Interactive Cutting and Tearing in Projective Dynamics with

Progressive Cholesky Updates

JING LI, University of Utah, USA and AICFVE Beijing Film Academy, China
TIANTIAN LIU, Microsoft Research Asia, China and Taichi Graphics, China

LADISLAV KAVAN, University of Utah, USA
BAOQUAN CHEN, CFCS, Peking University, China

\«/)//

Fig. 1. A swinging person in a T-shirt is simulated using our system. One vertex of his T-shirt is being held and dragged, ripping apart the cloth. The entire
simulation is performed using Projective Dynamics, with a constant frame-rate, even during the tearing process.

We propose a new algorithm for updating a Cholesky factorization which
speeds up Projective Dynamics simulations with topological changes. Our
approach addresses an important limitation of the original Projective Dynam-
ics, i.e., that topological changes such as cutting, fracturing, or tearing require
full refactorization which compromises computation speed, especially in
real-time applications. Our method progressively modifies the Cholesky
factor of the system matrix in the global step instead of computing it from
scratch. Only a small amount of overhead is added since most of the topolog-
ical changes in typical simulations are continuous and gradual. Our method
is based on the update and downdate routine in CHOLMOD, but unlike
recent related work, supports dynamic sizes of the system matrix and the
addition of new vertices. Our approach allows us to introduce clean cuts

Authors’ addresses: Jing Li, University of Utah, 50 Central Campus Dr, Salt Lake
City, UT, 84112, USA, AICFVE Beijing Film Academy, No.4, Xitucheng Rd, Haidian Qu,
Beijing, China, 100088, jingli2070769@gmail.com; Tiantian Liu, Microsoft Research Asia,
Beijing, China, Taichi Graphics, Beijing, China, Itt1598@gmail.com; Ladislav Kavan,
University of Utah, 50 Central Campus Dr, Salt Lake City, Utah, 84112, USA, ladislav.
kavan@gmail.com; Baoquan Chen, CFCS, Peking University, Jingyuan Courtyard 5,
Peking University, 5 Yiheyuan Road, Haidian Qu, Beijing, China, baoquan@pku.edu.cn.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

© 2021 Association for Computing Machinery.

0730-0301/2021/12-ART1 $15.00

https://doi.org/10.1145/3478513.3480505

and perform interactive remeshing. Our experiments show that our method
works particularly well in simulation scenarios involving cutting, tearing,
and local remeshing operations.

CCS Concepts: « Computing methodologies — Computer graphics;
Physical simulation.

Additional Key Words and Phrases: physics-based animation, real-time sim-
ulation, Cholesky factorization, low-rank updates

ACM Reference Format:

Jing Li, Tiantian Liu, Ladislav Kavan, and Baoquan Chen. 2021. Interactive
Cutting and Tearing in Projective Dynamics with Progressive Cholesky
Updates. ACM Trans. Graph. 40, 6, Article 1 (December 2021), 12 pages.
https://doi.org/10.1145/3478513.3480505

1 INTRODUCTION

Updating a Cholesky factorization after a small rank change in the
matrix is a fundamental task which can be found in many computer
graphics applications such as surface mesh parameterization and
physics-based animation. In an interactive physics-based simulation,
cutting and tearing of a deformable object are features commonly
required by users. These operations would normally change the
topology of the simulated object and require a corresponding up-
date on the factors of the system matrix in Projective Dynamics.
Especially in real-time simulation, it is important that the frame
rate of the solver does not drop when the users start to interact with

ACM Trans. Graph., Vol. 40, No. 6, Article 1. Publication date: December 2021.

https://doi.org/10.1145/3478513.3480505
https://doi.org/10.1145/3478513.3480505

1:2 « Jing Li, Tiantian Liu, Ladislav Kavan, and Baoquan Chen

the scene. For example, when a surgeon starts to cut a tumor off a
simulated organ, it would be highly undesirable if the simulation
framerate dropped exactly when initiating the incision. A fast up-
date of the Cholesky factorization ensures a smooth and realistic
user experience even when topological changes of the simulated
object are happening.

Projective Dynamics [Bouaziz et al. 2014] is a popular method
to simulate deformable objects in real-time. The major computa-
tional advantage of Projective Dynamics comes from a local/global
solver where all the nonlinearities of the system are grouped into
the local step, leaving a constant linear system to solve in the global
step. Since the system matrix in the global step only depends on
state-independent quantities such as the topology of the mesh, the
time-step size, and the material properties (e.g. mass density and elas-
ticity, etc.), Projective Dynamics pre-computes and pre-factorizes its
system matrix so it can reuse the Cholesky factorization during the
simulation. However, when the topology of the mesh is changed,
e.g., due to cutting or tearing, the computational benefits of Projec-
tive Dynamics may vanish. One possible alternative is represented
by iterative methods such as multigrid [McAdams et al. 2011; Tam-
storf et al. 2015; Xian et al. 2019]. However, these methods pose
different types of tradeofls, such as dependency on the topology of
the simulated object in order to build their multi-level hierarchies.

Topological changes due to cutting and tearing are usually local.
Therefore, re-factorizing the system matrix from scratch would
be wasteful. We want to make use of the pre-factorized system
matrix as much as possible while incorporating the topological
changes during the simulation efficiently. Moreover, cutting and
tearing operations normally operate in lower dimensions than the
dimensionality of the simulated object, e.g., a 3D object (volumetric
solid) is typically cut by a 2D plane, and a 2D object (thin shell) is
usually cut by a 1D line. This means that we have far fewer vertices
being affected by the topological changes, compared to the total
number of vertices of the entire system. Especially in high-framerate
simulations (needed e.g. in virtual reality), these topological changes
typically happen gradually as the cutting progresses, leaving us with
only a few degrees of freedom (DOFs) affected by the changes during
one frame.

We propose a new method to reuse and update the factors of the
system matrices of Projective Dynamics, building upon the body of
work on updating sparse Cholesky factorizations [Davis and Hager
2001]. Classical Cholesky update methods provide us with a great
point of departure. Specifically, they update the factor with addi-
tions of low-rank matrices, without changing the size of the matrix.
However, in the process of cutting or tearing, new vertices will be
inserted into the system to represent the cross-sections. Moreover,
remeshing techniques might also be needed to improve the quality
of the simulated elements, which can change the number of ver-
tices of the system too. We observe that operations like adding and
removing elements, or manipulating the mass of vertices in Projec-
tive Dynamics can be seen as low-rank updates without changing
the size of the system matrix. Therefore, we propose to update the
Cholesky factor in Projective Dynamics in four steps. First, we shift
non-zeros in the factor to make room for new DOFs. Second, we
run a low-rank update process to remove the elements which were
affected by the topological changes. Third, we fill the diagonal of

ACM Trans. Graph., Vol. 40, No. 6, Article 1. Publication date: December 2021.

the Cholesky factor with the masses of the new vertices introduced
by the topological changes, as if they are not connected to anything
else (i.e., isolated mass points). Finally, we introduce new elements
using another low-rank update pass, connecting the newly added
vertices back to the simulated system. We show the effectiveness of
our method in two types of simulations: 1) mass-spring systems and
2) finite elements. Our method introduces only minimal overhead
upon the original Projective Dynamics, which ensures a constant
frame-rate even during cutting and tearing operations.
Our main contributions are:

e We present an algorithm to efficiently update the Cholesky
factorization which supports the addition of new vertices,
topological changes, and remeshing operations.

e Our method is particularly effective when the updates are
gradual and progressive, which is common in real-time physics-
based simulation.

o We show that our factorization update method can be used
to support various discretization models such as mass-spring
systems and finite element methods simulated using Projec-
tive Dynamics, while avoiding fluctuations in computation
time during the topological changes.

