam et al. 2009] or numerical optimization [Huang et al. 2016; Olivier
et al. 1999], these techniques generally provide a good level of au-
tomation at the cost of losing fine-grain user control. Despite these
advances, keyframing remains one of the main methods used to pro-
duce animations as pointed out in Zhang and van de Panne [2018].
Traditional keyframe interpolators however remain agnostic to the
type of motion, stylistic influence, or what they may be linked to,

ACM Trans. Graph., Vol. 40, No. 6, Article 209. Publication date: December 2021.

https://doi.org/10.1145/3478513.3480533
https://doi.org/10.1145/3478513.3480533
https://doi.org/10.1145/3478513.3480533

209:2 • Hongda Jiang, Marc Christie, Xi Wang, Libin Liu, Bin Wang, and Baoquan Chen

which makes keyframing a labor-intensive and challenging process.
An underlying key issue in the design of interactive or automated
camera control techniques also stems from the difficulty to encode
many cinematographic principles and rules which guide the design
of camera motions and placements [Galvane et al. 2015b].

Cinematography is indeed by nature an empirical process which
rules and conventions have been forged through years, tailored by
experience and creativity. Rules also evolve over time and princi-
ples are often deconstructed, altered or violated to convey specific
narrative intentions. As a result, the selection of an appropriate
combination of rules and conventions to place and move a camera
requires to account for a broad set of factors ranging from low-level
geometric features (visibility, lighting, composition) to high-level
cognitive and emotional dimensions, all which increase the chal-
lenging nature of such a task.

In opposition to approaches that would try to encode rules [Gal-
vane et al. 2015b], a few data-driven techniques have displayed
qualitative results in a specific class of problem such as drone cin-
ematography [Bonatti et al. 2020b; Huang et al. 2019a,b] where
relations between character poses (or actions) and camera motions
are learned from drone film footage. To address ambiguities (differ-
ent camera trajectories for similar character motions or actions),
approaches have either tagged motions by hand according to styles
of motion [Huang et al. 2019b], used reinforcement techniques [Bon-
atti et al. 2020b] or one-shot learning [Huang et al. 2019a]. In the
general case of virtual cinematography, a possibility only recently
explored [Jiang et al. 2020] is to mimic camera behaviors extracted
from film clips. A camera behavior is defined as a temporal cor-
relation between camera trajectories and character/actor features
such as distance, relative orientation and size. Jiang et al. [2020]
propose to learn these correlations and handle ambiguities with
a Mixture-of-Experts (MoE) approach [Jacobs et al. 1991] where
different networks (the experts) train on different sections of the
dataset to avoid network collapsing. Interestingly, such approaches
address the problem of implicitly encoding elements of cinemato-
graphic style within a latent space representation, and throughout
this paper, we will refer to a cinematographic style as the latent
encoding of a camera behavior.
Yet, despite some degree of control offered through style spec-

ification or a selection of reference clips to be reproduced, such
data-driven approaches do not account for constraints on the trajec-
tories such as handling collisions, or ways to force camera positions
at specific locations and angles. Indeed, while such learning-based
approaches excel in generalizing from a wide range of examples –
and in embedding intrinsic knowledge in compact latent spaces –
the degree of user control they offer remains limited. This central
question of controllability in learning has however been addressed
in approaches such as motion in-betweening for character anima-
tion [Harvey et al. 2020; Zhang and van de Panne 2018] where
user-designed keyframes guide the interpolation, giving the design-
ers an additional degree of control and greater precision. A number
of data-driven motion prediction approaches [Holden et al. 2017]
can also integrate constraints interweaved within the learning stage.
Current approaches however do not account simultaneously for
multiple styles (in motion) coupled with constraints. Furthermore,
this general question of controllability in learning has not been

addressed in camera control, and while many automated camera
control techniques exist, none offer fine-grain control with high-
level style specification.

In this paper, we propose a framework for camera control author-
ing which enables both an interactive level of control through the
specification of keyframe constraints, and an automated level of
control through the specification of high-level camera styles. In that,
we follow the general recommendation when introducing automa-
tion in creative tasks: balancing computer assistance with feeling in
control [Hösl 2019]. The proposed framework is designed to synthe-
size animations from user-specified dense or sparse keyframes as
in Zhang and van de Panne [2018] and yet offers the control and
exploration of different camera motions along the animation as in
Jiang et al. [2020].
The design of such a framework requires addressing a central

challenge which is how to handle the simultaneous satisfaction of
low-level geometric keyframe constraints and high-level camera
style specifications which often are in contradiction. To address this
challenge, we draw inspiration from the camera style latent space
representation of Jiang et al. [2020]. Rather than following aMixture-
of-Experts approach (MoE) where separate experts are trained and
balanced through a gating network, we rely on the design of, first,
a Long Short-Term Memory (LSTM) gating network (the extrac-
tor) trained to extract and identify camera behaviors (geometric
correlations of motions) from film sequences. These behaviors are
encoding in a latent space representing camera styles. We then de-
sign a second LSTM network (the generator) in an autoregressive
way whose role is to generate a camera trajectory conditioned by
(i) a given style in the latent space and (ii) user-designed keyframe
constraints. The training is performed by sampling keyframes on
both synthetic and real datasets of cinematic features and using
a time-to-arrival embedding to ensure keyframe satisfaction. The
sampling is designed to ensure that dense and sparse keyframe
constraints can be satisfied. Finally, a dedicated mapping network
is trained to warm start the hidden states of the generator LSTM,
enabling an additional control of camera velocities by the designer
and improving the training loss.

The contributions of this paper are therefore:

• the provision of an interactive camera keyframing tool which
mixes low-level control through user-specified keyframes and
high-level control of in-between motions driven by camera
behaviors extracted from example film clips;

• the design of a two-fold learning framework (gating + gen-
eration) which improves over previous work by exploiting a
simpler structure than the Mixture-of-Experts and is trained
on a dataset of motions extracted from the MovieNet reposi-
tory [Huang et al. 2020];

• a validation of the system through the design of specific
metrics to ensure that a proper balance between style control
and keyframe control is achieved.

2 RELATED WORK

2.1 Keyframe-based animation control
As highlighted in Zhang and van de Panne [2018], given the im-
portance of keyframing in general animation tasks and the need

ACM Trans. Graph., Vol. 40, No. 6, Article 209. Publication date: December 2021.

Camera Keyframing with Style and Control • 209:3

Fig. 2. Our proposed framework for learning camera together with keyframe constraints composed of a camera behavior extractor (Gating LSTM), which
extracts camera behaviors from reference clips (from Charade, 1963), and a camera motion generator, which generates camera trajectories that both meet the
camera behaviors and required keyframe constraints, speed and directions.

