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Fig. 1. Example object-wrapping rope nets generated from input 3D surfaces using our fully automatic pipeline.

Wrapping objects using ropes is a common practice in our daily life. How-1
ever, it is difficult to design and tie ropes on a 3D object with complex topol-2
ogy and geometry features while ensuring wrapping security and easy op-3
eration. In this article, we propose to compute a rope net that can tightly4
wrap around various 3D shapes. Our computed rope net not only immobi-5
lizes the object but also maintains the load balance during lifting. Based on6
the key observation that if every knot of the net has four adjacent curve7
edges, then only a single rope is needed to construct the entire net. We8
reformulate the rope net computation problem into a constrained curve9
network optimization. We propose a discrete-continuous optimization ap-10
proach, where the topological constraints are satisfied in the discrete phase11
and the geometrical goals are achieved in the continuous stage. We also de-12
velop a hoist planning to pick anchor points so that the rope net equally13
distributes the load during hoisting. Furthermore, we simulate the wrap-14
ping process and use it to guide the physical rope net construction process.15
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We demonstrate the effectiveness of our method on 3D objects with vary-
Q116

ing geometric and topological complexity. In addition, we conduct physical 17
experiments to demonstrate the practicability of our method. 18
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1 INTRODUCTION 19

Wrapping objects with rope nets finds many applications such as 20
packing, hoisting, and transportation, among others. For example, 21
when hoisting and carrying a sculpture, tying it up with ropes and 22
then lifting up the ropes is historically a common practice and 23
remains to be an economic, safe, and widely adopted solution to- 24
day [Fu et al. 2017; Nets4You 2019; Sageman-Furnas et al. 2019; US 25
Netting 2019; Wan et al. 2020]. Figure 2 shows a few real-world ex-

Q2
26

amples of tightly wrapped rope nets. However, planning and tying 27
up such object-wrapping rope nets, with the requirements of tight- 28
ness, load balance, and simplicity, is by no means an easy exercise. 29
It heavily relies on human experience and can quickly frustrate a 30
novice practitioner. 31

In this work, we study the problem of object-wrapping rope 32
nets from both geometric and physical modeling points of views. 33
We propose a computational method for designing rope nets 34
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Fig. 2. Examples of the object-wrapping rope net applications: Lifting the

furniture (left, obtained from internet public domain) and wrapping the

statue (right, courtesy of Shunk-Kender).

satisfying a few practical requirements. The main factor to be con-35
sidered is safeness. We require that the rope net tightly wraps the36
object and evenly distributes load for safety under the hoisting37
scheme. Although tight wrapping confines the object movement38
within the rope net as much as possible, load balancing prevents39
the object and the rope from breaking. We also hope that the rope40
net can be composed by a single rope and the knotting is as easy41
as possible. The last aspect is economy. We stipulate that the total42
length of the rope is minimized.43

Given a 3D object represented by a surface mesh, we introduce44
a simple and robust approach to generate an object-wrapping rope45
net satisfying the preceding requirements. A rope net is composed46
of knots and curve edges wired over the surface. Our method is47
based on two key design principles. First, the rope should sling over48
prominent geometric or topological features of the object surface,49
such as concave geometric features, forks, and branches, to ensure50
a safe and reliable tying [Johnson 2016]. Second, we hope the rope51
net could be composed with a single rope.52

To make the rope net construction aware of geometric and topo-53
logical features, we opt to start with a set of key loops induced by54
the segmentation boundaries of Shape Diameter Function (SDF)55
of the object [Shapira et al. 2007]. SDF is proven to capture well56
the prominent geometric and topological features of a 3D shape.57
In achieving single-rope composition, our key observation is that58
a rope net can be composed with a single rope if each node has59
a degree of 4 (e.g., has four incident curve edges). This observa-60
tion has a rigorous theoretical guarantee based on the Euler tour61
theorem [Bondy and Murty 1976].62

To form an evenly distributed rope net over the surface, the63
sparse key loops are connected with assistant curves while satis-64
fying the 4-degree principle. To this end, we build a cross field65
constrained by the key loop directions. The assistant curves are66
then constructed from the field directions perpendicular to the key67
loops.68

The preceding process amounts to a discrete-continuous opti-69
mization of both the topology and the geometry of the curve net-70
work. Although the discrete phase improves the topology of the71
curve network by selecting proper assistant curves, the continuous72
stage optimizes the curve geometry via altering the node positions73
and curve shapes.74

In particular, in the discrete step, we design a dedicated75
algorithm to compute a sparsely distributed, coarse 4-degree76

Fig. 3. (a) Our proposed new style (top right) can provide stronger force

support for fastening the rope net on the object while remaining simple.

(b) An illustration tool is provided to guide the physical rope net construc-

tion. The pins (colored in red) are needed to perform the assembly in prac-

tice.

initial curve network over the 3D surface through solving a 77
mixed-integer programming problem. Starting with this initial 78
curve network, we conduct an alternating optimization of all node 79
positions to tightly fasten every curve edge by minimizing the 80
length of all curve edges. During this process, a curve edge may 81
leave the surface but is constrained to never penetrate the surface. 82

In realizing hoisting, we compute anchor points over the curve 83
network so that the rope net is load balanced when being lifted. 84
We develop a hoist planning method that chooses suitable anchors 85
from a set of candidates to meet safety requirements [Johnson 86
2016]. It minimizes the stretching stress of all curve edges subject 87
to the constraint of the yielding tolerance of rope. Furthermore, 88
when the rope net is too sparse to come up with a suitable hoist- 89
ing plan, we opt to re-optimize the curve network to add some re- 90
inforcement loops by tracing through the regions where the stress 91
violates the yielding tolerance. Hence, our method alternates be- 92
tween curve network generation and anchor point selection until 93
a valid hoisting plan is found. 94

For rope tying, we adopt a twisting knot, a simple and effective 95
knot type for rope net composition (top right of Figure 3(a)). A 96
twisting knot is physically firm while being easy to tie and mate- 97
rial saving [Patil et al. 2020]. Note that the one-rope composition 98
property still holds for this twisting knot type based on a rope-able 99
Euler cycle (see Section 5.3 for the proof). In addition, we provide 100
an illustration tool to demonstrate how to compose the rope net 101
intuitively (see Figure 3(b)). 102