2 RELATED WORK

Gill et al. [1974] provide a technique for dense Cholesky factoriza-
tion after rank-1 update. Based on the modification idea of [Gill
et al. 1974] and the analysis of the underlying graph structure of the
matrix to be factorized, Davis and Hager [1999] extend the rank-1
update to an arbitrary sparse symmetric positive definite matrix.
Davis and Hager [2005] update the factorization after a symmet-
ric modification of a row/column pair by using rank-1 update in
[Davis and Hager 1999]. This method finds specific application in
the dual approach of linear programming where the system is solved
repeatedly with equality constraints being added or dropped before
each solve. One prerequisite of using this method is to identify the
total number of equality constraints beforehand and have them as
empty rows/columns in the matrix. In applications such as surgical
simulators, topological changes happen frequently and it is difficult
or impossible to predict where they will occur, making the method
of [Davis and Hager 2005] not suitable. Using the framework de-
veloped in [Davis and Hager 1999] on rank-1 modifications, Davis
and Hager [2001] developed a multiple-rank update technique. The
operation count of [Davis and Hager 1999] is optimal while the
operation count [Davis and Hager 2001] is near-optimal. But [Davis
and Hager 2001] enjoys better memory traffic and faster execution
time since multiple-rank update makes one pass through the factors
while a series of rank-1 updates requires multiple passes through
the factors. Both [Davis and Hager 1999] and [Davis and Hager
2001] tested their methods on an optimization problem from airline
scheduling, where the DOFs of the problem are fixed. However, in
physics-based simulation of cutting and tearing, we need not only
low-rank updates, but also adding new DOFs. For example, when a
mesh is cut, new vertices need to be added to represent the newly
generated cross-section. Our method builds on the idea of modifying
the underlying graph structure, but also supports the addition of

Interactive Cutting and Tearing in Projective Dynamics with Progressive Cholesky Updates « 1:3

new DOFs, enabling fast physics-based simulation of cutting and
tearing.

Enzenhofer et al. [2019] implement a pivoting solver of LCP based
on low-rank downdates to a Cholesky factorization of the system
matrix in constrainted multibody simulations involving contacts.
In [Cheshmi et al. 2020], SoMod is a new algorithm designed to
enable efficient updating of the previously computed factors when
constraints are added or removed from the proposed active set.

Hecht et al. [2012] present a fast method for nonlinear FEM simu-
lation by approximating the system matrix with only partial changes.
Those changes are performed through incremental updates that do
work only in accordance with the modified entries of the matrix. The
update cost of [Hecht et al. 2012] is at worst the same as the cost of
the original factorization. However, Hecht et al. [2012] only update
the numerical value of the Cholesky factor. Topological changes
that would require changes of the nonzero pattern of the factor are
not considered by [Hecht et al. 2012].

Herholz and Alexa [2018] propose to reuse factorization defined
on the full mesh to solve linear problems on sub-meshes. For ex-
ample, the user selects a set of handles and wants the handle to
only affect a region of interest. Herholz and Alexa [2018] only care
about the source state (the factor of the entire mesh) and their goal
state (the factor of the submesh). All the factors of the submesh
is computed from the factor of the entire mesh. No update from
submesh to submesh is described. To overcome one of the short-
comings of [Herholz and Alexa 2018], specifically, the fact that
the new update always starts from the original Cholesky factor,
Herholz and Sorkine-Hornung [2020] present another algorithm
to efficiently update Cholesky factors in-place to account for dy-
namic boundary conditions in the context of interactive surface
parameterization. Both [Herholz and Sorkine-Hornung 2020] and
our method incorporate subsequent updates on the previously mod-
ified factors, avoiding the need to start from the initial factor. Hecht
et al. [2012] and Herholz and Sorkine-Hornung [2020] adopt the
same strategy to update the matrix: only change the supernodes
and their ancestors which need to be recomputed. Both are capable
of handling a large number of changes in the factor. We want to
compute the Cholesky factor of C from the Cholesky factor of C
where C = C + oWW', ¢ = +1, W is a matrix representing the
update (not the information of the entire mesh). Instead of updating
the factor of C using the original factor and the information in W,
Herholz and Sorkine-Hornung [2020] compute the factor of C di-
rectly from the modified matrix C+cWWT itself. In order to update
column k, all the columns that have a non-zero entry at row k are
accessed. For factors stored in column-wise format or supernodal
format, this kind of operation yields poor locality. Our method com-
putes column k by only using the information of column k and W.
We first allocate a dense workspace that is of the size of W, which
all of the modification operates in. Our method thus has good mem-
ory locality. The speedup of [Herholz and Sorkine-Hornung 2020]
is prominent especially when the underlying mesh is very large;
examples shown by [Herholz and Sorkine-Hornung 2020] are on
the order of millions of vertices. Real-time physics-based simulation
typically requires a more modest resolution. In the typical scenarios
where topology changes are localized and gradual (i.e., less than

approximately 0.1% of the original DOFs, see Figure 13), our method
outperforms [Herholz and Sorkine-Hornung 2020]. The symbolic
addition algorithm of [Herholz and Sorkine-Hornung 2020] allows
only copies (in terms of connectivity) of existing DOFs to be added,;
our method allows arbitrary new DOFs to be added. This feature
is critical in the surgical simulation where conforming interactive
cutting is often required.

In [Yeung et al. 2016, 2018], refactorization of the finite element
stiffness matrix is avoided when a cut occurs by a different ap-
proach — the Schur complement technique. [Yeung et al. 2018] and
our method both target scenarios when the percentage of mesh
elements affected by topological changes is small. The authors of
[Yeung et al. 2018] mentioned the multiple rank modification mod-
ule of CHOLMOD, which our method is based on. However, they do
not provide a comparison between their method and the CHOLMOD
modification module for surgical simulation application because
CHOLMOD does not provide the functionality to increase the num-
ber of DOFs of the modified system. Yeung et al. [2018] use linear
elasticity, assuming that the deformations are small and only limited
forces are applied. The algorithm of [Yeung et al. 2018] performs
only one iteration at each timestep based on its linear material
assumption. Nonlinear models are needed to simulate large defor-
mations of elastic tissues or clothes. These models require multiple
linearization iterations to achieve a reasonable solution. In a typical
Projective Dynamics solver where 10 iterations are needed, the cost
of the update is paid upon each iteration. The cost of one timestep
(10 iterations) can be less than exactly 10 times the cost of 1 iteration
because the cost can be amortized by memoization in [Yeung et al.
2018].

Projective Dynamics [Bouaziz et al. 2014] is a simple yet robust
and fast method to simulate deformable objects. Narain et al. [2016]
extended Projective Dynamics to support nonlinear constitutive
models and hard constraints. Collisions with static obstacles can
be handled as hard constraints in their method. Fratarcangeli et
al. [2016] implemented Projective Dynamics on the GPU by using
graph coloring. However, GPU compute resources are not always
available e.g. in mobile/AR/VR platforms or might be used for other
higher priority tasks such as rendering. Reusing matrix factorization
remains a useful technique because it is computationally lighter than
many iterative linear solvers. Furthermore, common strategies to ac-
celerate the convergences of those iterative solvers take advantage
of the topological information of the simulated meshes. For example,
multigrid methods such as [Xian et al. 2019] set up the hierarchical
linear problems using the rest-pose of the mesh; The Chebyshev
semi-iterative method [Wang 2015] accelerates the convergence of
the stationary iterative solvers using an estimated spectral radius
p of the system matrix which also depends on the rest-pose of the
mesh implicitly. Our method provides a valuable speedup for appli-
cations involving cutting and tearing. Overby et al. [2017] further
extended [Narain et al. 2016] to support dynamically changing con-
straints, which is useful in situations of sliding and contact. Liu et
al. [2017] added support for many different types of hyper-elastic
materials without compromising the efficiency of Projective Dy-
namics. Brandt et al. [2018] combined Projective Dynamics with
model reduction to achieve further speedups. Wang [2015] uses the
Chebyshev method to accelerate the convergence rate of Projective

ACM Trans. Graph., Vol. 40, No. 6, Article 1. Publication date: December 2021.