to assist designers in automatically or interactively filling in gaps
of animation, a number of techniques have been proposed to con-
strain the motions such as using space-time constraints [Witkin and
Kass 1988], physical models for realism [Faloutsos et al. 2001], or
probabilistic approaches [Min and Chai 2012].
The problem is actually similar to curve-fitting with a sparse

dataset and is often addressed through optimization (see the tangent-
space technique [Ciccone et al. 2019]). In the specific case of camera
keyframing, optimization has been used for tasks such as designing
overviews of car motions [Huang et al. 2016], generating in-between
animations that ensure visual properties [Lino and Christie 2015]
or generating camera rails between specified viewpoints [Galvane
et al. 2015a]. In Lino and Christie [2015], they rely on the Toric
Space representation to blend visual properties (camera composi-
tion, camera angle and distance to characters) and maintain the
blended properties over time. Yet, the system does not handle style
characteristics, nor can it handle very sparse keyframes.
In character animation, by relying on the availability of rich

datasets, approaches such as motion matching perform a search in
motions to match constraints such as keyframes or trajectories [Büt-
tner and Clavet 2015]. This problem of motion in-betweening has
also been addressed through learning. Zhang et al. [2018] designed
a Recurrent Neural Network (RNN) that is conditioned on target
keyframes. By learning motion characteristics, together with a dedi-
cated blending function to ensure keyframe matching, the approach
provides both precise keyframe control and respects motion charac-
teristics from the database, yet does not offer control in the style
of interpolation. More recently, Harvey et al. [2020] extended the
state of the art motion predictors which using RNNs, by adding a
time-to-arrival embedding to inform the network of the progression
towards a keyframe constraint, and a scheduled target noise vector
to enforce stochasticity in the transitions. In addition, a Genera-
tive Adversarial Network (GAN) is exploited to further improve the
quality of the transitions. This method is limited to gaps of short

motion intervals, say 40 frames, due to cyclic motions and despite
being able to generate some variety in motions between the gaps
(by using a noise vector), the degree of control on the style remains
limited.

In contrast, we first design an LSTM gating network which identi-
fies variations in behaviors of the camera, and then design an autore-
gressive prediction network that is conditioned on the keyframes
and the style label. As a result, not only can keyframes be enforced,
but designers can constrain the camera behaviors between the
keyframes, by either explicit specification, or extraction from a
reference clip. Given this ability to comply to behaviors, motion
sequences can be generated with far less keyframes than traditional
approaches.

2.2 Camera behavior mimicking and learning
As demonstrated through a number of contributions [Galvane et al.
2015b], the automated or interactive design of camera motions re-
quires manual encoding of cinematographic rules and conventions
which are numerous, and in some cases contradictory. Among the
combinatorial possibilities in placing, moving and cutting between
cameras, only few subsets are valid, and these valid subsets charac-
terize distinct cinematic styles. Galvane et al. [2015b] relied on the
manual design of weights between rules, independently of events
in the scene. Other optimization-driven frameworks encoded cam-
era motion characteristics (smoothness, optic flow) for specific re-
quirements such as route overviews [Huang et al. 2016] or virtual
walkthroughs [Argelaguet and Andujar 2010], with also the burden
of balancing weights of different rules through experiments.

In such a context, the idea of automatically learning how cameras
should be placed, moved and edited from real footage is appealing,
but requires to address challenges such as (i) extracting cinematic
features, (ii) accounting for stylistic variations, and (iii) adapting
the learned knowledge to new environments. By addressing a spe-
cific context - drone cinematography - Huang et al. [2019b] have

ACM Trans. Graph., Vol. 40, No. 6, Article 209. Publication date: December 2021.

209:4 • Hongda Jiang, Marc Christie, Xi Wang, Libin Liu, Bin Wang, and Baoquan Chen

been the first to propose the automated learning of camera motions.
After a careful selection and manual classification in four styles of
real drone footage following some characters, the authors proposed
an LSTM structure to learn the correlation between the characters
motion and the drone motion. Extensions were proposed to account
for scene background information in the correlation [Huang et al.
2019c] or use one-shot learning techniques to avoid manual style
classification [Huang et al. 2019a]. In the same context, the learning
of artistic principles for drone cinematography was addressed by
deep Reinforcement Learning (RL) [Gschwindt et al. 2019]. View-
point selection was supervised by a deep RL agent trained and
evaluated on synthetic content. Later contributions also relied on
crowd-sourced synthetic contents [Bonatti et al. 2020a] to learn
by regression a synthetic descriptor space, establishing correlations
between low-level shot parameters (drone angle, distance, velocity)
and perceptually meaningful parameters such as exciting, enjoyable,
establishing, revealing.

By addressing virtual cinematography applications, Jiang et al. [2020]
proposed the notion of camera behaviors as the temporal evolution
of camera features in correlation with scene features (actors on-
screen positions, distances between actors, relative orientations),
and showed how such behaviors could be learned by automatically
extracting features from film footage. To address ambiguities in
the dataset (different camera motions for similar scene features),
the authors propose a Mixture-of-Experts (MoE) deep learning ap-
proach, which yields a latent camera style space that can be used to
both identify camera behaviors from real footage, and drive camera
motion predictors. Yet, the degree of control for designers is limited
to choosing reference clips from which style is extracted. In contrast,
our approach provides designers with additional flexibility through
the specification of keyframe constraints, while enforcing selected
camera styles between keyframes.

3 OVERVIEW
Our objective is to provide designers with a camera control tool
which can encode camera styles from example clips and transfer
them to a given 3D animation while accounting for to user-designed
keyframe constraints. In a nutshell, we want to solve a constrained
style-aware camera motion in-betweening problem.

3.1 Camera behaviors
A camera behavior depicts a specific correlation between character
and camera motions. In this paper, we mathematically define this
correlation using the cinematic feature space proposed by Jiang et al.
[2020]. The cinematic feature space for a given frame is composed
of character features x𝑣 and camera features x𝑐 , defined as:

x𝑣 = {𝑑𝐴𝐵, 𝑠𝐴, 𝑠𝐵, 𝑠𝐴𝐵, 𝑀} ∈ R5, (1)

x𝑐 = {p𝐴, p𝐵, 𝜃, 𝜙} ∈ R6, (2)

where𝐴 and 𝐵 refer to left and right characters on the screen respec-
tively, 𝑑𝐴𝐵 is the 3D distance between the two characters, 𝑠𝐴 (resp.
𝑠𝐵) represents the angle between line𝐴𝐵 and the front vector orthog-
onal to the segment between character𝐴 (resp. 𝐵) shoulders defined
as the relative orientation of the torso to line 𝐴𝐵. 𝑠𝐴𝐵 describes the
angle between the characters shoulders orientations.𝑀 is a binary

(a) (b)

Fig. 3. Illustration of cinematic features (from Charade, 1963): (a) the char-
acter features, such as inter-character distance, absolute and relative orien-
tations on yaw direction of shoulders and (c) the camera pose expressed in
Toric space coordinates that describes a relative pose using framing features
(the 2D on-screen position of characters) together with pitch and yaw angles
(𝜃,𝜑).

variable indicating the main character of the sequence (usually the
character occupying a larger area in the shot). The camera pose is
expressed in the Toric space coordinate [Lino and Christie 2015]
which is an expressive and compact local representation on two
given targets. p𝐴, p𝐵 represent the normalized on-screen position of
two characters, 𝜃 and 𝜙 are two parametric angles representing the
yaw and pitch angles towards the targets in 3D space (see Fig. 3 for
details). Based on the preceding definitions, a keyframe constraint
can be represented as a camera feature x𝑐 at a given time; while a
camera behavior is the evolution of cinematic features in a period
of time. We denote X𝑣 a sequence of character features and X𝑐 a
sequence of camera features.