We demonstrate the efficacy of our method through computing 103
rope nets for a variety of 3D objects with complex shapes and topol- 104
ogy, and quantitatively evaluating them with a series of metrics. 105
We also conduct physical experiments and present a prototype ap- 106
plication in flexible hoisting to show the practical usage of our rope 107
net generation. To sum up, the contributions of our work include 108
the following: 109

• We solve a new problem of computational object-wrapping 110
rope nets with a series of practical constraints such as safeness 111
and economy. 112
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• We propose a formulation of the rope net problem based on113
curve network optimization.114
• We devise a discrete-continuous optimization process that op-115

timizes both the topology and the geometry of the curve net-116
work.117
• We provide an illustration tool to guide users for rope net com-118

position and conduct extensive evaluations with not only sim-119
ulation but also physical experiments.120

2 RELATED WORK121

We first review the caging literature, which is highly related to our122
rope net wrapping. Then, we review state-of-the-art quad-meshing123
approaches since the layout of a quad mesh shares similarities with124
our rope net structure.125

3D caging. Caging is to restrict the moving space of a target so126
that it will not escape [Diankov et al. 2008]. It has been an impor-127
tant topic in robotic research and is often addressed together with128
grasping [Diankov et al. 2008; Rodriguez et al. 2011; Wan et al. 2012,129
2013]. Caging and grasping of a 2D object have been thoroughly130
studied, and we refer the interested reader to the work of Makita131
and Wan [2017] for a complete survey.132

Unlike the 2D caging, the 3D caging problem has no complete133
analysis. The main reason is that it is challenging the high dimen-134
sionality without considering mechanical implementation. Several135
works attempt to tackle the problem using shape analysis and ge-136
ometry processing methods. Through the usage of the topological137
characteristics of loops of both the objects and the robotic hands,138
approaches presented by Dey et al. [2010], Pokorny et al. [2013],139
and Stork et al. [2013] plan to cage and grasp on objects with holes.140
The method in the work of Zarubin et al. [2013] employs geodesic141
balls computed on the target surface to determine the caging re-142
gions. They propose circle caging and sphere caging. Whereas cir-143
cle caging allows robot hands to grasp the thin part of an object144
by computing closed curves wrapping around the object, sphere145
caging lets the robot hand wrap a solid part of the object. However,146
they do not consider the topological structure of the target. In con-147
trast, Kwok et al. [2016] compute a topological Reeb graph over148
the 3D surface and extract iso-value rings based on the geodesic149
field for the object rope caging. To deal with the common issue150
of these methods that the designed caging is oblivious to the rela-151
tive size between the target object and the gripper, Liu et al. [2018]152
present a method to compute feasible caging grasp that can form153
relative-scale-aware caging loops encompassing multiple handles.154

In our work, we propose to immobilize a 3D target by comput-155
ing a tight rope net wrapping over the surface. Unlike caging that156
allows object moving and reorienting inside the caging space, our157
rope net is tightly fastened on the surface, ensuring the safety and158
effortless operation during hoisting big and heavy objects.159

Quad layout. Quad meshing has been researched for more than160
two decades [Bommes et al. 2013b], and many approaches have161
been proposed. Among the many goals of quad-mesh generation162
and processing methods, generating a quad mesh with a coarse and163
feature-aligned quad layout is one of the most desired ones [Tarini164
et al. 2011a]. Quad meshes can be created either through user in-165
teractions [Bommes et al. 2008; Campen and Kobbelt 2014; Marcias166

et al. 2015; Takayama et al. 2013], semi-automatic methods [Ji et al. 167
2010; Tierny et al. 2012; Tong et al. 2006], or fully automatic ap- 168
proaches [Bommes et al. 2011; Campen et al. 2012; Razafindrazaka 169
et al. 2015; Tarini et al. 2011a; Zhang et al. 2015]. By tracing edge 170
flows from irregular vertices of a quad mesh, a coarser quad lay- 171
out than the quad mesh can be constructed. The dual graph of this 172
quad layout could be embedded into our pipeline for initializing 173
our rope net since it satisfies our topology requirement that ev- 174
ery node has a valence of 4. However, the layouts extracted from 175
quad meshes generated from existing approaches either are overly 176
dense, which is impractical for physically composing the rope net, 177
or require user interactions and are limited to specific types of 178
shapes. Moreover, all quad-meshing methods optimize the singu- 179
larities of a quad mesh that greatly affect its layout structure to be 180
in high curvature regions. However, the dual graph of the layout 181
may not capture the features well. It may lead to an unstable rope 182
net. In our work, we propose a simple and effective initial rope net 183
generation approach that directly addresses our object-wrapping 184
goal, sidestepping the usually enforced complex geometrical con- 185
straints and misalignment issues during the typical quad meshing. 186
Later, Figures 24 and 25 demonstrate the advantages of generat- 187
ing rope nets initialized by our method over representative quad- 188
meshing approaches. 189

3 OVERVIEW 190

We first introduce the basic definitions of the rope net, then 191
state our objectives, and finally give a high-level overview of our 192
method. 193

Rope net. A rope net R = (V,E) wrapping around a 3D surface 194
modelM consists of a set of nodes,V , and a set of curve edges, E 195
(see Figure 3). 196

Objectives. Our input includes a 3D surface modelM, the cen- 197
ter of gravity and weight of the model, and a rope with the maxi- 198
mum stretching stress λ. Our method aims to generate an object- 199
wrapping rope net used for hoisting by satisfying the following 200
objectives: 201