1:4 « Jing Li, Tiantian Liu, Ladislav Kavan, and Baoquan Chen

Dynamics. Li et al. [2019; 2020] couple rigid body dynamics and joint
constraints with Projective Dynamics, which is useful in character
animation. Ly et al. [2020] add support for contact and friction to
Projective Dynamics at a small computational overhead. DiffPD [Du
et al. 2021] speeds up back propagation (differentiable physics) us-
ing Projective Dynamics. Their contact algorithm is a reasonable
trade-off between differentiability and physical plausibility while
being compatible with PD. Komaritzan and Botsch [2018] present a
method to compute character skinning based on Projective Dynam-
ics. By storing all potential collisions, [Komaritzan and Botsch 2018]
benefits from Cholesky prefactorization. The follow-up work [Ko-
maritzan and Botsch 2019] improves the computation performance
by a GPU implementation and high-quality up-sampling. A large
number of existing methods exploited the prefactorized Cholesky
decomposition of a constant system matrix. No efficient method to
deal with topological change in Projective Dynamics has been pro-
posed in prior art. To our knowledge, we propose the first method
that supports updates of the system matrix including the addition
of arbitrary new DOFs not limited to copies of existing ones.

3 BACKGROUND
3.1 Projective Dynamics

Projective Dynamics [Bouaziz et al. 2014] is a fast yet robust method
to simulate deformable objects. It treats an implicit time integration
step as a minimization problem:

90 = o Ik -ylE+ Y wille-sily
J

where the positions of the vertices in the next frame are determined
by Xg4+1 = argmin, g(x). In the previous equation, k + 1 is the next
frame number, j indexes the element and wj is a positive weight, G;
is a discrete deformation gradient operator, S; is a selector matrix,
p is an auxiliary projection variable, y is a constant determined by
the current position, velocity and external forces like the gravity, M
is a mass matrix and h > 0 is the time-step. Projective Dynamics
applies a local/global solver to minimize this objective function g(x).
The local step is processed in an element-wise fashion to compute
the auxiliary projection variable p, while the global step involves a
linear system solve to compute the best fit positions x* as follows:

-1
X = (jem) (e 32) @)
where both Hy = ijJ-G]T.Gj andJ = ZJ-ijjT.Sj are state inde-
pendent matrices. Liu et al. [2017] interpret Hy, as the Laplacian
matrix of the mesh which only depends on the rest-pose of the mesh
and the material parameters. The solution of Eq. 2 only requires
a linear system solve: Cx = b. Projective Dynamics assumes that
the topology of the mesh is fixed during the simulation, and pre-
factorizes the system matrix using Cholesky factorization: C = LLT.
During the simulation, the global step only requires a forward and a
backward substitution to compute the solution of Cx = b. Projective
Dynamics gains much of its computational efficiency by reusing
the factorization during its global solve — at the price of sacrificing
the flexibility of changing the mesh topology on the fly, which is
precisely what we address in this paper.

ACM Trans. Graph., Vol. 40, No. 6, Article 1. Publication date: December 2021.

Note that the symmetric positive definite system matrix C comes
from two parts, an elastic part, and a mass-matrix part. One of our
key ideas is to rewrite C as C = AAT, where A € R™(m+1) jg
defined as:

A=|ywiG] ywiGl NN T !

where m is the number of elements and n is the number of vertices.
This notation separates 1) the contribution of elasticity from each
element and 2) the contribution of mass from each vertex. This
formulation is important especially when we want to add or remove
any element or vertex due to topological changes.

3.2 Sparse Cholesky Factorization

Sparse Cholesky factorization has two phases: a symbolic phase
that determines the nonzero pattern of L, and a numerical phase
that produces the factorization itself. CHOLMOD [Chen et al. 2008]
uses the compressed column storage format to store the factors in
simplicial numeric mode, which stores entries of the matrix column
by column (or row by row) instead of aggregated dense blocks as
in the supernodal mode. In this data structure, all the elements in
the column-wise list are stored in two contiguous arrays Li and Lx.
Li contains the row indices of each element and Lx is the actual
numerical values. A third array Lp points to the beginning of each
column in Li and Lx. Li and Lx are of the same length, which is the
number of non-zero elements in the factor. Lp is of length n+1 when
C € R™"_ For example, if the lower triangular Cholesky factor L is:

1.73

0 1.41

0 0 1

0 -0.70 0 1.58 “)
—0.57 0 0 -0.63 1.50
—0.57 0 0 0 -0.22 1.27

Li and Lx are as shown as below:

Lkifo 4 5 |1 3 |2(3 4 |4 5

Lx|1.73 -0.57 -0.57|141 -0.70|1|1.58 -0.63|1.50 -0.22|1.27

Lp points to the beginning of each column:

[LpJ0 3 5 6 8 10 11|

CHOLMOD uses a doubly linked list (Lnext and Lprev) to append
modified columns at the end of Li and Lx instead of directly moving
entries in Li and Lx. For example, Lp[j] is the starting index for
j-th column, Lp[Lnext[j]] - 1 is the index for the last space for the
j-th column. The column indices of Li and Lx do not need to be
monotonic. We refer interested readers to the textbook [Davis 2006]
for further information on sparse matrix data structures.

3.2.1 Symbolic Analysis. The first step in the symbolic analysis
is to find a good fill-reducing permutation P. Factorizing PCPT
results in fewer nonzeros in L (known as “fill-in”). In our method,
we use nested dissection ordering in METIS [Karypis and Kumar
2009] because continuous topological changes to the mesh result
in limited, well-structured changes to the Cholesky factor. Other
permutation methods can be used with our method as well. The
non-zero structure of C can be modeled by a directed graph [Cuthill
1972; Tarjan 1976]. The process of symbolic analysis can be viewed
as removing nodes and adding edges on the graph. We refer readers

Interactive Cutting and Tearing in Projective Dynamics with Progressive Cholesky Updates « 1:5

to algorithms 4.2 and 4.3 in a survey [Davis et al. 2016] for this
process on elimination graph or quotient graph for more details. This
graph-theoretic analysis illuminates the applicability of our method,
which incorporates topological changes in simulation directly in
the factorization.

3.22 Numerical Phase. The numerical phase follows the symbolic
analysis by computing the actual numerical value of the non-zero en-
tries. According to the order in which the factor is computed, we can
differentiate between left-looking and up-looking Cholesky factor-
izations. According to whether dense submatrices are exploited,
there are simplicial, supernodal and multifrontal methods. Our
method uses the up-looking variant, corresponding to CHOLMOD’s
simplicial LDLT option. This choice has no impact on the run-time
computation time since the numerical phase for the original factor
is performed only once for the initial mesh before the simulation
starts.

3.3 Sparse Cholesky Modification

Davis and Hager [2001] propose a method to update the factor of a
symmetric positive definite matrix C = AAT when appending a new
low-rank component: C = AAT + cWW', where o € {~1,+1}. This
modification is called an update if o is +1 and is called an downdate
if o is —1. The modification of the factor of C can be very fast if the
rank of W is significantly smaller than the rank of A.

Here we explain how the factor L will change in the case when
o = +1, which corresponds to an update. A downdate is almost
identical except for minor changes in the numerical phase of the
update process. If the initial sparse symmetric positive definite
matrix is in the form AAT, adding WWT (W e R r << n) can
be written as:

AAT+WWT = [AW][A[W]T (5)

Similarly to full factorization, the update of the factor L also requires
a symbolic phase and a numerical one.

3.3.1 Symbolic Update. First, we introduce some notation in order
to explain the symbolic update phase, following the notation from
[Davis and Hager 2001]. The nonzero pattern of column j of the
factor L is denoted as £,

Lj={i:lj; #0} (6)
Similarly, A; denotes the nonzero pattern of column j of A,
ﬂjz{i:ai]’iO} (7)

The elimination tree can be defined in terms of a parent map . For
any node j, 7(j) is the row index of the first nonzero element in
column j of L beneath the diagonal element,

7(j) = min L;\{j} ®)

where min X denotes the smallest element of X. The children of
node j are the nodes whose parent is j,

{c:j=n(c)} ©
The elimination trees (shown in the right of Figure 2) are constructed
from 7 for all columns: () is the parent node of j in an elimination
tree. For a matrix of the form AAT, the pattern £; of column j is
the union of the patterns of each column of L whose parent is j and

each column of A whose smallest row index of its nonzero entries
is j:

L=l | LeMe|u

{eij=n(c)}
For the example illustrated in Figure 2, £y = {2} UOU A5, where {j}

U #A&] o

min Ar=j

is {2} on the diagonal; (U{C:j:n(c)} LC\{C}) is) because column
2 has no child; and k is 5 in (Umin Ar=j ﬂk) because A(2,5) is
nonzero. According to Eq. 5 and Eq. 10, the new pattern £ j of
column j of L after the update is:

Zi=(ru| J LeMer|u
{e:j=m(c) }

U A |V

min Ap=j

U w

min W;=j

where “W; is the nonzero pattern of column i in W. For the ex-
ample in Figure 2, min ‘W = 1, then the first column of L should
incorporate the nonzero pattern of the first column of W. Similarly,
min ‘W, = 3, the third column of L should incorporate the nonzero
pattern of second column of W, which are shown as green dots in
Figure 2.