3.2 Pipeline
We design a two-stage pipeline (see Fig. 2) comprising a camera
behavior extractor which extracts a camera behavior from a real film
clip and encodes it as a style code in a latent space representation and
a camera motion generator which is a predicting generative LSTM
module conditioned on the given style code as well as user-designed
keyframe constraints.
The input of our trained system is a 3D animation with two

characters, a number of user-defined camera keyframes along the
animation, and a reference video sequence to specify the behav-
ior. We first estimate the sequence of cinematic features (character
features and camera motion) from the reference video as in Jiang
et al. [2020] and input the extracted information to the camera be-
havior extractor to identify a corresponding style code. Then, we
deliver the style code to the camera motion generator together with
the immediate next keyframe constraint, the last camera pose, as
well as the target 3D character animation. The system outputs the
current camera pose and feeds it back as the input of camera motion
generator to predict the camera trajectory in an autoregressive man-
ner. The camera poses generated at different stages of the system are
all expressed in Toric space coordinates which can then be applied
to a 3D animation to yield the final 6D camera pose (position and
orientation).

ACM Trans. Graph., Vol. 40, No. 6, Article 209. Publication date: December 2021.

Camera Keyframing with Style and Control • 209:5

In the following, we introduce our main method and the training
details in Section 4. The ablation study and results are demonstrated
in Section 5 and Section 6, before the limitations and discussion in
Section 7.

4 CAMERA MOTION IN-BETWEENING
We first design a camera behavior gating network able to encode
different geometric behaviors from reference clips in a latent space
of camera styles.We then design a cameramotion generator network
to generate trajectories controlled by keyframe constraints and style
labels, and illustrate how our networks are trained simultaneously.

4.1 Camera behavior gating network: the extractor
Our gating network acts as a camera style selector through the
construction of a low dimensional manifold of camera styles. It is
designed as an encoder network using a LSTM backbone structure.
The sequence of cinematic features X𝑣,X𝑐 extracted from a film clip
is fed to the gating LSTM network with the hidden state initialized to
zero state. The last vector of the LSTM output is delivered to a fully
connected module to obtain a low dimensional style code z𝑐 ∈ R4
(see appendix A.1 for more details on the network architecture).

We do not add any constraints to z𝑐 since the normalization oper-
ations such as softmax or KL-divergence tend to limit the capacity
of style codes to represent different behaviors, and can require addi-
tional weight fine-tuning (e.g. KL-divergence loss). Despite its low
dimension, the latent space provides a clear separation of behaviors.
This is illustrated in Fig. 4 by displaying the PCA representation of
the style code where colors represent the four behaviors (direct, rel-
ative, side and orbit) found in our synthetic dataset. The symmetric
distribution reflects left or right main character on the screen.

4.2 Camera motion predicting network: the generator
Given a style label from the latent space, our proposed camera
motion generator is in charge of predicting the current camera pose
based on the current character feature vector, the next keyframe
constraint and the past camera pose. We use LSTM as the backbone
structure as well, and the system can be formulated as:

x𝑐𝑖 = 𝑓 (z
𝑐 , x𝑐𝑖−1, x

𝑣
𝑖 , 𝐾, 𝑧𝑡𝑡𝑎, ℎ

LSTM
𝑖−1), (3)

where x𝑐
𝑖
and x𝑣

𝑖
represent camera and character feature at frame

𝑖 respectively; z𝑐 depicts the style code of the reference camera
behavior; 𝐾 ∈ R11 represents camera and character feature at the
next keyframe; time-to-arrival embedding 𝑧𝑡𝑡𝑎 ∈ R128 indicates the
number of frames to the next keyframe andℎLSTM

𝑖−1 is the hidden state
of LSTM network at frame 𝑖 − 1. All the above features except the
hidden state are concatenated and entered into an encoder which
is composed of two fully connected layers with ReLU activation in
the succession of each. The LSTM network is fed with the output of
the encoder, and the hidden state ℎLSTM

𝑖−1 from the previous iteration.
The network outputs a hidden state vector ℎLSTM

𝑖
∈ R256 to be

reused in the next iteration. The decoder is composed of two fully
connected layers with ReLU only after the first one. The predicted
camera poses are generated autoregressively: each predicted frame
serves as input for the next LSTM iteration.

direct relative side orbit

style code hidden state

Fig. 4. To validate the proper identification of camera behaviors, we illustrate
PCA results of the style code and hidden state vector distribution. Both
distributions display a good separation among camera behaviors, tagged
for the display only and not used in the training. Behaviors are coloured
according to the tags in the synthetic dataset: direct, relative, side and orbit.

We also designed our system to handle both dense and sparse
keyframes. Inspired by Harvey et al. [2020], we use the time-to-
arrival signal 𝑧𝑡𝑡𝑎 to measure the time between the current frame
and the next target keyframe. This signal gives the network a hint on
the importance of current keyframe constraint. The time-to-arrival
signal embedding is defined as a 2-dimension vector 𝑧𝑡𝑡𝑎 :

𝑧𝑡𝑡𝑎,2𝑖 = 𝑠𝑖𝑛(
𝑡𝑡𝑎

𝑏2𝑖/𝑑
), (4)

𝑧𝑡𝑡𝑎,2𝑖+1 = 𝑐𝑜𝑠 (
𝑡𝑡𝑎

𝑏2𝑖/𝑑
), (5)

where 𝑡𝑡𝑎 is the number of time steps to the next keyframe and 𝑑 is
the dimension of the input embedding. The basis value 𝑏 influences
the rate of change in frequencies along the embedding dimension.

The 𝑧𝑡𝑡𝑎 embedding provides a smooth and continuous positional
encoding of the current frame. However, to reduce the influence
of 𝑧𝑡𝑡𝑎 with distant keyframes, 𝑡𝑡𝑎 is capped to a threshold value
𝑡𝑡𝑎𝑚𝑎𝑥 . We empirically set 𝑡𝑡𝑎𝑚𝑎𝑥 to 200. This enables our system
to handle both sparse and dense keyframes (see companion video),
and favors the enforcement of the camera style between distant
keyframes.

4.3 Velocity control using hidden state mapping
For some particular types of camera behaviors, camera features
x𝑣 cannot be fully determined by character features x𝑐 . Extra pa-
rameters are required, typically to encode motions with phase and
frequency information for some cyclic orbit tracks in which the
camera oscillates from one side of a character to the opposite side
of the other character. However, utilizing the combination of latent
style code z𝑐 ∈ R4 and two keyframes as input is not sufficient to
enforce the prediction LSTM network to generate the desired cam-
era motion, especially when the hidden state of a LSTM network is
initialized to zero or a random sample from a Gaussian distribution.

To improve our prediction network and extend the range of cam-
era behaviors it recognizes, we extend our system by adding a hidden
state mapping module 𝐻 (·) which maps a sequence of five camera
configurations x𝑐0 ..x

𝑐
4 (representing the desired local velocity) and a

ACM Trans. Graph., Vol. 40, No. 6, Article 209. Publication date: December 2021.

209:6 • Hongda Jiang, Marc Christie, Xi Wang, Libin Liu, Bin Wang, and Baoquan Chen

Curvature Constraint

h!$%&'

Camera0 Camera1 Camera4...

FC

FC

Style Code

Hidden State
Mapping

Velocity Constraint

h!$%&'

Camera0 Camera1 Camera4...