• Simplicity: The rope net should be cost effective (e.g., short 202
total length and a small number of nodes and could be com- 203
posed with a single rope). 204
• Tightness: The rope net should be tight enough to both immo- 205

bilize the object and not slide when lifted from any place of 206
the rope net (see Figure 5). 207
• Load balance: To reduce bearing pressure, the rope net should 208

equally distribute the load during lifting. 209

To generate a rope net that can be used for hoisting while sat- 210
isfying the preceding goals, we design our approach by obeying 211
the principle that tackles one goal at a time and once a goal is 212
solved, the problem will not appear again. For example, we first 213
ensure the simplicity of the to-be-generated rope net by generat- 214
ing an initial rope net that can be composed using a single rope 215
(Section 4), then achieve the tightness of the rope net on the object 216
by simulating the tightening process via a geometric optimization 217
(Section 5), and finally guarantee the load balance of the rope net 218
through stress analysis and reinforcing weak regions of the rope 219
net. In our work, we make the following assumptions to allow the 220
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Fig. 4. Overview of our algorithm. Given an input model (a), we generate a rope net step by step. We first capture some key loops (b) that induce a cross

field (c). Then, we construct a sufficiently large candidate curve set (d) and take a suitable curve subset as the initialization (e). After that, we refine it to a

tight rope net (f) and reinforce the net when necessary (g). The final physically composed result is shown in (h).

Fig. 5. A tight rope net we target that is able to tightly secure the object

without slipping during lifting. The geodesic loop (a) is unstable (easy to

slip), although it can be used to cage the object. A stable loop (b) wraps

tightly around the object and does not slide during lifting.

solving of the rope net generation problem to be tractable: (i) mate-221
rials are uniformly distributed throughout the object and the rope,222
and (ii) the object to be hoisted is strong enough to support forces223
from the rope net.224

Pipeline. Starting from the input object (Figure 4(a)), our ap-225
proach first relies on a mixed-integer programming to generate an226
initial rope net that topologically satisfies the one rope construc-227
tion property and geometrically captures critical regions to immo-228
bilize the object (Figure 4(b)–(d), Section 4). After that, we perform229
a tightening step of the rope net to achieve the tightness objective230
while avoiding any penetrations (Figure 4(f), Section 5), which is231
followed by a hoisting planning step (Figure 4(g), Section 5.2). We232
look for a suitable hoisting plan if (i) there are anchor points sat-233
isfying safety standards in lifting operation [Johnson 2016] and234
(ii) the stress limit of the rope net is not violated when performing235
the mechanics analysis of the rope net under the specific hoisting236
configuration. If no such plan exists, we locate the weakest curve237
edges that violate the stretch stress limit, and add reinforcement238
loops through them as key loops, and iterate the aforementioned239
steps until a suitable hoisting plan is found. We provide an intu-240

itive user interface (Section 5.3, the attached video) to guide the 241
assembly process of the resulting rope net in practice (Figure 4(h)). 242

4 ROPE NET GENERATION 243

In this section, we generate an initial rope net that satisfies the 244
topology constraint—that is, it can be composed by one rope while 245
wrapping key regions of the object that provides a good starting 246
position for achieving both simplicity and load balancing for fur- 247
ther steps. Our rope net is computed by solving a mixed-integer 248
optimization on a curve network. Intuitively, the curve network is 249
composed of two types of curves: key loops that are critical to im- 250
mobilize the 3D object, and assistant curves that connect key loops 251
to ensure the correct topology of the rope net. Given a surface 252
model, from a view of shape analysis, we first compute key loops 253
(Figure 4(b)) that form a subset of curves of the to-be-constructed 254
rope net, and then we connect these key loops by inserting di- 255
rectional field (Figure 4(c)) guided assistant curves that are pos- 256
sibly redundant (Figure 4(d)), and finally we construct the rope net 257
(Figure 4(e)) by solving a mixed-integer optimization to remove 258
redundant assistant curves. 259

4.1 Key Loops 260

As discussed earlier, our rope net aims to immobilize the object 261
so that it does not slip during lifting. From the viewpoint of hoist- 262
ing in practice [Johnson 2016], it suggests that the ropes should be 263
tied to the critical wrapping regions (e.g., concave geometric fea- 264
tures, forks, branches) on the surface of an object, which can help 265
to secure the object tightly. Motivated by this finding, we consider 266
wrapping these regions with key loops as critical components of 267
the rope net. 268

To efficiently compute the key loop wrapping the critical re- 269
gions described earlier, we use the SDF-guided mesh partition 270
method [Shapira et al. 2007]. This is because, first, the SDF is 271
defined on facets of the mesh that measures the local object di- 272
ameter. It is used to intrinsically distinguish thin and thick ob- 273
ject parts. Thus, it can generate key loops lying at regions with 274
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Fig. 6. An example of the SDF-guided mesh partition.

concave geometric features, forks, or branches that align well275
to the goal of identifying critical wrapping regions. Second, this276
method is also proposed to extract the skeleton of a 3D object, of277
which any segmentation can infer a branch of the object. Hence,278
it can help to generate key loops at the critical wrapping regions279
described earlier.280

To obtain the SDF-based key loops, we followed the partition-281
ing algorithm described in the work of Shapira et al. [2007]. For282
each face of the mesh, the approach first calculates its SDF value to283
be the weighted average of the penetration depths of all rays con-284
tained inside an inward cone (Figure 6(a)). The weight for a ray is285
the inverse of the angle between the ray and the center of the cone.286
Next, the partitioning approach fits k Gaussian distributions to the287
distribution of the SDF values of the facets and, finally, finds the288
actual partitioning intom clusters using an alpha-expansion graph289
cut algorithm [Boykov et al. 2001] by considering local mesh geo-290
metric properties. Note that k represents the number of levels of291
a segmentation, which is different from m. A large value of k can292
result in many small segments of the mesh. In our implementation,293
the default value k = 5 is used.294

After running the mesh partition algorithm, the boundary edges295
of the segmentation form polyline loops. For a polyline loop, it is296
considered as a key loop if it does not share edges with all the other297
polyline loops. Otherwise, we choose the minimal loop (the one298
with the shortest length) from those polyline loops that share with299
edges as the key loop. Thus, the selected polyline loops are denoted300
as the key loop set L (see Figure 6(b)). Note that small loops may301
occur due to noises or thin shape features. Since small loops are302
not helpful to the rope net design, we filter out these loops from303
L if their lengths are shorter than 0.005 (the input model is scaled304
uniformly into a 1 × 1 × 1 box).305