The difference between £ j and L; comes from two sources: the
difference in the second term of Eq. 10 and Eq. 11, which is due to
the change of the elimination tree, and the fourth term of Eq. 11
which comes from the low-rank matrix W. £ j can be computed
by adding nonzeros to and/or removing nonzeros from £; based
on these two sources of the difference. We refer to algorithm 3 in
[Davis and Hager 2001] for further details.

3.3.2 Numerical Update. Once the symbolic update is finished, a
numerical update starts by reordering the columns of W using a
depth-first search. The reordering of W improves efficiency without
affecting the result of WW'. This reordering is analogous to the
permutation in the symbolic analysis phase. The algorithm to nu-
merically update the factors operates in a dense workspace of size
n by r. All of the intermediate values are stored and accumulated in
this workspace. Note that if we want to perform a downdate where
o = —1, we only need to change the computation in the numerical
update phase. In cases where a downdate cancels a nonzero entry
in the factor, we will not change the nonzero pattern, but instead,
note that entry as a numerical zero (as opposed to structural zeros).
We refer to algorithm 5 in [Davis and Hager 2001] for more details.

4 METHOD

Our method is based on the low-rank update technique introduced
by Davis and Hager [2001]. However, the original algorithm only
supports low-rank updates with DOFs that are already present in C.
This is not ideal in applications like the simulation of tearing and
cutting, where vertices need to be duplicated or created to represent
the cross-sections, changing the size of the new matrix C.

Based on the observation that the system matrix of Projective
Dynamics can be written as C = AAT where the A matrix is the
aggregation of the contributions of elasticity and mass from each
element and vertex (Eq. 3), it is straightforward to represent the
change of an element or a vertex as low-rank updates. Assuming the

ACM Trans. Graph., Vol. 40, No. 6, Article 1. Publication date: December 2021.

1:6 + Jing Li, Tiantian Liu, Ladislav Kavan, and Baoquan Chen

1 [] [] [] []
2 [] [] [] e
3 [o []
4 [® ° O,
5 @ o0 o oee
6 o (o0 o0 [] o0 o e o e e
7 ° ° ° & ®
8 [] [] [] [] [] o0
A C=AA original factor L original elimination tree

1[+ [+ o[[o 0 ®
2 [+ +|+ o o @
3 + +(+(® + []
4 + +|+|0| [+ o0
5 o000 o0 e e
6 oe eoe |® o0
7 * [+ | [+[® olojo[e]® o ®
8 [] LJCIC) [] o00 e

w C=C+ww’ new factor L new elimination tree

Fig. 2. Nonzero entries in L have 3 types of source according to Eq. 10.
The black dots are from {j}. The blue dots are from (Uminﬂk:j ﬂk).

The red dots are from (U{C:j:”(c)} Lc\{c})‘ Nonzero entries in L have
4 types of source. The black dots are from {j}. The blue dots are from
(Umin.ﬂk:j ﬂk). The red dots are from (U{c:jzﬁ(c)} LC\{C})A The green

dots are from (Umin"W,-:j Wi). Considering that the four types of none-
zero sources are not disjoint (multiple sources can contribute to the same
nonzero entry), we color the dots with the priority that black > green > red
> blue. For example, the first nonzero entry on the diagonal can be colored
both black and green. We color it black because the priority of black is
higher.

number of vertices is not changed, adding or removing an element
e can be seen as a low-rank update GWeWI, where W, = \/wer
is the contribution of elasticity of that element. Similarly, changing
the mass of a particular vertex v can be seen as a low rank update

UWUW;E as well. W, = %50 is the change of mass of that vertex,

where J, is an indicator column vector of vertex v. But what if the
number of vertices needs to be changed? In that case, we can add
the new vertices and the new elements in four separate passes. In
the first pass, we make room for the incoming vertices by shifting
the entries of the current vertices in the factor (Figure 3(b)). Details
on how to accommodate the new vertices are shown in Figure 4.
New vertices are inserted right before any old vertices connected to
them by the element being cut. For example, in Figure 4, vertex 10 is
inserted before 6 because 10 is connected with 6 in Figure 3(f). After
the insertion, all the vertices are shifted to new positions and the
new vertices (e.g. 10) are placed in the vacated column indices (e.g.
6). In this way, the elimination tree is not changed except for adding
this new child to the old tree. In the second pass, we remove the cor-
responding elasticity and mass of the deleted elements (Figure 3(c)).
This can be done via a low-rank downdate. In the third pass, we
add the vertex masses as “island” vertices to the mesh, as if these
new vertices were detached from the object. Because these island
vertices are topologically independent of the rest of the mesh, they
can only affect the diagonal entries of the expanded system matrix
C. Therefore, they will only appear as diagonal entries in the corre-
sponding factor L. In the fourth pass, we add the elements which can
couple several vertices (e.g., springs or linear finite elements) that
connect those island vertices to the original mesh. Since this pass

ACM Trans. Graph., Vol. 40, No. 6, Article 1. Publication date: December 2021.

does not change the number of vertices, it can be implemented via
a low-rank update. To summarize, when a topological change takes
place during the simulation, we first reorder the vertices; second, we
remove the affected elements and vertices using a low-rank down-
date without changing the system DOFs; third, we fill the diagonal
of the system matrix, adding the mass of the newly added vertices;
fourth, we add the new elements to the system matrix and its factor
using a low-rank update. Figure 5 visualizes the nonzero pattern of
the Cholesky factor using our method when cutting a piece of cloth
nonconformally.

We explain this key idea of our approach in a didactic example
of a simple mass-spring system, illustrated in Figure 3. When we
cut a corner involving vertex 9, four steps are made to update the
corresponding Cholesky factorization. First, we reorder the vertices.
The old vertex 6 is shifted to 7, old vertex 8 is shifted to 10, old vertex
9 is shifted to 13. The new vertices 10, 11, 12 and 13 are inserted at
indices 6, 11, 9 and 12. Second, we remove springs 7-13 and 10-13
and the associated masses of vertices 7, 10, and 13 which are all
affected by the cut. This corresponds to a low-rank downdate, where
the low-rank matrix W is:

A

T T Amv Am m
Vwi13G7 13 VWi013Gyg 5 | 72757 h210510 h213513]

Note that we did not remove the masses of vertices 7, 10, and 13
completely, but split them into two parts. We only remove parts of
the masses which will compensate for masses of the newly created
vertices from the cut. It would also be possible to remove the masses
of vertices 7, 10, and 13 completely and add the correct fractions of
them back afterward in the last step. Third, we add new vertices 6,
9, 11, and 12 to the system by adding their masses to the diagonal
entries of the new factor L. Finally, we add the new springs colored
in orange in Figure 3(e) to the factor using a low-rank update.

Our method can handle topological changes not only due to
cutting and tearing but also due to local remeshing operations,
which are useful to improve the quality of finite elements after
cutting or large deformation. For example, if we need to swap an
edge in a triangle mesh as shown in Figure 6, we only need to do
a low-rank downdate to remove the unwanted elements and then
perform a low-rank update to add the new ones.

We summarize our proposed workflow for Projective Dynamics
supporting topological changes in Alg. 1. The red pseudo code
in Alg. 1 highlights the modifications of the original version of
Projective Dynamics [Bouaziz et al. 2014].