FC

FC

Style Code

Hidden State
Mapping

Fig. 5. By learning the mapping from a style code and several camera frames
(5 in this paper) towards the starting hidden state of our autoregressive
generator, we provide an additional degree of control for the users through
the specification of camera velocities.

style code 𝑧𝑐 to a specific starting hidden state, defined by:

ℎLSTM0 = 𝐻 (𝑧𝑐 , ⟨x𝑐0, ..., x
𝑐
4⟩). (6)

As demonstrated in Fig. 5, the mapping function 𝐻 (·) has two fully
connected layers with ReLU activation after the first one.
The hidden state of a LSTM network is normally initialized to

zero or a random sample from a Gaussian distribution. However,
the hidden state of our generator is initialized or reset through a
learnable hidden state mapping function 𝐻 (·). This design helps to
resolve the ambiguity issue on camera behavior classification and
endows our system with the ability to control camera direction and
speed at any location along the trajectory by resetting the LSTM
hidden state. More specifically, by simply breaking the original
hidden state feedback loop in LSTM generator network and applying
a 5-frames long desired camera motion to 𝐻 (·), artists can control
camera direction and speed at any location along the trajectory. A
concrete example is displayed in Fig. 6 where different velocities at
initial frame (001) and middle frame (090) are applied. It is notable
that the hidden state mapping is unaware of the history information.

4.4 Training and loss
We trained all three modules simultaneously in an end-to-end fash-
ion with an objective formulated as a weighted sum of two losses,
defined as:

𝐿 = 𝐿𝑟𝑒𝑐 + 𝐿𝐾 =
1
𝑛

𝑛∑
𝑖=1

| |x̂𝑐𝑖 − x𝑐𝑖 | |2 +
1

| |K| |
∑
𝑘∈K

| |x̂𝑐
𝑘
− x𝑐

𝑘
| |2, (7)

in which the reconstruction loss 𝐿𝑟𝑒𝑐 measures the difference
between predicted camera features x̂𝑐 and ground truth camera
features x𝑐 ; while the keyframe loss evaluates the difference of
camera features between the generated keyframes and the ground
truth; and K is the set of keyframes.

We use the Adam [Kingma and Ba 2015] adaptive gradient descent
algorithm. Training is performed for 200 epochs and takes around

frame 001 frame 050

frame 090 frame 200

Fig. 6. The proposed system enables designers to specify keyframes with
initial velocities. In this example, the same keyframe positions and camera
style code is used. As displayed, the resulting trajectories are guided by
the different velocity directions defined at the starting keyframe (time 001)
and the mid keyframe (time 090) respectively. This is achieved by updating
the LSTM hidden state through a dedicated network which maps velocities
with hidden states.

4 hours on an NVIDIA Tesla V100S GPU with a batch size of 1024.
We use the exponential learning rate policy with the base learning
rate set to 0.001 and decay 0.97 after each epoch.

4.5 Dataset
Ourwork relies on the creation of a hybrid dataset composed of 2,640
synthetic sequences and 17,700 movie sequences. The synthetic data
is the same one as Jiang et al. [2020] generated from 30 manually
designed 3D animated scenes with a length of 1,500 frames each.
Four well-known cinematography behaviors (direct track, side track,
relative track and orbit track) are implemented in the dataset.
The movie data is extracted from the MovieNet dataset [Huang

et al. 2020] which consists of 1,100 movies and 1,600,000 clips. We es-
timated the cinematic features from a subset of movie clips using the
cinematic feature estimator [Jiang et al. 2020] (a convolutional neural
network which regresses the cinematic features from 2D skeleton
motions). For the movie dataset, we first filter the sequences ac-
cording to their number of characters and clip length. A visibility
requirement is also applied to ensure the target characters are con-
stantly present on the screen. In order to avoid erroneous estimation
and imprecise behavior recognition caused by abnormal data sam-
ples, we exclude the clips with unusual character sizes and extreme
recording lengths (overly short or long). We finally select 17,700
movie clips for a total of 4,900,000 frames. A smoothing filter (av-
erage sliding window) was applied to the output of the cinematic
feature estimator to reduce the noise in the data. Extractor, generator
and mapping modules are all trained with this same dataset, yet
dedicated treatments are applied for some modules.

Preparing sequences for the extractor. . The identification of camera
behaviors requires a long enough sequence of cinematic features. As

ACM Trans. Graph., Vol. 40, No. 6, Article 209. Publication date: December 2021.

Camera Keyframing with Style and Control • 209:7

reported in Jiang et al. [2020], 300 frames is sufficient and we there-
fore randomly sample sub-sequences of greater length. To accelerate
both training and testing procedures, we reduce the number of input
frames using a downsampling technique (see Section 4.4). Consider-
ing the continuous nature of a camera motion, this downsampled
frame rate has a limited influence on learning performance.

Preparing sequences for the generator. . For the generator, we ex-
tract segments of cinematic features at random locations, with a
number of frames larger than 𝑡𝑡𝑎𝑚𝑎𝑥 = 200 frames. Then two
camera frames are arbitrarily selected from each segment and will
represent the starting and ending keyframes fromwhich to learn. As
a result, training data covers different lengths between keyframes
as well as different locations of keyframes along the trajectories.
While existing motion in-betweening techniques [Harvey et al.

2020; Zhang and van de Panne 2018] input samples at every frame,
we propose in practice to downsample the input signal (both cam-
era and character features) by only considering every five frames.
Resulting camera motions are smoothed with low frequencies, and
filled with cubic interpolation when required. Since the autoregres-
sion is computationally intensive, our downsampling strategy can
significantly accelerate the camera prediction process with a limited
influence on results.

5 ABLATION STUDY

5.1 Evaluating the hidden state mapping
In order to justify the effectiveness of our hidden state mapping
function 𝐻 (·), we compare our method with three other hidden
state initialization methods. We first test the zero and Gaussian-
initialized hidden states which are commonly used without extra
knowledge of the starting camera velocity. We then design another
framework that warm starts the hidden state from zero by inputting
the first five frames of ground truth camera and character features,
instead of using the predicted features, both during the training and
testing stage.
We compare the four methods by reporting trajectory error on

the synthetic evaluation dataset. As shown in Tab. 1, our method
outperforms the others for all behaviors; and the warm start scheme
exhibits noticeable performance gain on orbit track compared with
zero and Gaussian initialization. These results confirm the efficiency
of the hidden state mapping module in reducing ambiguities in
camera behaviors.

5.2 Evaluating the satisfaction of style and keyframes
In the following, we test the capacity of our method to address
conflicting situations that arise when specified keyframes are distant
from what is expected in a given camera style.
A qualitative evaluation is displayed in Fig. 7 in which we use

5 colors to represent 5 different situations with identical starting
keyframe but different ending keyframes (represented as the col-
ored camera icons). Among them, the keyframe and curve with cyan
color represent the ground truth (i.e. the unconstrained trajectory
generated by the specified style). The other 4 curves are generated
using the same style code with specific ending keyframes. As dis-
played in Fig. 7, all the trajectories pass through their corresponding
ending keyframes. We then project back the generated trajectories

ground truth

ground truth

direct relative side orbit

Fig. 7. User-specified keyframes are placed at increasingly larger distances
from the trajectory of a given style. As displayed, our system adapts well to
the keyframes. We re-extract the style codes from the generated trajectories
(shown with crosses in the PCA representation on the right part of the
figure). As displayed our system moves from the given style to adapt to the
keyframe constraints.

in the latent camera style space (using the gating network). The cor-
responding style codes gradually drifts away from the specified style
code. Both the resulting trajectory and latent space representations
display a smooth and consistent change.
We further conduct a quantitative comparison with Jiang et

al. [2020] on the synthetic dataset.As shown in Fig. 8, our evaluation
includes two steps:
i) we extract the style code 𝑧𝑐 from ground truth trajectories 𝑥𝑐

with the gating network, and use the style code to generate the
trajectories 𝑥𝑐 ′ with the same animation but displaced keyframes.
The displaced keyframes are generated by randomly perturbing
keyframes on ground truth trajectories with different magnitudes
of noise and clamping them to a valid camera pose.