4.2 Assistant Curves306

After extracting the key loops L, we now generate another set of307
curves S, which are referred to as assistant curves, to connect the308
key loops. Our to-be-constructed rope net will be composed of all309
the key loops and some selected assistant curves.310

According to the hoisting operation [Johnson 2016], large con-311
tact areas between the rope net and the object can greatly reduce312
the stresses on the rope net during hoisting. Based on the empirical313
observation, the orthogonal rope net is commonly used in daily life.314
The rational behind is that the orthogonal rope net can help distrib-315
ute the force evenly, which is very useful for hoisting. Therefore,316
our assistant curves are trajectories traced on the surface of the ob-317
ject. We employ an optimized cross field that aligns directions of318
geometric features on the surface to guide the curve tracing. The319

Fig. 7. The workflow of the rope net generation. (a) The cross field aligned

with the directions of the key loops (plotted by green circles). (b) The field-

guided geodesic curves (plotted by various colors) traced from both two

sides of the key loops (colored the same as their curves). (c) We obtain the

nodes (red dots) and the curve edges (colored in various colors) between

them to compose the rope net by solving a mixed-integer optimization.

(d) To guarantee 4-degree connectivity for the nodes on the ending loops,

we use a simple linking operation to connect them with random sampling

points through Dijkstra shortest paths on the surface model. The obtained

curves and the nodes compose the rope net.

efficient instant meshes algorithm [Jakob et al. 2015] is used to gen- 320
erate the directional field. To adapt to the preceding requirement— 321
that is, generating assistant curves that are perpendicular to key 322
loop directions so that contact areas between the rope net and the 323
object can be increased and forces imposed on the rope net can be 324
distributed over different directions [Johnson 2016], we generate a 325
key loop direction constrained cross field (Figure 7(a)). Specifically, 326
for each vertex p, we use a key loop dependent weight instead of 327
their original one:w (p) = exp (−d2/2), where d is the geodesic dis- 328
tance between p and its nearest key loop. This weight encourages 329
p to get its direction from its most relevant key loop. 330

After computing the direction field, we can now trace assistant 331
curves. We start tracing from seed points uniformly sampled on 332
the key loops. Note that to provide an enough amount of candidate 333
assistant curves for the rope net generation, the sampling should 334
be dense. In our experiments, we use the average edge length of 335
the surface mesh as the step size for the seed point sampling. For 336
each seed point at each key loop l , we use the field-guided tracing 337
approach [Pietroni et al. 2016] to trace two curves with opposite 338
directions (colored the same as their key loop) that are both per- 339
pendicular to l (Figure 7(b)). Therefore, we have two sets of curves 340
l+ and l−, one for each side of l . We filter out traced curves that are 341
not ended at any key loop or intersect themselves during tracing, 342
or both, and denote all the remaining ones as the assistant curve 343
set S. 344

So far, the curve network formed by the key loops and the as- 345
sistant curves is not necessarily simple, and neither satisfies the 346
topology constraints of the desired rope net. By taking the curve 347
network as the initialization, we next present a mixed-integer pro- 348
gramming approach to generate the rope net. 349

4.3 Mixed-Integer Optimization 350

As the 2D illustration in Figure 8, the initial node set V consists 351
of the intersection points (blue dots) between the assistant curves 352
and the intersection points (orange dots) on the key loops. The 353
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Fig. 8. Illustration of initialization of the curve edges and the nodes. The

nodes are initialized with the intersections (blue dots) between the assis-

tant curves (yellow curves) connecting with the key loops (gray circles) and

the intersections (orange dots) of the key loops with the assistant curves.

The curve edges are initialized with the curve segments between these in-

tersections.

Fig. 9. Two adjacent nodes need to be consecutive in geometry.

initial curve edge set E consists of the curve segments between354
these intersections.355

For each curve segment, we define an indicator function (vi , ej ) :356
V × E → {0, 1} to represent its existence in the rope net. (vi , ej ) =357
1 indicates that the curve segment ej , of which one endpoint is vi ,358
is used to compose the rope net. If (vi , ej ) = 0, that means we359
do not compose the rope net with ej . Thus, we turn the rope net360
generation into the problem of removing curve segments from the361
curve network, which can be formulated as362

max
vi ,ej

E (vi , ej )

s.t. vi , ej satisfies the constraints of rope net (3 − 9).
(1)

Intuitively, we prefer to select long curve segments to reduce the363
rope net complexity since the longer each segment is, the fewer364
nodes or knot operations needed to construct the rope net. Hence,365
the objective function will be formulated as linear energy with vari-366
able (vi , ej ):367

E (vi , ej ) =
∑
i, j

(vi , ej ) · ‖ej ‖, (2)

where ‖ej ‖ denotes the length of the curve segment ej . Next, we368
introduce the topology constraints and the sparsity constraints to369
ensure the reliability of the rope net.370

Topology constraint I. The rope net should be a connected graph371
to be possibly constructed by a single rope (Figure 9). Hence, for an372
assistant curve s , two consecutive curve segments ei , ej ⊂ s that373
share one of their endpoints have the constraint (vi , ei ) = (vi , ej ),374
where vi denotes their shared endpoint. For the two endpoints vi375
and vj of a curve segment ej ∈ E, we have a constraint (vi , ej ) =376
(vj , ej ). However, every curve segment ej on the key loop l ∈ L377
has (vi , ej ) = 1 since all key loops need to be present in the rope378
net. To sum up, we have the connectivity constraints as follows:379

(vi , ej ) = (vj , ej ), ∀ ej ∈ E, where vi and vj are endpoints of ej ;

(vi , ei ) = (vi , ej ), ∀ ei , ej ⊂ s ∈ S, where vi = ei ∩ ej ;

(vi , ej ) = 1, where ej is on the key loop l, ∀ l ∈ L .
(3)

Fig. 10. The constraint of a node on the non-ending loop.

Fig. 11. Illustration of the ending loop. Left: We call a key loop an end-

ing loop if all assistant curves on one side of it have endpoints both on

the same key loop. Since the assistant curves are generated based on the

direction field, they often converge at same intersection point at the end-

ing regions of the branches. Right: For easy post-processing to meet the

4-degree requirement, we remove these curves and connect their nodes

back in the post-processing step.