Fy. is a matrix encoding the indices of all of the elements in frame
k. In line 1, TopologicalChange is a function which tells us how
the indices of the mesh elements are changed due to topological
changes and mesh refinement. The implementation of this function
is application specific and may depend on user interaction. Our
method is able to handle addition of arbitrary DOFs. In lines 2 to
5, if any topological changes occur, we will update the relevant
variables y, M, J, Hy and the corresponding Cholesky factor. Line 4
is the core of our method, which is further detailed in Alg. 2. In line
9, the global solve is computed using the Cholesky factor updated
by Alg. 2.

Our factorization update process is described in Alg. 2, where
we starts with the reordering of the original matrix, corresponding
to the rest pose. We found that the nested dissection reordering

Interactive Cutting and Tearing in Projective Dynamics with Progressive Cholesky Updates + 1:7

1 2 3 12 3 1 2 3
4 s 6 4 5 7 4 s 7
A
78 9 8 1 13 8 1 13
(@) (b) (c)
0 0
. .
2o 21ee
Z1 N 4leces
HAREEY MAEEEE
8 8l evt o
10 10 0o o 10 o oo o
0 2 4 6 810
12 12
ve o o .
1 4

4 1
0 2 4 6 8 101214 0 2 4 6 8 101214

4
0 2 4 6 8 101214

1 2 3 1 2 3 1 2 3
4 5, 7 4 5, 6
26 410

211 Nyl
0,61213 78 13

(e) (f)

0 0
. .
2tee 2tee
.o oo
4le0ee 4ile00e
ecee ccee
6 . 6 ceee
ceoce csee
8 oo oo 8 ecee
. .
10 e ococe 10 .
. . .
. 12 . 12 .
. . .
14 14

0 2 4 6 8 101214 0 2 4 6 8 1012 14

Fig. 3. A walkthrough of making a cut in a mass-spring system. A cut is being made along the springs 8-9 and 6-9. The bottom row shows the corresponding
nonzero pattern of the factor. (a) the original mass-spring system. (b) make room for incoming vertices. (c) the system after removing springs 7-13 and 10-13,
and also removing the partial masses of vertices 7, 10, and 13. (d) the system after adding the masses of vertices 6, 9, 11, and 12. () the system after adding
springs 6-7, 6-9, 9-10, 11-12, 11-13 and 12-13 (f) vertices without our reordering strategy. The red dots indicate the new DOFs of the system, and the orange

dots correspond to the nonzeros introduced by the new springs.

1234567@\

rodered 1 2 3 4 5 6 7 8 9 10 11 1213
rrrrrt ot
wpending 1 2 3 4 5 @6 7 @ 8 @@ 9

Fig. 4. Top: inserting four new vertices 10, 11, 12 and 13 into the system
described in Figure 3(f). Bottom: the map from the original naturally append-
ing order to the reordered new vertices. For example, vertex 10(Figure 3(e))
is mapped to vertex 6 (Figure 3(f)).

10/
20 -'-'-
30 .m. -
- = -
40
.
50

A

50 60 70

70

10 20 30 40

Fig. 5. Left: A piece of cloth (mass-spring) is being cut nonconformally.
Right: the corresponding visualization of the Cholesky factor. Dark blue
entries remain unchanged. Light blue entries are modified by the topological
changes due to the cut. Red entries are the diagonal of the newly added
DOFs. Orange entries correspond to new nonzeros added due to the cut.

computed in the rest-pose provides a good fill-in in our experiments.
Based on the nested dissection reordering of the original topology,
new nodes are inserted and the Cholesky factor is changed accord-
ingly. In a low resolution example where a piece of cloth is cut into

1 2 1 2 1 2
5
4 4 4
(a) (b) (<)
Fig. 6. An example of an edge swap operation [Hoppe et al. 1993]. (a) the

original mesh. (b) the mesh after removing the unwanted edge 2-4. (c) the
mesh after adding the edge 1-3.

ALGORITHM 1: Projective Dynamics with Topological Changes

1 Fpy1 = TopologicalChange(Fy);

if Fyy1 # Fi then

3 update y, M, J;

4 update /,Mz + Hy, with its Cholesky factor (Alg. 2);

N

5 end
st 0 JRE—
6 nit:x; , =Y;
7 fori=0,...,max_iter —1do

8 local step: project x}(ﬂ to obtain lJi+1 ;
. -1 .
9 global step: solve xi*, = [hMZ +HL] (Jp”l 4 %)’
10 end
max_iter

-
1 Xpey1 < X

12 Vi — 7 (Xp1 — Xk)

two by an S-shaped path, the visualization of one frame (Figure 5)
shows that our method maintains moderately good sparsity.

Since our method allows the system matrix to expand during
cutting or tearing, extra spaces may be needed. Spaces can be either
pre-allocated or added on the fly. We use the doubly linked list in
CHOLMOD to book-keep the spaces accordingly. Pre-allocating
enough space is efficient for most small scaled cuttings, we applied
this strategy in most of our implementations. However, our method

ACM Trans. Graph., Vol. 40, No. 6, Article 1. Publication date: December 2021.

1:8 « Jing Li, Tiantian Liu, Ladislav Kavan, and Baoquan Chen

ALGORITHM 2: update % + Hy, with its Cholesky factor

reorder vertices

-

2 remove elements and partial mass from nodes:

downdate via Alg.4, and Alg.5 (dynamic supernodal version) in
[Davis and Hager 2001]

4+ add new nodes:

w

5 for j € new vertices do

6 need«— j — ngq +c¢;

7 Lp[Lnext[j]] = Lp[j] + need;

8 insert j in the doubly linked list (Lprev, Lnext);

9 recompute Perm
10 p =Lp[jl;

1 Lifp] =j;

12 Lx[p] = 7%

13 end

14 add elements:
15 update via Alg.3, and Alg.5 (dynamic supernodal version) in [Davis
and Hager 2001]

does not assume any limit of cuttings allowed since we can append
discontinuous extra spaces during the simulation and manage these
new spaces using the doubly linked list.

Specifically, in CHOLMOD, there are 3 parameters (growd, growl
and grow2) to control the extra space in the factor if the option
final_pack is set to False. Li and Lx are of length MAX (1, grow@)
times the required space. The space for each column is of length
growl * required space + grow2. In order to support added DOFs,
we introduce a fourth parameter grow3 to denote the growth of
DOFs. Lp is of the length n + grow3. In Alg. 2, lines 2 and 3 use
symbolic and numeric downdates to remove elements in the factor
(Figure 3(c)). From line 4 to Line 13, the new DOFs are inserted in
the factor to augment the original factor (Figure 3(d)). In line 6, we
compute the space needed for the columns of the new DOFs. The
constant ¢ is a small integer determined according to the needs of
a specific application, e.g., swing example shown in Figure 9 uses
¢ = 400. Line 7 leaves room for column j. Line 8 inserts j in the
doubly linked list described in Section 3.2. Lines 10-12 put the new
nodes on the diagonal and fill them with the corresponding numeric
values. Line 14 and 15 use symbolic and numeric updates to add the
new elements into the system as illustrated in Figure 3(e).

5 IMPLEMENTATION DETAILS
5.1 LLT v.s. LDLT factorization

Both LLT and LDLT factorizations have almost identical algorithms
in terms of symbolic and numerical updates. In CHOLMOD, the
factor of LDLT is stored as one sparse lower triangular factor. Be-
cause all the diagonal entries of L are 1, there is no need to store the
diagonal entries of L. Instead, the diagonal entries in D are stored on
the diagonal of the factor. So, there is no difference between LDLT
and LLT in terms of memory consumption. With regard to efficiency,
the LDLT factorization uses a division operation for the diagonal
terms while LLT applies a square root to the same terms which is
slightly more expensive. Even though our method is applicable to
both LLT and LDLT factorizations, in our implementation we use

ACM Trans. Graph., Vol. 40, No. 6, Article 1. Publication date: December 2021.

LDLT factorization to avoid the square root operations during the
update and downdate.