ii) we then extract the style code 𝑧𝑐𝑟 from 𝑥𝑐 ′ and generate the tra-
jectories𝑥𝑐𝑟 with the same animation and the ground truth keyframes.
We designed two metrics, latent normalized silhouette distance

(𝑆𝐷) and trajectory distance (𝑇𝐷) to respectively evaluate how style
(𝑆𝐷) and behaviors (𝑇𝐷) are preserved. The definition of 𝑆𝐷 is as:

𝑆𝐷 (𝑍𝑟𝑐 , 𝑍𝑐) =
𝑆 (𝑍𝑟𝑐 , 𝑍𝑐)
𝑆 (𝑍𝑐 , 𝑍𝑐)

, (8)

where the distance function 𝑆 (𝑈 ,𝑉) describes the average Euclidean
distance of vectors between set 𝑈 and set 𝑉 ; 𝑍𝑐 and 𝑍𝑟𝑐 are collec-
tions of style codes 𝑧𝑐 and 𝑧𝑟𝑐 respectively. All the 𝑧𝑐 in 𝑍𝑐 should
belongs to same style category, and the 𝑆𝐷 (𝑍𝑟𝑐 , 𝑍𝑐) indicates the
impact of keyframe perturbation on style.

Another metric 𝑇𝐷 = | |x𝑐 − x𝑐𝑟 | | tends to measure behavior sim-
ilarity through trajectory discrepancy. For a valid evaluation, x𝑐𝑟
needs to be generated using identical keyframe constraints as x𝑐 ,
and with the latent code compatible with the augmented keyframe
constraints. To achieve compatible latent code, we correct 𝑥𝑐 ′ firstly
using a linear interpolation as:

x𝑐𝑖
′+ = (1 − 𝜆𝑖)Δx𝑐𝑘𝑖−1 + 𝜆𝑖Δx

𝑐𝑘
𝑖
, (9)

whereΔx𝑐𝑘
𝑖−1 andΔx

𝑐𝑘
𝑖

represent keyframe distance of the immediate
left and right keyframes of frame 𝑖 , and 𝜆𝑖 ∈ [0, 1] represents the
weight. Then, the compatible 𝑧𝑐𝑟 is extracted from the corrected
trajectory 𝑥𝑐 ′.

We compare three methods in Tab. 2. The first one is our proposed
method with the trajectories generated following the preceding
instructions; the second one comes from Jiang et al. [2020] with

ACM Trans. Graph., Vol. 40, No. 6, Article 209. Publication date: December 2021.

209:8 • Hongda Jiang, Marc Christie, Xi Wang, Libin Liu, Bin Wang, and Baoquan Chen

Table 1. Influence of different hidden state initializations on trajectory reconstruction error. The error is expressed as the difference in Toric space coordinates
between the generated trajectory and the ground truth trajectory.

Direct track Relative track Side track Orbit track Average
Our method 0.107 0.050 0.025 0.049 0.057
Zero hidden state 0.162 0.081 0.045 0.263 0.138
Gaussian hidden state 0.146 0.074 0.045 0.263 0.132
Warm start hidden state 0.173 0.088 0.071 0.116 0.112

behavior constraint only; in order to make a fair comparison with
Jiang et al. [2020], the third one labelled as ’only style’ is a modified
version of our proposed method. 𝑥𝑐 ′ in step i) is generated using
ground truth keyframes and then refined to meet the augmented
keyframes through linear interpolation. The result in Tab. 2 shows
that our proposed method could maintain the behavior when the
keyframe difference is not too far from the ground truth. With
quite different keyframes, our method better satisfies the behavior
specification compared to Jiang et al. [2020].

Modify
keyframe

Restore
to original
keyframe

Silhouette
distance

Style Code !!

Trajectory
distance

Style Code !"!

!#

!#

!#$

!%#

Fig. 8. Metric for evaluating our behaviors preservation capacity when
conflicting with distant keyframes. Two metrics are introduced: i) Silhouette
distance (SD) is style code distance before and after keyframe modification;
ii) Trajectory distance (TD) means the difference in trajectories between
the original one and the one which reuses the style code from the modified
keyframe.

5.3 Evaluating the influence of movie data
During the training process, the sampled keyframes are all taken
from the ground truth trajectories. However, the risk of over-fitting
increases if we only train with synthetic data. As real movie data
contains more complex and natural camera behaviors, we exploit

them to increase the variety in camera behaviors when training,
and hereby demonstrate their influence.

We compare the testing error in evaluation dataset and also eval-
uate SD and TD metrics with the process illustrated in Fig. 8. In
contrast with Section 6.2, we do not apply trajectory correction via
linear interpolation for a strict keyframe constraint, but calculate
the keyframe distance (KD) as another metric to measure the capac-
ity to meet the keyframe. Tab. 3 demonstrates that the movie data
helps to increase the robustness and the capacity of the network to
meet both behavior and keyframe constraints.

6 RESULTS AND EXPERIMENTS

6.1 User interface
To apply our work in practice, we deploy the model in a custom
plugin in Unity 2019. With a given 3D animation, the user can set
and edit the keyframes on the timeline. The UI then automatically
generates the essential information and communicates with the
trained camera motion predictor by ZeroMQ to produce trajectories
from different style codes and given keyframes.

As shown in Fig. 9, we provide trajectories with camera behaviors
from user specified movie clips or default synthetic trajectories
as reference clips. The user can select trajectories with different
behaviors between keyframes (D). Furthermore, the user can adjust
the results by adding or removing keyframes (C). The running speed
of our system is fast enough for animation design. When working
with a new scene, we need to process the scene information in 200
frames per character per second. After that, we can generate camera
trajectories with user satisfied keyframe constraints in more than
2,000 frames per second.

Keyframe editing and trajectory generation. In the user interface,
the user can set keyframes directly on the timeline (B). To adjust
the camera view of a selected keyframe, user can assign the target
characters on which the keyframe focus and set the camera pose.
After choosing the favored keyframes, the ‘generate’ button triggers
the computation of trajectories. If no specific style code is selected,
trajectories with different style codes are generated automatically
and listed in the interface for user to select and preview.

Character transition and cutting. For complex scenes with mul-
tiple characters, we can specify the two target characters for each
individual keyframe which (C in Fig. 9) so to perform transitions
between characters. Changing character information is sent to the
model and the resulting Toric camera parameters will be applied to
the new character targets.

ACM Trans. Graph., Vol. 40, No. 6, Article 209. Publication date: December 2021.

Camera Keyframing with Style and Control • 209:9

Table 2. Trajectory reprojection loss for different keyframe bias. Latent normalized silhouette distance (SD), trajectory distance (TD). The top row displays the
distance from the initial ground truth value 𝜃 to the new 𝜃𝑘 value of the given keyframe in radians. By increasing the distance, we measure the capacity of the
network to meet the keyframe constraint (metric TD) and the style constraint (metric SD).