Topology constraint II. A node of the curve network may have 380
an arbitrary valence (i.e., the number of adjacent segments), es- 381
pecially at the ending region of the branches. Since the assistant 382
curves are generated based on the direction field, they often con- 383
verge at the same intersection point. It is difficult to precisely 384
achieve the 4-degree property for each node during optimization 385
with a consistent topology constraint for all of them. Therefore, we 386
divide the nodes into three cases and impose different constraints 387
for all of them. The constraints are to ensure that the optimized 388
rope net can be easily post-processed to meet the 4-degree require- 389
ment. 390

Case 1. For any node vi on an assistant curve, we set the con- 391
straint 392

0 ≤
∑

j

(vi , ej ) ≤ 4, if vi is on an assistant curve. (4)

After optimization, its valence will be either 0 (not selected), 2 393
(to be removed by merging its two adjacent curve segments), or 394
4 (to be preserved as a 4-degree node), due to both constraints 395
Equation (4) and Equation (3). 396

Case 2. A key loop is called a non-ending loop if all connected 397
assistant curves have the two endpoints on different key loops. For 398
a nodevi on a non-ending loop, it should have the same number of 399
curves from each side and at most one from each side (Figure 10). 400
Thus, we set the constraint 401

0 �
∑

ej ∈l−vi

(vi , ej ) =
∑

ej ∈l+vi

(vi , ej ) � 1,

if vi is on a non − ending loop l ,

(5)

where l−vi
and l+vi

denote the sets of curve segments connecting 402
vi located at the left and right sides of l , respectively. After opti- 403
mization, the nodes on the non-ending loops will have the degree 404
being either 2 (to be removed by merging its two adjacent curve 405
segments) or 4 (preserved as a 4-degree node). 406
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Fig. 12. The angle constraint of the node.

Fig. 13. Similar assistant curves (denoted by same color).

Case 3. For a node vi on an ending loop, some of the connected407
curves will have both endpoints on the same key loop (left side408
of Figure 11). Therefore, we remove these curves from S before409
optimization and reconnect their nodes in the post-processing step.410
During optimization, we formulate the constraint as:411

2 �
∑

j

(vi , ej ) � 3,

if vi is on an ending loop.
(6)

After optimization, the nodes on the ending loops will have de-412
grees either 2 (to be removed by merging its two adjacent curve413
segments) or 3 (to be preserved as a 4-degree node with the414
connected-back assistant curves).415

Sparsity constraint I. To make the rope net as simple as possible,416
we need to limit the number of assistant curves passing through417
an ending loop by the constraint418 ∑

vi ∈l,ej ⊆s

(vi , ej ) = 2k∗, k1 � k∗ � k2, if l is ending loop,

∀ s ∈ l+ ∪ l− (l+ or l− = ∅), k1 � k2 ∈ N,
(7)

where the parameters k1 and k2 indicate the minimum and maxi-419
mum number of assistant curves allowed for one curve set l+ or420
l−, respectively. In our implementation, we set k1 = 2 and k2 = 3.421
Thus, the number of nodes on an ending loop is either four or six.422

Sparsity constraint II. The nodes of the rope net should be cross-423
like so that the curve edges of the rope net are not too close to-424
gether after tightening the rope net. Hence, if the angle between425
two assistant curves si and sj at vi (Figure 12) is smaller than a426
threshold θ (pi/3 is used in the implementation), we restrict the427
curve segments that are either on si or sj as follows:428

0 �
∑

j

(vi , ej ) � 2, ∀ ej ⊂ si ∪ sj ,

if ∠(si , sj ) < θ .
(8)

Sparsity constraint III. Nearby assistant curves with similar429
shapes should be clustered as one. Note that to improve efficiency,430
we cluster nearby assistant curves that connect to the same key431
loop and lie on the same side of that loop into one group (Figure 13).432

Fig. 14. Post-processing of the ending loop.

At most one assistant curve from each group can be used in the 433
rope net. This results in the following restriction: 434

0 �
∑

vi ∈l,ej ⊆s

(vi , ej ) � 1, ∀ s ∈ lsimilar. (9)

To cluster the similar assistant curves, we use the K-Means method. 435
In the implementation, all the assistant curves are converted into 436
2D embedding by the classical multidimensional scaling (CMDS) 437
algorithm [Kong et al. 2019]. The distance between the assistant 438
curves is calculated based on the discrete Frechet distance met- 439
ric [Eiter and Mannila 1994]: dF r echet (ei , ej ) = min{‖Γ‖ | Γ 440
is a coupling between the curve ei and curve ej }. The K-Means 441
method takes the distance measure and the 2D points as inputs, 442
and outputs the clustering results of assistant curves. To determine 443
the optimal number of clusters of the K-Means method, we also 444
use the Elbow method [Ketchen and Shook 1996], which is a fun- 445
damental step in cluster analysis. 446

Up to now, we have the necessary topology and sparsity con- 447
straints for our optimization. We compute the curve segments that 448
compose the rope net by solving the constrained integer linear pro- 449
gramming (CILP) problem using the work of Achterberg [2009]. Af- 450
ter merging the adjacent selected curve segments of the 2-degree 451
nodes, the rope net then has the remaining nodes with degree 3 or 452
4 (see Figure 7(c)). 453

Post-processing. To further obtain the 4-degree rope net (see Fig- 454
ure 7(d)), we add back the curves with endpoints on the same 455
ending loop. According to Equation (7), the number of nodes on 456
the ending loop l is either four or six. If l has four nodes (Fig- 457
ure 14(a)), we connect them (orange dots) with one sampling point 458
(blue dot) by Dijkstra’s shortest paths (green curves) on the sur- 459
face. When six nodes are selected on l (see Figure 14(b)), we 460
sample two different points to connect them by geodesic paths 461
as well. Each sampling point connects with three nodes along 462
the clockwise direction of the ending loop. Then we connect the 463
two sampling points with a geodesic path. Figure 7(d) shows 464
the result after the post-processing step. Thus, all the 4-degree 465
nodes and the obtained curves connected to them form the rope 466
net. 467

Discussion. The optimization may fail in extreme cases when 468
the assistant curves are very sparse. For example, if only a few 469
assistant curves cross through a key loop placed at the region like 470
a handle, the sparsity constraints of Equation (9) will conflict with 471
feasibility. However, our algorithm works well for most of our 472
test examples because we sample a dense curve network before 473
optimization. 474
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Fig. 15. 4-fork structure at the node.