5.2 Dynamic Supernodes

The supernodal Cholesky factorization method exploits dense ma-
trix kernels by using supernodes [Liu et al. 1993], i.e., a contiguous
set of columns of L with the identical nonzero pattern. The conven-
tional supernode is suitable for the sparse Cholesky factorization of
the initial matrix where the nonzero pattern of L does not change.
After a low-rank change to C, because the nonzero pattern changes,
the data structure of supernodes changes too. Two or more su-
pernodes may qualify to form a bigger supernode, which is called
the merge of supernodes. One supernode may no longer qualify
to be a supernode and has to be split. The merge and split of su-
pernodes disable the use of conventional supernodes. Davis and
Hager [2009] introduced dynamic supernodes to achieve similar
performance as the conventional supernodes while adding low-rank
updates/downdates to the initial matrix. Instead of storing the fac-
tor in the supernodal form, they store L in a compressed column
form as described in Section 3.2. This is because data movement
is very costly when a supernode is split into two in conventional
supernodes. Following the implementation of [Davis and Hager
2009], we also use the simplicial data structure upon which the dy-
namic supernodes can be detected and used on the fly. If a dynamic
supernode is detected, the algorithm described in Section 3.3.2 is
unrolled and blocked. We refer to algorithm 2 in [Davis and Hager
2009] for more details. The triangular solve phase can also benefit
from the dynamic supernodal technique (algorithm 3 of [Davis and

Hager 2009]).

Fig. 7. A bar (tetrahedral mesh) is being cut by a plane.

5.3 Non-conforming Cut

There are various techniques to incorporate cuts into a tetrahedral
mesh. Berndt et al. [2017] propose PBD-based method in surgery
simulation. Wu et al. [2015] summarize and classify those techniques
to six categories: element deletion, splitting along existing faces,
element duplication, snapping of vertices, element refinement and
snapping plus refinement. Our method can be used with any of the
six methods. For example, the cut in Figure 7 splits tetrahedrons
along the existing faces. Besides, the cuts can also be represented
accurately by the element refinement method, which is used in the
stomach example (Figure 10). We use the tetrahedral mesh intersec-
tion routine in [Wang et al. 2014], which provides provably-robust
cutting with floating-point arithmetics.

6 RESULTS

Table 1 provides details about our example models and the compute
time needed for their simulation. In Table 1, “refactorization” is
the average time to factorize the system matrix from scratch using

Interactive Cutting and Tearing in Projective Dynamics with Progressive Cholesky Updates «

Table 1. Results on our example models. §: the bending springs are not considered in the cloth cut example.

19

factorization update total time
E 1 del #Verts #EI local/global sol — —
xampre mode eres ems | local/global solve refactorization our method | PD + refactorization PD + our method
cloth cut cloth’ 14,829 29,172 47ms 36ms 2ms 83ms 49ms
spinning cloth cloth 14,829 29,172 52ms 77ms 15ms 129ms 67ms
swing cloth 24,168 47,880 125ms 602ms 4ms 727ms 129ms
stomach volumetric || 36,055 13,7796 617ms 786ms 15ms 1403ms 632ms
Table 2. Scalability test on the cloth cut example of different resolutions.
cut per frame .
#

Example || #Verts #Elems] 7 3 T 3 3 recomputation

cloth cut|| 3,785 7,326 |1ms| 1ms | 2ms | 5ms | 9ms | 20ms 22ms

cloth cut || 14,829 29,172 | 2ms | 5ms | 8ms | 19ms | 26ms | 37ms 36ms

cloth cut || 58,697 116,424 | 5ms | 13ms | 17ms | 32ms | 56ms | 251ms 416ms

012 cloth cut 08 swing

frame number
refactorization from scratch ——our method

25 stomach

time (s)

0.5

0
HOH OO oo
TMSPeROgHIS2alRILRRRARIRGS

frame number
refactorization from scratch ——our method

frame number
refactorization from scratch ——our method

spinning cloth
0.16

0.14

0.12

0.1 ‘

0.08 | ‘

time (s)

0.04
0.02
o
TSNReERABENALASEEE
frame number
refactorization from scratch ——our method

Fig. 8. Per frame compute time for our four examples. Top left: timings for the “cloth cut” animation (Figure 11). Top right: timings for the “swing” animation
(Figure 9). The orange curve is jagged because a tearing event does not occur every frame. Bottom left: timings for “stomach” animation (Figure 10). Bottom

right: timings for “spinning cloth” animation (Figure 14)

CHOLMOD. “local/global solve” is the solve time for one frame
(lines 7-10 in Alg. 1) (i.e., the cost of Projective Dynamics with
precomputed factorization). The column “our method” under “fac-
torization update” is the average time to modify the factor using our
method. “total time” means the total compute time for one frame
(10 local/global iterations for all examples). “PD + refactorization” is
the compute time for one frame where the system matrix is factor-
ized from scratch and “PD + our method” reports the compute time
for one frame using our factorization update method. All examples
were executed on an Intel®Core™ i7-8750H CPU. As we can see
from the table, our method significantly reduces the time spent in
factorization. Table 2 provides timings of the cloth cut example in
Figure 11(b,c) of different resolutions and the number of cuts per
frame. The timing is measured as the average of the first five frames.

Our method is effective when the number of elements being cut per
frame is under 0.1% of the number of total vertices.

The straightforward method of recomputing the factorization
in Projective Dynamic when topological changes occur makes the
frame-rate fluctuate significantly, as we can see from the orange
curves in Figure 8. Compute time fluctuations are undesirable in
real-time simulation because the simulation should be synchronized
with display refresh rate. Our method solves this problem, adding
little overhead even in frames where cutting or tearing occurs, as
can be seen in the blue curves in Figure 8.

In Figure 1 and Figure 9, a person is swinging over a creek to
escape from a zombie who is dragging his T-shirt. Pieces torn off the
T-shirt are still in the system and are being simulated. The T-shirt is
simulated using a mass-spring system, while the pants are animated

ACM Trans. Graph., Vol. 40, No. 6, Article 1. Publication date: December 2021.

1:10 .« Jing Li, Tiantian Liu, Ladislav Kavan, and Baoquan Chen

g5

frame 1 frame 19 frame 67 frame 165

Fig. 9. “Swing” animation. Pieces of cloth from a swinging person are torn
off their T-shirt by a zombie.

by skinning. We implemented a simple version of tearing: when
the ratio of the length of the spring and the rest-length exceeds
some threshold, a seam is created [Grimm 2005]. We prioritize the
new seam near the existing seam by lowering the threshold for the
neighboring springs since the cloth is prone to tearing near the
material that has already been torn. We added contact and friction
using the method in [Ly et al. 2020]. In interactive applications
such as computer games or surgical simulators, the refactorization
in frames needing mesh topology update would introduce lag, de-
grading the interactive user experience. Our method produces good
results despite the fast swinging motion because we end up with
the same factor as a full factorization would compute. The timings
for each frame in the “swing” animation are shown in the top right
graph in Figure 8.

frame 211

5

\(
frame 400

Fig. 10. “Stomach” simulation. Surgical simulation of cutting tissues in
a stomach. The pink layer is a volumetric tetrahedron mesh discretized
using linear finite elements. The dark red muscles and outer layers are not
simulated.

frame 91

frame 286

Our method can be particularly useful in surgical simulators. In
Figure 10, a scalpel is cutting through an inner layer of a stomach.
The timings for each frame in the entire animation are shown in
the bottom left graph in Figure 8.

Our reorder strategy (Figure 4) greatly reduces the nonzero items
compared to appending all new vertices at the end of the matrix
(natural ordering) shown in Figure 3(f). For instance, at the 300th
frame of the cloth cut example in Figure 11(b,c), our method has
478,809 nonzeros while natural ordering produces 582,171 nonzeros.
The number of nonzeros is 450,425 at the first frame. The solve time

ACM Trans. Graph., Vol. 40, No. 6, Article 1. Publication date: December 2021.

(a)

(b)

Fig. 11. “Cloth cut” simulation. A smooth S-shaped cut of a cloth. (a) the
S-shaped path does not conform to the existing tessellation of the cloth. (b,c)
wireframe/textured view of the cloth with a clean cut (with added vertices).
(d,e) wireframe/textured view of the cloth using the original tessellation;
note the jagged edges.

at the 300th frame before and after the reorder strategy are 52ms
and 50ms.