Metric 0 (radian) 0.1 0.3 0.5 0.9 1.2 1.4 1.6 1.8 2.0
Our method SD 1.009 1.009 1.015 1.025 1.058 1.082 1.1 1.12 1.157 1.211
Our method (only style) SD 1.013 1.013 1.023 1.043 1.114 1.224 1.338 1.426 1.487 1.534
[Jiang et al. 2020] SD 1.016 1.012 1.015 1.034 1.099 1.212 1.316 1.401 1.461 1.510
Our method TD 0.065 0.069 0.089 0.115 0.175 0.219 0.24 0.263 0.302 0.359
Our method (only style) TD 0.065 0.072 0.103 0.139 0.254 0.323 0.379 0.41 0.452 0.475
[Jiang et al. 2020] TD 0.147 0.239 0.444 0.554 0.804 0.935 0.979 1.026 1.065 1.102

Table 3. Influence of adding movie data in the training. The above table shows the generated trajectories distance as testing loss in testing dataset, and the
bottom table shows the capacity to preserve behaviors with different keyframe and the capacity to meet the keyframe constraints. By increasing the distance
between the groundtruth value and a new keyframe, we measure the capacity of the network to meet the keyframe constraint (metric TD) and the style
constraint (metric SD).

Direct track Relative track Side track Orbit track Average
Our method 0.107 0.050 0.025 0.049 0.057
Our method without movie data 0.126 0.056 0.033 0.060 0.069

Metric 0 (radian) 0.1 0.3 0.5 0.9 1.2 1.4 1.6 1.8 2.0
Our method SD 1.009 1.009 1.012 1.019 1.040 1.060 1.075 1.095 1.126 1.168
Our method without movie data SD 1.022 1.022 1.024 1.029 1.045 1.070 1.103 1.147 1.195 1.242
Our method TD 0.064 0.068 0.088 0.114 0.168 0.207 0.227 0.242 0.269 0.311
Our method without movie data TD 0.076 0.078 0.093 0.116 0.177 0.231 0.271 0.321 0.355 0.395
Our method KD 0.016 0.021 0.051 0.085 0.154 0.192 0.216 0.235 0.251 0.277
Our method without movie data KD 0.026 0.037 0.080 0.125 0.212 0.258 0.281 0.299 0.321 0.351

Collision avoidance. Collision avoidance is always a critical issue
when artists design animations since the desired camera motion
may unexpectedly hit other objects in the virtual scene. Compared
with the example-driven solution [Jiang et al. 2020], which has
to redundantly try multiple references clips to find one without
collision, here the designer has the ability to avoid collision by
easily inserting a keyframe or forcing the velocity to where no
obstacles blind the camera’s view.

6.2 Results
Dialogue scene. For this result, we choose a fierce argument se-

quence (900 frames at 30 fps), and generate camera trajectories under
different required camera behaviors and keyframe constraints. We
test our method both on style variation and keyframe matching.
As illustrated in Fig. 10 and Fig. 11, we demonstrate the camera
trajectories with different behaviors using the same keyframes and
with the same behavior but different keyframes respectively.

For the former experiment, the main idea is to utilise different
camera behaviors to generate motions with the same keyframe
constraints in order to highlight that our method is able to converge
independently on the behaviors. On the other hand, in the later
experiment, we show that our method can fine-tune the trajectories
in a low-level fashion and retain the behavior style simultaneously.

Zombie scene. For the zombie scene, we choose a close quarter
battle sequence (900 frames at 30 fps), and show the camera tra-
jectory evolution followed by editing the keyframes, as illustrated

A

B

C

D

Fig. 9. Our camera trajectory editing interface. The scene view (A) dis-
plays the animation. In the timeline (B) the user can add, drag, and delete
keyframes (inverted triangles), as well as drag the process of animation.
The keyframe editing (C) allows the user to select two target characters,
shot view and Toric camera pose at the keyframe. The trajectories selection
(D) provides generated camera trajectories with different behaviors for the
user to choose. The button on the bottom is used to preview a result (Play),
generate trajectories (Generate) and save results (Save).

in Fig. 12. The main challenges in this scene are the complex and
fast-paced motions of all 5 characters and the wide-spread obstacles
which may cause collision with the camera. In this scene the targets
are different from one keyframe to another to make the camera

ACM Trans. Graph., Vol. 40, No. 6, Article 209. Publication date: December 2021.

209:10 • Hongda Jiang, Marc Christie, Xi Wang, Libin Liu, Bin Wang, and Baoquan Chen

frame 1 frame 250 frame 500 frame 660 frame 830 frame 900 3D Scene

Fig. 10. Experiment with same keyframes and different behaviors: different colors represent different camera behaviors. Frames with red camera icon at the
corner refer to keyframe constraints. We observe that constraints are well enforced in the 3D content and in the rendered snapshots.

3D Sceneframe 1 frame 250 frame 500 frame 660 frame 830 frame 900

Fig. 11. Experiment with different keyframes and same behavior: different colors represent different keyframes fed to the system with the same style code. All
three sequences belongs to a same style but their trajectories adjust well in response to the required keyframes (frames with different colors of camera icons
at their corner).

frame 250 frame 380 frame 780frame 490frame 001

Fig. 12. This figure displays a result designed by an animation artist using
only 10 keyframes for a 24 seconds sequence of a zombie fighting scene.
We show the keyframes and camera trajectory simultaneously with the
rendered animation snapshots.

catch up with the character motions. The sequence was designed by
an senior previs artist. By editing the keyframes, he had interactive
control over the trajectories to both avoid collisions with the scene
and fine-tune the camera path.

frame 370 frame 560 frame 1150frame 850frame 001

Fig. 13. In this hockey game scenario, our method is able to generate dy-
namic and qualitative camera motions using only 10 keyframes. Rendered
animation snapshots and the overview trajectory are displayed.

Hockey scene. For the Hockey scene, we choose a hockey game
sequence with ten players and two goalkeepers (1300 frames at 30
fps) and show the camera trajectories in Fig. 13. The main chal-
lenges in this scene are the fast-paced motion of characters and
frequent main characters switch due to the pass of the hockey ball.
By editing keyframes, we have the ability to fine-tune the trajectory
and increase the pitch angle to deal with the occlusion between
players. The final result provides a different experience compared
to common way to watch a game.

ACM Trans. Graph., Vol. 40, No. 6, Article 209. Publication date: December 2021.

Camera Keyframing with Style and Control • 209:11

our method (3 keyframes) cam-on-rails (3 keyframes) cam-on-rails (20 keyframes)

Fig. 14. We show a comparison with the camera-on-rails interpolation
method. The figure illustrates that our proposed method (red) can produce
dynamic and styled camera motion with only 3 keyframes, whereas the
camera-on-rails of 3 keyframes (blue) only interpolates without extra style
control between the keyframes. To achieve a similar result w.r.t our proposed
method, 20 keyframes are required to match the camera-on-rails method
(cyan).

6.3 Comparison with optimization based methods
To demonstrate the efficiency of our approach, we compare with
optimization-based methods which are also commonly employed in
the offline camera path planing applications. In order to make a fair
comparison, we choose the Camera-on-rails [Galvane et al. 2015a]
technique as candidate, which handles specifically the framing of
two targets also with the aid of a Toric coordinate representation.
Given keyframe camera set 𝐾 , the technique searches for the opti-
mal parameters on a third-degree spline curve (the camera rail) by
minimizing a metric expressed on the framing along this trajectory
between adjacent keyframes. The metric is expressed as a distance
between the spline curve and a curve which perfectly interpolates
keyframes’ visual properties along the sequence.
The comparison is conducted between three camera motion in-

betweening trajectories: i) 𝑋𝑐𝑜𝑢𝑟𝑠 is generated utilizing the proposed
method with 3 user-designed keyframes and the desired behavior;
ii) 𝑋𝑐𝑜𝑝𝑡 is generated utilizing the camera-on-rails method with the
same keyframes as 𝑋𝑐𝑜𝑢𝑟𝑠 ; iii) 𝑋𝑐𝑜𝑝𝑡 is generated utilizing the camera-
on-rails method as well, but with increasing number of keyframes
until the generated trajectory reaches a qualitative similarity to
𝑋𝑐𝑜𝑢𝑟𝑠 . In essence, this mimics the process when an artist manually
creates a trajectory by setting keyframes and using optimization-
based methods to achieve the goal in-betweening trajectories. Re-
sults are displayed in Fig. 14 and in our companion video.We observe
that the optimization method requires up to 20 keyframes to obtain
a relatively similar result. Compared to only 3 keyframes in the
proposed method, we show that our method incorporates better the
behavior with keyframe constraints and provides more realistic and
dynamic results.