5 ROPE NET CONSOLIDATION475

Given the rope net generated in the previous section, the rope476
net needs to wrap tightly around the object so that it can con-477
fine the object movement within it as much as possible. We also478
need to find a suitable hoisting plan for the rope net that prevents479
overloading of the rope net and satisfies safety under the hoisting480
scheme [Johnson 2016]. Moreover, for rope tying in practical us-481
age, we need to assemble the rope net and tie the rope into a knot482
at each node as well so that it can provide a strong force while483
being easy to tie and material saving [Patil et al. 2020].484

Thus, in this section, we propose a rope net consolidation485
method to achieve the preceding requirements. First, to tighten the486
rope net, we minimize the length of the rope net while avoiding487
any penetrations. Second, to find a suitable hoisting plan, we look488
for anchor points that satisfy safety in hoisting operation. From489
them, we find a suitable hoisting plan by minimizing the stresses490
on the rope net while considering the physical properties of the491
rope. If no suitable plan is available, we locate the weak curve492
edges that violate the stretch stress limit, add reinforcement loops493
through them as key loops, and recompute the rope net unit to494
find a suitable hoisting plan. Since our rope net can be viewed as495
a graph where each node has exactly a degree of 4, we can use a496
single rope to construct the rope net according to the theorem of497
the Eulerian circuit [Bondy and Murty 1976]. For rope tying, we498
adopt twisting knot, which is a simple and effective knot type for499
rope net composition. To assemble the rope net for practical usage,500
we present a rope-able Euler cycle to guide the assembly process of501
the resulting rope net in practice, which guarantees that the rope502
net can be constructed by a single rope and each node is tied into503
a twisting knot.504

5.1 Rope Net Tightening505

To tighten the rope net, we minimize the total length of the rope506
net:507

min
V

∑
ei j ∈E

‖ei j ‖, (10)

where ei j denotes the curve edge between adjacent nodesvi andvj .508
By taking the node set V as the variables, our optimization alter-509
natively moves the nodes with the L-BFGS solver and shrinks the510
curve edges ei j ∈ E between adjacent nodes. Every curve edge ei j511
is updated in each iteration as the shortest collision-free path be-512
tween adjacent nodes. The pseudo-code is available in Algorithm 1.513
Note that during the optimization, both the nodes and the curve514
edges are allowed to leave the surface model rather than strictly515
constrained on the surface but are prohibited to penetrate into the516
surface model (collision between the rope net and surface model).517

Fig. 16. We only need a few iterations to shrink the initial rope net to a

tight one. Here we show the results of the front (top row) and back (bottom

row) of an object respectively in the 0th, 1th, 2th, 3th iteration.

Fig. 17. Illustration of collision-free path.

ALGORITHM 1: The algorithm for tightening rope net.

Input: an initial node setV and an initial rope net

configuration E
Output: a tight rope net R
Compute the total length of the rope net

∑
i, j ‖ei j ‖;

Compute the gradients of
∑

i, j ‖ei j ‖ w.r.t. each node vi ;

while the norm of the gradient vector is larger than the

specified tolerance do
Move every node v ∈ V by Equation (11);

Update the collision-free path ei j between vi and vj

by [Crane et al. 2013];
end

Node movement. For a node, the L-BFGS solver moves it from 518
its initial position to a locally stable position by the gradient vec- 519
tors of the object function (Equation (10)). Suppose every node v 520

is adjacent to four neighboring points p1,p2,p3,p4. We use
−→
diri = 521

v−pi

‖v−pi ‖ , i = 1, 2, 3, 4, to represent four unit vectors at the node v 522

of the rope net (Figure 15). Thus, the gradient of each node v is 523
computed as follows: 524

∂
∑

ei j ∈E ‖ei j ‖
∂v

=
∑

ei j ∈E

∂ ‖ ei j ‖
∂v

=
v−p1

‖v−p1 ‖ +
v−p2

‖v−p2 ‖ +
v−p3

‖v−p3 ‖ +
v−p4

‖v−p4 ‖

=

4∑
i=1

v − pi

‖ v − pi ‖
=

4∑
i=1

−−→
diri ,

(11)

where ei j is the curve edge (shortest collision-free path) between 525
the nodesvi andvj . To ensure that the rope net does not penetrate 526
the surface model, all nodes should be on or outside the surface. 527
Therefore, during the optimization process, we check the position 528
of each node and pull it onto the surface using [Larsen et al. 1999] 529
if lying inside (leave it alone if it is located on the surface or in the 530
exterior). 531
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Fig. 18. 2D illustration of our hoist configuration for hoisting an object

(blue). Given the object’s center of gravity (yellow dot) and one lifting point

(green dot) directly above it, we compute a pair of anchor points (orange

dots) x and y . The sling angles θ1 and θ2 are formed by their slings (orange

lines) with the horizontal axis.