[Yeung et al. 2018] is based on Schur complement techniques
that keep reusing the original system matrix before the topological
changes. Therefore, the performance of [Yeung et al. 2018] is greatly
impaired with the accumulated topological changes during the his-
tory. Our method, on the contrary, commits the factorization update
during the simulation. Hence our method is hardly affected by the
historical topological changes. We compare our method against
[Yeung et al. 2018] using the cloth cut example in Figure 11(b,c)
where the number of triangles being split each frame is one. Since

Interactive Cutting and Tearing in Projective Dynamics with Progressive Cholesky Updates « 1:11

[Yeung et al. 2018] does not separate their linear solver into factor-
ization phase and solving phase, we focus on the total time for one
frame (with 10 PD iterations) in this comparison. The results can
be seen in Figure 12. The computation time of our method starts
from 0.0455s and increases to 0.0505s when the cloth is cut into
two pieces. Whereas [Yeung et al. 2018] starts from comparable
performance at 0.046s per frame, but quickly increases to 1.236s per
frame as the cut accumulates.

total time to produce one frame

[Yeung etal. 2018] =mm==Our mehod

Fig. 12. Timings to produce each frame (with 10 PD iterations) of the ex-
ample shown in Figure 11(b,c). Our method (blue curve) hardly grows its
computational cost as the cut proceeds, while [Yeung et al. 2018] fails to
maintain its high efficiency during the simulation.

In contrast to recent methods for sparse Cholesky updates such
as [Herholz and Sorkine-Hornung 2020], our method does not as-
sume fixed connectivity of the mesh and is thus able to handle a
perfectly clean cut as shown in Figure 11(b, c). The corresponding
compute time is shown in the top left graph in Figure 8. If sliver
triangles are created during the cut, we can perform an edge swap
operation [Hoppe et al. 1993]. As described in Figure 6, the changes
in our Cholesky factors corresponding to edge swaps can be easily
handled with our method. Our method is effective when the edge
swaps are performed occasionally near the cut. We acknowledge
that our method would create lots of structural fill-ins if swaps
are performed in a large region (for example, in a remeshing ap-
plication). We would like to point out that our method supports
clean cuts for both volumetric meshes such as the stomach example
(Figure 10) as well as triangle meshes as shown in Figure 11.

To make a fair quantitative comparison with [Herholz and Sorkine-
Hornung 2020], we restrict our method to do a conforming cut as
shown in Figure 11(d, e). In those two cases, our method outper-
forms [Herholz and Sorkine-Hornung 2020] when the update rank
is small (Figure 13). We have obtained the implementation from
the authors of [Herholz and Sorkine-Hornung 2020] and used the
MKL libraries [Intel 2007] for acceleration. [Herholz and Sorkine-
Hornung 2020] is less sensitive to the rank being updated, hence
is more suitable for mesh parameterization scenarios where large
numbers of vertices is added to the system at once. In applications
involving interactions, low-rank updates are usually adequate. We
repeat the same cutting scene with different numbers of triangles
being cut (from 1 to 16) per frame in the accompanying video. The
video shows that splitting 16 triangles per frame is already more
than needed to perform an interactive cut. In real-life interactive
applications under the assumption that the mesh is near-uniformly

Cholesky factor update time

0.045
0.04

0035
003
0025
002 = \/ - :
0015
001
0.005

0
123456 78 91011121314151617 1819 202122232425

time(s)

number of triangles being split per frame

w— 0Ur method

[Herholz and Sorkine-Hornung 2020]

Fig. 13. Timing of Cholesky factor update time of a conforming cut (Fig-
ure 11(d,e)), measured as the average of the first 5 frames. Our method
(blue) outperforms [Herholz and Sorkine-Hornung 2020] (orange) when the
number of triangles being split per frame is small.

frame 162 frame 290

frame 20 frame 80

Fig. 14. "spinning cloth” animation. Collision springs are added when the
cloth collides with the finger. Self collision is ignored. Bending springs are
enabled in this example to generate wrinkles and prevent self-collision while
the cloth is spinning.

tessellated, the number of elements being cut is reasonably small
(under 0.1% presumably), within the range where our method can
be applied efficiently.

Besides topological changes as tearing and cutting, our method
can also be used to handle simple collisions where a small number
of collision springs are instantiated. Figure 14 shows an example
where our method is more effective than refactorization from scratch.
The computation time of each frame is shown in the bottom right
graph in Figure 8. Unlike cutting and tearing where the topological
changes of the mesh are permanent, the topological changes during
collisions are usually transient. Therefore, we update the Cholesky
factor from the original factor instead of from the previous-frame
factor in the collision examples. In this "spinning cloth" example, at
most 16 collision springs are added in one frame.

7 LIMITATIONS AND FUTURE WORK

Similarly, as in [Davis and Hager 2001], our method requires W to
be low-rank to ensure the low cost for the Cholesky factorization up-
date. In the case if a user wants to cut through an object very quickly
like cutting a watermelon within very few frames in Fruit Ninja
[Halfbrick Studios 2010], the performance gain from our method
will be compromised. We used dynamics supernodes in CHOLMOD
to accelerate the update/downdate process. In the future, we would
like to find out whether the arbitrary update/downdate can be done
in the supernodal Cholesky factorization without destroying and
recreating most of the supernodes.

ACM Trans. Graph., Vol. 40, No. 6, Article 1. Publication date: December 2021.

1:12 « Jing Li, Tiantian Liu, Ladislav Kavan, and Baoquan Chen

8 CONCLUSIONS

We present a method to modify Cholesky factors with newly added
DOFs, which is particularly suitable for physics-based simulations
involving effects such as cutting or tearing. We extend the update
and downdate routines in CHOLMOD with the ability to add new
DOFs to a system matrix. This extended update and downdate rou-
tines can find application in cutting and tearing with Projective Dy-
namics. Our method works particularly well for low-rank updates,
which can be brought into the system matrix by continuous and
gradual interaction from the user. Our method supports dynamic
remeshing methods such as element refinement and edge swap,
therefore, produces clean cuts. The three examples show that our
method saves a lot of time when topological changes occur while
generating exactly the same results compared to refactorization
from scratch.

9 ACKNOWLEDGEMENTS

We thank Bin Wang for insightful discussions, Zhongxing Ma for
the modeling of the stomach. This work was supported by National
Key R&D Program of China (2018YFB1403900).

REFERENCES

Tago Berndt, Rafael Torchelsen, and Anderson Maciel. 2017. Efficient surgical cutting
with position-based dynamics. IEEE computer graphics and applications 37, 3 (2017),
24-31.

Sofien Bouaziz, Sebastian Martin, Tiantian Liu, Ladislav Kavan, and Mark Pauly. 2014.
Projective dynamics: Fusing constraint projections for fast simulation. ACM trans-
actions on graphics (TOG) 33, 4 (2014), 1-11.

Christopher Brandt, Elmar Eisemann, and Klaus Hildebrandt. 2018. Hyper-reduced
projective dynamics. ACM Transactions on Graphics (TOG) 37, 4 (2018), 1-13.

Yanqing Chen, Timothy A Davis, William W Hager, and Sivasankaran Rajamanickam.
2008. Algorithm 887: CHOLMOD, supernodal sparse Cholesky factorization and
update/downdate. ACM Transactions on Mathematical Software (TOMS) 35, 3 (2008),
1-14.

Kazem Cheshmi, Danny M Kaufman, Shoaib Kamil, and Maryam Mehri Dehnavi. 2020.
NASOQ: numerically accurate sparsity-oriented QP solver. ACM Transactions on
Graphics (TOG) 39, 4 (2020), 96-1.

Elizabeth Cuthill. 1972. Several strategies for reducing the bandwidth of matrices. In
Sparse matrices and their applications. Springer, 157-166.

Timothy A Davis. 2006. Direct methods for sparse linear systems. SIAM.

Timothy A Davis and William W Hager. 1999. Modifying a sparse Cholesky factorization.
SIAM J. Matrix Anal. Appl. 20, 3 (1999), 606-627.

Timothy A Davis and William W Hager. 2001. Multiple-rank modifications of a sparse
Cholesky factorization. SIAM J. Matrix Anal. Appl. 22, 4 (2001), 997-1013.