6.4 User feedback
The prototype UI we implemented in Unity only includes a rough
set of camera control features (select a style code, set and move

keyframes with keyboard, select and generate trajectories). This
showed to be insufficient to perform a thorough user evaluation
that would be able to compare traditional keyframing techniques
(for which many graphical gizmos and trajectory editing tools are
available) with our technique.We therefore switched to an interview-
driven approach with one senior previs artist and five senior art
students in a film academy. First feedback from artists who saw or
used the tool was that they appreciated the ability to use reference
clips as an input to the system and one pointed out "it could be really
interesting to analyse and compare the style of different directors".
The senior previs artist add that "the tool could be good to the
beginner in movie field since it provides an easy way to generate
and edit camera trajectories" and that "short clips have become
very popular and applying them to different scenarios has a great
potential in production". He also insisted on the pedagogical value
it could have by "using it in the film academies to teach how the
cameras should move". To the question related to the quality of
generated tracks, artists answer that they were mostly impressed
by the cinematic value of the shots with so few keyframes. The
zombie sequence was commented as "a great fighting scene with
a first view camera which makes the zombie appear suddenly".
The previs artist was more critique "the trajectories follow some
recommendations and some times could give some very good shots".
The mapping from reference clip to a new scene was sometimes
difficult to comment on given the strong differences in content
between the real sequence and the animation sequence. Artists
then required a collection of additional features such as framing
constraints to keep some characters in specific screen locations,
attachment constraints or virtual targets (targets which are framed
but not seen).

6.5 Playing with characteristic styles
To illustrate the capacity of our network to reproduce some “iconic”
camera behaviors, we extracted style tags from chosen sequences
which contain respectively a classical over-the-shoulder shot, and a
low angle shot (camera is placed below the targets). Results displayed
in Fig. 15 show how these iconic behaviors are reproduced in a
synthetic sequence (see companion video for additional results).

Fig. 15. Two examples of “iconic” cinematic styles in real movies and gen-
erated results in our proposed system. First row displays on the left the
reference shot with an identifiable over-the-shoulder framing (from Charade,
1963), and second row displays a low-angle shot (from Romero, George A.
1968. Night of the Living Dead. Walter Reade Organization).

ACM Trans. Graph., Vol. 40, No. 6, Article 209. Publication date: December 2021.

209:12 • Hongda Jiang, Marc Christie, Xi Wang, Libin Liu, Bin Wang, and Baoquan Chen

7 LIMITATION AND DISCUSSION
Artifacts for extreme keyframes. With the limitation of the intrin-

sic rules in camera behaviors, it is hard to simultaneously maintain
the camera behaviors and the keyframes in all cases. Although our
method tries to learn the balance between them, and despite adding
a large amount of real data in the training to increase the possibil-
ities in keyframes, when the keyframes are on extreme locations,
the output of our method could not satisfy all the constraints.
One solution would be to make the balance between keyframe

and style controllable, as a transition from extreme behaviors con-
straints to extreme keyframe constraints. An intuitive idea could
be to control the ratio of linear interpolation to meet the keyframes
from the generated curve. However, from the discussion in Section 5,
interpolation would not ensure the implicit characteristics of the
behavior. This requires a further exploration.

Camera behaviors limited to two characters. Though the proposed
model is tailored to address scenes with two characters only, it can
adapt to scenes with a single character by downsizing the input vec-
tor since the camera representation we rely on is a generalization of
spherical coordinates for 1 to 2 targets (see Lino and Christie [2012]).
For scenes with three targets or more, the framing problem is often
over-constrained (see the P3P problem [Gao et al. 2003; Lino and
Christie 2012]) if one does not use slanted camera angle, and can
be trivially addressed by performing framing on the left-most and
right-most characters as proposed in Galvaneet al. [2013]. How-
ever, the very specific situations where characters enter or leave the
frame is a path for future research.

8 CONCLUSION
In this paper, we propose a data-driven method for camera motion
control. Given a 3D animation scene, our framework allows camera
motion synthesis with a global similar camera behavior to a given
reference film clip, and meanwhile satisfying local keyframe con-
straints specified by artist. In order to achieve this hybrid control
strategy, we first designed a LSTM based gating network which can
identify various camera behaviors embedded in the given reference
clip and represent it as a latent style code. We further developed
an autoregressive LSTM network for camera motion generation in
which the high- and low- level behavior preferences are delivered
into the system through the style code, the immediate next keyframe
and its arriving time respectively. Moreover, we demonstrated in
the paper that through hidden state mapping, the proposed LSTM
camera motion prediction network can control camera behavior in
an even finer manner.

This work represents the first to propose a camera in-betweening
technique with style control through behavior specification. The
work enables both very dense and sparse keyframes along the ani-
mation depending on the desired degree of control or automation.
Future work will consist in extending the framework to handle more
complex cinematic features as inputs (e.g. controlling the curvature
of camera paths), more complex animated situations (characters
entering or leaving the frame), and also consider the problem of
cutting between multiple cameras under both high and low level
constraints.

ACKNOWLEDGMENTS
We want to thank Anthony Mirabile and Yulong Zhang for the
various support and helpful discussions throughout this project,
as well as Yu Xiong for his help processing the MovieNet dataset.
Furthermore, we wish to thank the anonymous reviewers for their
constructive comments. This work was supported in part by the
National Key R&D Program of China (2019YFF0302902).

REFERENCES
Ferran Argelaguet and Carlos Andujar. 2010. Automatic Speed Graph Generation for

Predefined Camera Paths. In Proceedings of the 10th International Conference on
Smart Graphics. Springer-Verlag, Berlin, Heidelberg, 115–126.

Jim Blinn. 1988. Where am I? What am I looking at?(cinematography). IEEE Computer
Graphics and Applications 8, 4 (1988), 76–81.

Rogerio Bonatti, Arthur Bucker, Sebastian Scherer, Mustafa Mukadam, and Jessica
Hodgins. 2020a. Batteries, camera, action! Learning a semantic control space for
expressive robot cinematography. arXiv:2011.10118 [cs.CV]

Rogerio Bonatti, Wenshan Wang, Cherie Ho, Aayush Ahuja, Mirko Gschwindt, Efe
Camci, Erdal Kayacan, Sanjiban Choudhury, and Sebastian Scherer. 2020b. Au-
tonomous aerial cinematography in unstructured environments with learned artistic
decision-making. Journal of Field Robotics 37, 4 (2020), 606–641.

Michael Büttner and Simon Clavet. 2015. Motion Matching-The Road to Next Gen
Animation. Proc. of Nucl. ai (2015).