Figure 16 shows an example of the optimization process. For532
this example, it has 51 nodes and each node takes 0.65 seconds on533
average to run the L-BFGS optimization. Moreover, it only needs534
3 iterations (1 iteration refers to all nodes moving once), which535
is due to the fact that the initial rope net is good enough. In536
our experiments, the number of iterations required for all models537
ranges from 3 to 68, with 5 as the average. The cactus example (see538
Figure 33(c)) requires the most iterations.539

Collision-free path. For any two adjacent nodes, we compute the540
collision-free path using the heat-based method proposed in the541
work of Cranet et al. [2013]. This method computes the shortest542
path going through the specified domain (i.e., the surface and the543
exterior in our problem).544

Specifically, in the implementation, we first discretize the space545
(colored blue) bounded by the surface M and a large box cov-546
ering the model (drawn by the black rectangle) into a tetrahe-547
dral mesh. Figure 17 shows a 2D example. Limiting the path in-548
side the blue space can naturally prevent the penetration of the549
rope net. We then compute the discrete gradient, divergence, and550
Laplace operator for the tet-mesh, which are well-established in551
the work of Desbrun et al. [2008]. Finally, we employ the heat-552
based method [Crane et al. 2013] to compute the shortest distance553
field, from which the shortest distance ‖ei j ‖ and the collision-554
free path ei j can be quickly found. In particular, by running the555
heat-based method in the tetrahedral mesh of the exterior space,556
the collision-free path between the node vi and the node v can557
be traced along the negative gradient direction, assuming that558
the distance field is linear in each tetrahedral element. Therefore,559
the collision-free path consists of a sequence of corner points, each560
being the intersection between the path and a triangle face of the561
tetrahedral mesh. In Equation (11), p1,p2,p3,p4 are four corner562
points incident to the node v .563

5.2 Hoist Planning564

So far, we have a rope net that secures the object tightly. Next,565
we introduce how to use our rope net in lifting practice. Specif-566

ically, we consider the most used sling configuration of bridle 567
hitch, where two anchor points are used together to lift an object 568
with one lifting point (Figure 18). The goal is to distribute stresses 569
evenly across the entire rope net to avoid overloading and ensure 570
safety in lifting operation [Johnson 2016]. 571

Our solution is to first search for a set of candidate anchor pairs 572
and then perform mechanics analysis to find the best one, as is 573
done in the industry practice [Johnson 2016]. Note that the lifting 574
point is always located on the object’s plumb line, so we do not 575
optimize the lifting point in our algorithm. In our implementation, 576
the lifting point is placed above the object’s center of gravity (0.3 577
as the default height). 578

Candidate pairs of anchor points. Our guidelines to select the 579
candidate anchors come from the standard constraints [Johnson 580
2016] in the industry practice: 581

• The anchor points should be always visible from the lifting 582
point since we never drag the slings over the object surface. 583
• The object’s center of gravity must be not only directly under 584

the lifting point but also below the lowest anchor point before 585
the object being lifted, to reduce the forces on the slings and 586
the anchor points. 587
• The sling angles of anchors θ1 and θ2 (formed by their slings 588

with the horizontal direction) need to be greater thanpi/4 and 589
smaller than pi/3. 590

Given the object’s center of gravity (yellow dot) and a lifting 591
point (green dot) directly above it (see Figure 18), we assume that 592
the orientation of the input object conforms to the guidelines as 593
described earlier. The first step is to uniformly sample points on 594
the entire rope net. The unit length of rope (0.001 in our imple- 595
mentation) is taken as the step size for the dense sampling. Next, 596
following the guidelines, we remove the sampling points if they lie 597
beneath the horizontal plane through the center of gravity or the 598
connecting line to the lifting point penetrates the surface model. 599

For the remaining sampling points, we generate a set of point 600
pairs. Since accurately measuring the sling angle for any free- 601
shape object is difficult, we instead use the angle θ3 formed at the 602
lifting point [Johnson 2016] (the angle between the two orange 603
lines). For a pair of sampling points, its two points and the lifting 604
point form a triangle. We refer to this pair as a candidate if the 605
object’s plumb line passes through the triangle and the angle θ3 606
formed at the lifting point is greater than pi/3 and less than pi/2. 607
We denote the set containing all pairs of points as A. 608

Mechanics analysis of the rope net. We search for a suitable 609
point pair (x ,y) ∈ A via mechanic analysis. To ensure safety, the 610
stresses acting on the rope net during lifting should be as small as 611
possible, whereas the stress of each curve edge should not exceed 612
the stress limit of the rope. Therefore, the problem can be formu- 613
lated as 614

min
(x,y )∈A

E (x ,y,R, F )

s.t. I (x ,y, e, F ) < λ, ∀ e ∈ E,
(12)

where λ is the yielding point of a specific material (by default we 615
use λ = 5.48e7N /m2 for elastic). I (x ,y, e, F ) is the stress of a curve 616
edge e ∈ E when taking points x andy as the anchors and applying 617
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Fig. 19. An example of the loop-reinforcement processing. (a) The weak

curve edges (highlighted by the blue rectangles) whose stresses are greater

than λ. (b) The non-trivial loops (highlighted by the red rectangles)

searched from the traced closed curves (with various colors).

Fig. 20. 2D illustration of the assembling process of our rope-able circuit

net. The green dots denote the nodes of rope net and the rope-able circuit

net consists of the order lines in orange. The circuit net starts with a first

direction for the starting node. Then we turn left or turn right, rather than

straight ahead to the next exit direction.

the lifting force F . The objective function is then formulated by618

E (x ,y,R, F ) =

∫
e ∈E

I (x ,y, e, F ) de . (13)

Our goal is to compute a pair of anchor points so that the rope net619
is not overloaded and the sum of the stresses on the rope net is620
minimal.621

In the implementation, since the mechanical analysis takes on622
average 3 minutes for each candidate pair, to reduce the time con-623
sumption, we sort the pairs in set A in descending order by their624
angles θ3 formed at the lifting point. We then select the first 10625
sampling point pairs in A as the candidate. Our input consists of626
a 3D object positioned in a physically simulated environment, a627
rope net whose material is specified as nylon, and two sampling628
points called anchor points. The lifting forces at the anchor points629
are determined by the gravity of the object. We compute the stress630
field of the rope net based on the finite element analyses in a popu-631
lar FEM software [Abaqus 2018]. LetVe denote all the elements in632
the curve edge e . The stress value of the curve edge e is computed633
as: I (x ,y, e, F ) = maxt ∈Ve

σ (t ), where σ (t ) is the stress value of634
the element t in the curve edge e .635

Loop-reinforcement processing. In case no anchor point pair is636
found that is capable of lifting the object under the safety con-637
straint, we perform the following reinforcement of the rope net.638
As shown in Figure 19(a), we find the weak curve edges (high-639
lighted by the blue rectangles) whose stresses are greater than λ.640
For every weak curve edge, we first project it onto the surface,641
and start tracing closed curves passing through the midpoint of642