Timothy A Davis and William W Hager. 2005. Row modifications of a sparse Cholesky
factorization. SIAM J. Matrix Anal. Appl. 26, 3 (2005), 621-639.

Timothy A. Davis and William W. Hager. 2009. Dynamic Supernodes in Sparse Cholesky
Update/Downdate and Triangular Solves. ACM Trans. Math. Softw. 35, 4, Article 27
(Feb. 2009), 23 pages. https://doi.org/10.1145/1462173.1462176

Timothy A. Davis, Sivasankaran Rajamanickam, and Wissam M. Sid-Lakhdar. 2016.
A survey of direct methods for sparse linear systems. Acta Numerica 25 (2016),
383-566. https://doi.org/10.1017/S0962492916000076

Tao Du, Kui Wu, Pingchuan Ma, Sebastien Wah, Andrew Spielberg, Daniela Rus, and
Wojciech Matusik. 2021. DiffPD: Differentiable Projective Dynamics with Contact.
arXiv preprint arXiv:2101.05917 (2021).

Andreas Enzenhofer, Nicolas Lefebvre, and Sheldon Andrews. 2019. Efficient block piv-
oting for multibody simulations with contact. In Proceedings of the ACM SIGGRAPH
Symposium on Interactive 3D Graphics and Games. 1-9.

Marco Fratarcangeli, Valentina Tibaldo, and Fabio Pellacini. 2016. Vivace: A practical
Gauss-Seidel method for stable soft body dynamics. ACM Transactions on Graphics
(TOG) 35, 6 (2016), 1-9.

Philip E Gill, Gene H Golub, Walter Murray, and Michael A Saunders. 1974. Methods
for modifying matrix factorizations. Mathematics of computation 28, 126 (1974),
505-535.

Johannes Grimm. 2005. Tearing of membranes for interactive real-time surgical training.
Studies in health technology and informatics 111 (2005), 153-159.

Halfbrick Studios. 2010. Fruit Ninja. https://apps.apple.com/us/app/fruit-ninja/
1d403858572

ACM Trans. Graph., Vol. 40, No. 6, Article 1. Publication date: December 2021.

Florian Hecht, Yeon Jin Lee, Jonathan R Shewchuk, and James F O’Brien. 2012. Updated
sparse Cholesky factors for corotational elastodynamics. ACM Transactions on
Graphics (TOG) 31, 5 (2012), 1-13.

Philipp Herholz and Marc Alexa. 2018. Factor once: reusing Cholesky factorizations on
sub-meshes. ACM Transactions on Graphics (TOG) 37, 6 (2018), 1-9.

Philipp Herholz and Olga Sorkine-Hornung. 2020. Sparse Cholesky updates for inter-
active mesh parameterization. ACM Transactions on Graphics (TOG) 39, 6 (2020),
1-14.

Hugues Hoppe, Tony DeRose, Tom Duchamp, John McDonald, and Werner Stuetzle.
1993. Mesh optimization. In Proceedings of the 20th annual conference on Computer
graphics and interactive techniques. 19-26.

M Intel. 2007. Intel math kernel library. (2007).

George Karypis and Vipin Kumar. 2009. MeTis: Unstructured Graph Partitioning and
Sparse Matrix Ordering System, Version 4.0. http://www.cs.umn.edu/~metis.

Martin Komaritzan and Mario Botsch. 2018. Projective skinning. Proceedings of the
ACM on Computer Graphics and Interactive Techniques 1, 1 (2018), 1-19.

Martin Komaritzan and Mario Botsch. 2019. Fast Projective Skinning. In Motion,
Interaction and Games. 1-10.

Jing Li, Tiantian Liu, and Ladislav Kavan. 2019. Fast simulation of deformable characters
with articulated skeletons in projective dynamics. In Proceedings of the 18th annual
ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 1-10.

Jing Li, Tiantian Liu, and Ladislav Kavan. 2020. Soft Articulated Characters in Projective
Dynamics. IEEE Transactions on Visualization and Computer Graphics (2020).

Joseph W. H. Liu, Esmond G. Ng, and Barry W. Peyton. 1993. On Finding Supernodes
for Sparse Matrix Computations. SIAM J. Matrix Anal. Appl. 14, 1 (1993), 242-252.
https://doi.org/10.1137/0614019 arXiv:https://doi.org/10.1137/0614019

Tiantian Liu, Sofien Bouaziz, and Ladislav Kavan. 2017. Quasi-Newton Methods for
Real-Time Simulation of Hyperelastic Materials. ACM Transactions on Graphics
(TOG) 36, 3 (2017), 23.

Mickaél Ly, Jean Jouve, Laurence Boissieux, and Florence Bertails-Descoubes. 2020.
Projective Dynamics with Dry Frictional Contact. ACM Transactions on Graphics 1
(2020), 8.

Aleka McAdams, Yongning Zhu, Andrew Selle, Mark Empey, Rasmus Tamstorf, Joseph
Teran, and Eftychios Sifakis. 2011. Efficient elasticity for character skinning with
contact and collisions. In ACM SIGGRAPH 2011 papers. 1-12.

Rahul Narain, Matthew Overby, and George E Brown. 2016. ADMM 2 projective
dynamics: fast simulation of general constitutive models. In Symposium on Computer
Animation, Vol. 1.

Matthew Overby, George E Brown, Jie Li, and Rahul Narain. 2017. ADMM 2 Projective
Dynamics: Fast Simulation of Hyperelastic Models with Dynamic Constraints. IEEE
Transactions on Visualization and Computer Graphics 23, 10 (2017), 2222-2234.

Rasmus Tamstorf, Toby Jones, and Stephen F McCormick. 2015. Smoothed aggregation
multigrid for cloth simulation. ACM Transactions on Graphics (TOG) 34, 6 (2015),
1-13.

Robert Endre Tarjan. 1976. Graph theory and Gaussian elimination. In Sparse Matrix
Computations. Elsevier, 3-22.

Huamin Wang. 2015. A chebyshev semi-iterative approach for accelerating projective
and position-based dynamics. ACM Transactions on Graphics (TOG) 34, 6 (2015),
1-9.

Yuting Wang, Chenfanfu Jiang, Craig A Schroeder, and Joseph Teran. 2014. An Adaptive
Virtual Node Algorithm with Robust Mesh Cutting. In Symposium on Computer
Animation. 77-85.

Jun Wu, Ridiger Westermann, and Christian Dick. 2015. A survey of physically based
simulation of cuts in deformable bodies. In Computer Graphics Forum, Vol. 34. Wiley
Online Library, 161-187.

Zangyueyang Xian, Xin Tong, and Tiantian Liu. 2019. A Scalable Galerkin Multigrid
Method for Real-time Simulation of Deformable Objects. ACM Transactions on
Graphics (TOG) 38, 6 (2019).

Yu-Hong Yeung, Jessica Crouch, and Alex Pothen. 2016. Interactively cutting and
constraining vertices in meshes using augmented matrices. ACM Transactions on
Graphics (TOG) 35, 2 (2016), 1-17.

Yu-Hong Yeung, Alex Pothen, and Jessica Crouch. 2018. AMPS: A Real-time Mesh
Cutting Algorithm for Surgical Simulations. arXiv preprint arXiv:1811.00328 (2018).

https://doi.org/10.1145/1462173.1462176
https://doi.org/10.1017/S0962492916000076
https://apps.apple.com/us/app/fruit-ninja/id403858572
https://apps.apple.com/us/app/fruit-ninja/id403858572
http://www.cs.umn.edu/~metis
https://doi.org/10.1137/0614019
https://arxiv.org/abs/https://doi.org/10.1137/0614019

	Abstract
	1 Introduction
	2 Related Work
	3 background
	3.1 Projective Dynamics
	3.2 Sparse Cholesky Factorization
	3.3 Sparse Cholesky Modification

	4 method
	5 Implementation Details
	5.1 LLT v.s. LDLT factorization
	5.2 Dynamic Supernodes
	5.3 Non-conforming Cut

	6 results
	7 limitations and future work
	8 Conclusions
	9 acknowledgements
	References