Loïc Ciccone, Cengiz Öztireli, and Robert W Sumner. 2019. Tangent-space optimization
for interactive animation control. ACM Transactions on Graphics (TOG) 38, 4 (2019),
1–10.

Petros Faloutsos, Michiel van de Panne, and Demetri Terzopoulos. 2001. Composable
Controllers for Physics-Based Character Animation. In Proceedings of the 28th An-
nual Conference on Computer Graphics and Interactive Techniques. Association for
Computing Machinery, New York, NY, USA, 251–260.

Quentin Galvane, Marc Christie, Christophe Lino, and Rémi Ronfard. 2015a. Camera-on-
rails: automated computation of constrained camera paths. In Proc. ACM SIGGRAPH
Conf. Motion in Games.

Quentin Galvane, Marc Christie, Rémi Ronfard, Chen-Kim Lim, and Marie-Paule Cani.
2013. Steering Behaviors for Autonomous Cameras. In Proceedings of Motion on
Games. Association for Computing Machinery, New York, NY, USA, 93–102.

Quentin Galvane, Rémi Ronfard, Christophe Lino, and Marc Christie. 2015b. Continuity
Editing for 3DAnimation. Proceedings of the AAAI Conference on Artificial Intelligence
29, 1 (Feb. 2015).

Xiao-Shan Gao, Xiao-Rong Hou, Jianliang Tang, and Hang-Fei Cheng. 2003. Complete
solution classification for the perspective-three-point problem. IEEE transactions on
pattern analysis and machine intelligence 25, 8 (2003), 930–943.

Mirko Gschwindt, Efe Camci, Rogerio Bonatti, Wenshan Wang, Erdal Kayacan, and
Sebastian Scherer. 2019. Can a Robot Become a Movie Director? Learning Artistic
Principles for Aerial Cinematography. arXiv:1904.02579 [cs.RO]

Félix G Harvey, Mike Yurick, Derek Nowrouzezahrai, and Christopher Pal. 2020. Robust
motion in-betweening. ACM Trans. on Graphics 39, 4 (2020), 60–1.

Daniel Holden, Taku Komura, and Jun Saito. 2017. Phase-functioned neural networks
for character control. ACM Transactions on Graphics (TOG) 36, 4 (2017), 1–13.

Axel Hösl. 2019. Understanding and designing for control in camera operation. Ph.D.
Dissertation. lmu.

Chong Huang, Yuanjie Dang, Peng Chen, Xin Yang, et al. 2019a. One-Shot Imitation
Filming of Human Motion Videos. arXiv preprint arXiv:1912.10609 (2019).

Chong Huang, Chuan-En Lin, Zhenyu Yang, Yan Kong, Peng Chen, Xin Yang, and
Kwang-Ting Cheng. 2019b. Learning to film from professional human motion
videos. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 4244–4253.

Chong Huang, Zhenyu Yang, Yan Kong, Peng Chen, Xin Yang, and Kwang-Ting Tim
Cheng. 2019c. Learning to capture a film-look video with a camera drone. In 2019
International Conference on Robotics and Automation (ICRA). IEEE, 1871–1877.

H. Huang, D. Lischinski, Z. Hao, M. Gong, M. Christie, and D. Cohen-Or. 2016. Trip
Synopsis: 60km in 60sec. Computer Graphics Forum 35, 7 (2016), 107–116.

Qingqiu Huang, Yu Xiong, Anyi Rao, Jiaze Wang, and Dahua Lin. 2020. MovieNet: A
Holistic Dataset for Movie Understanding. In Proc. European Conference on Computer
Vision.

Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. 1991.
Adaptive mixtures of local experts. Neural computation 3, 1 (1991), 79–87.

Hongda Jiang, Bin Wang, Xi Wang, Marc Christie, and Baoquan Chen. 2020. Example-
Driven Virtual Cinematography by Learning Camera Behaviors. ACM Trans. Graph.
39, 4 (2020), 14.

Diederick P. Kingma and Jimmy Ba. 2015. Adam: A method for stochastic optimization.
In Int’l Conf. Learning Representations.

ACM Trans. Graph., Vol. 40, No. 6, Article 209. Publication date: December 2021.

http://arxiv.org/abs/2011.10118
http://arxiv.org/abs/1904.02579

Camera Keyframing with Style and Control • 209:13

C. Lino and M. Christie. 2012. Efficient Composition for Virtual Camera Control. In
Proc. ACM SIGGRAPH/Eurographics Symp. on Computer Animation.

Christophe Lino and Marc Christie. 2015. Intuitive and Efficient Camera Control with
the Toric Space. ACM Trans. Graph. 34, 4, Article 82 (2015), 12 pages.

Eric Marchand and Nicolas Courty. 2000. Image-based virtual camera motion strategies.
In Graphics Interface Conference, GI’00. Morgan Kaufmann, 69–76.

Jianyuan Min and Jinxiang Chai. 2012. Motion Graphs++: A Compact Generative Model
for Semantic Motion Analysis and Synthesis. ACM Trans. Graph. 31, 6, Article 153
(November 2012), 12 pages.

Patrick Olivier, Nicolas Halper, Jon Pickering, and Pamela Luna. 1999. Visual composi-
tion as optimisation. In AISB symposium on AI and creativity in entertainment and
visual art, Vol. 1. 22–30.

Thomas Oskam, Robert W. Sumner, Nils Thuerey, and Markus Gross. 2009. Visibil-
ity Transition Planning for Dynamic Camera Control. In Proceedings of the 2009
ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Association for
Computing Machinery, New York, NY, USA, 55–65.

Andrew Witkin and Michael Kass. 1988. Spacetime Constraints. SIGGRAPH Comput.
Graph. 22, 4 (1988), 159–168.

Xinyi Zhang and Michiel van de Panne. 2018. Data-Driven Autocompletion for
Keyframe Animation. In Proceedings of the 11th Annual International Conference on
Motion, Interaction, and Games. Association for Computing Machinery, New York,
NY, USA, Article 10, 11 pages.

A APPENDIX

A.1 NETWORK STRUCTURE
The full architecture of our network is summarized in the table
below, where FC denote Fully-connected layers. The number of
input and output channels are reported in the rightmost column.

Name Layers in/out
Gating LSTM 60 ∗ 14/256
Network FC 256/4
Prediction FC + ReLU 160/256
Network FC + ReLU 256/256

LSTM 256/256
FC + ReLU 256/256
FC 256/5

Hidden FC + ReLU 29/256
Mapping FC 256/256 ∗ 2

ACM Trans. Graph., Vol. 40, No. 6, Article 209. Publication date: December 2021.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Keyframe-based animation control
	2.2 Camera behavior mimicking and learning

	3 Overview
	3.1 Camera behaviors
	3.2 Pipeline

	4 Camera motion in-betweening
	4.1 Camera behavior gating network: the extractor
	4.2 Camera motion predicting network: the generator
	4.3 Velocity control using hidden state mapping
	4.4 Training and loss
	4.5 Dataset

	5 Ablation study
	5.1 Evaluating the hidden state mapping
	5.2 Evaluating the satisfaction of style and keyframes
	5.3 Evaluating the influence of movie data

	6 Results and experiments
	6.1 User interface
	6.2 Results
	6.3 Comparison with optimization based methods
	6.4 User feedback
	6.5 Playing with characteristic styles

	7 Limitation and discussion
	8 Conclusion
	Acknowledgments
	References
	A Appendix
	A.1 NETWORK STRUCTURE