Fig. 21. Comparison to the rope net with various assembling way in physi-

cal reliability. The left two columns show the general Euler cycle based rope

net before lifting and after shaking at the four different hoisting points in

order. The right two columns are the results of rope net with our rope-able

Euler cycle.

the projection, guided by the directional field. From the newly 643
traced closed curves (with different colors in Figure 19(b)), we 644
search for non-trivial loops (highlighted by the red rectangles in 645
Figure 19(b)) that are short and field aligned by minimizing the 646
measure described in the work of Campen et al. [2012]: cα (l ) = 647∑

p∈l

√
cos2θ (p) + α2sin2θ (p), where θ (p) is the angle between the 648

loop’s tangent and the field direction at the point p on the loop l 649
and α = 30 is the balanced parameter. After that, these non-trivial 650
loops, which we call reinforcement loops, are added to L and re- 651
compute the tightened rope net through the approaches described 652
in Section 4 and Section 5.1. Note that we do not add such a non- 653
trivial loop to L if it intersects with a key loop in L. Moreover, if 654
two non-trivial loops intersect, we add the shorter one to L. 655

5.3 Assembly 656

Our rope net can be seen 657
as a graph with each 658
node has exact a 4 degree. 659
According to the theo- 660
rem of the Eulerian cir- 661
cuit [Bondy and Murty 662
1976], every piece of the graph can be visited exactly once, the 663
starting and ending nodes of the traversal is the same, and the 664
starting node can be chosen arbitrarily. We employ the Fleury algo- 665
rithm [Skiena 1990] that fully exploits these properties to assemble 666
the rope net. However, the constructed rope net using the original 667
Fleury algorithm cannot guarantee to hold the object tight, since 668
the rope is not knotted at the nodes (see the inset, right). We pro- 669
pose to practically construct a rope-able circuit net by physically 670
pinning each node to enhance the stability (see the inset, left). 671

Based on the Fleury algorithm, we modify the rope tracing on 672
how to select the in-path and out-path at every node. Each 4- 673
degree node forms a local 4-fork structure located on a plane that 674
allows a counter-clockwise order for the four directions, as in Fig- 675

ure 15. For a nodev , we assume the
−→
dir1 is the first entry direction 676
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Fig. 22. We compared the final rope net initialized with the dual loops

(field-aware geodesic loops) computed in DLM method [Campen et al.

2012] and optimization.

Fig. 23. An example of a perturbation, such as pulling p to q.

for v , and then we choose −−→dir2 (right turn) or −−→dir4 (left turn),677

rather than −−→dir3 (straight ahead), as the next exit direction. In this678
way, the algorithm starts from an arbitrary node and chooses the679
next curve edge at each step as described earlier. It then moves to680
the other endpoint of the curve edge and deletes the current curve681
edge. At the end of the algorithm, there are no curve edges left, and682
the tracing path forms a single-rope based Eulerian circuit. An ex-683
ample of the rope net assembly process can be found in Figure 20.684

We conduct a real shaking experiment to compare our rope-able685
circuit net with the Eulerian circuit generated from the original686
Fleury algorithm. As shown in Figure 21, our rope net exhibits sta-687
ble resistance to forces with varying strength and directions, which688
also demonstrates the physical reliability of our method.689

6 RESULTS AND EVALUATION690

In this section, we propose a set of metrics (Section 6.2) to quantita-691
tively measure the effectiveness of the computed rope nets for 3D692

objects with various complexities. We also perform ablation stud- 693
ies (Section 6.3) and compare to alternative approaches to demon- 694
strate the advantages of our method. Last, we give additional ex- 695
perimental results (Section 6.4) to analyze the performance of the 696
algorithm under the conditions such as different parameters and 697
high genus, and show physical results. 698

6.1 Implementation 699

We implement the rope net computation on a 64-bit version of 700
the Win10 system with an Intel CoreTM i7-7700 CPU at 4.2 GHz 701
and 8 GB of memory. We test our algorithm on 37 meshes from 702
Thingi10K [Zhou and Jacobson 2016], the McGill 3D Shape Bench- 703
mark [Siddiqi et al. 2007], and the AIM@SHAPE Shape Repository. 704
The computation of our workflow from rope net generation to rope 705
net tightening has an average of 5 to 10 minutes per model. 706

6.2 Evaluation Metrics 707

We design a series of evaluation metrics to quantitatively evaluate 708
various aspects of our rope net (i.e., its tightness, stress distribution, 709
and simplicity). 710

Tightness. Recall that the resulting optimized rope net R may

contain some parts lying in the exterior space but must have at

least a point on the surface M. Let p ∈ R be an arbitrary point

exactly lying on the surface M, and let q ∈ M be a point in a

small neighborhood ofp. Generally speaking, if we slightly perturb

R at p (keeping the rope net structure unchanged) such that the

new rope net Rq (we call it q-based rope net) passes through q, the

length of theq-based rope net must be greater than or at least equal

to that of thep-based rope net sinceR is stable (length-minimized),

as illustrated in Figure 23. We can compute the length change rate

of ‖R‖ w.r.t. p by

max
q∈Neigh(p )

‖Rq ‖ − ‖R‖
‖p − q‖ ,

where Neigh(p) denotes the neighborhood of p on the surfaceM. 711
Note that since the rope net is allowed to leave the surface, we use 712
geodesic distance to measure the lengths of the parts of the rope 713
net lying on the surface and use Euclidean distance to compute the 714
lengths of the other parts not on the surface. The tightness of R 715
can be thus defined by 716

FTightness (R ) = max
p∈R∩M

max
q∈Neigh(p )

‖Rq ‖ − ‖R‖
‖p − q‖ . (14)

In implementation, we sample p to be the middle point of each 717
curve edge. For a fixed p, we select the point q along the direction 718
that is orthogonal to the curve edge of the rope net and tangent to 719
the surface. The bigger FTightness (R ) is, the tighter the rope net is, 720
indicating that the rope net can tightly secure the target without 721
slipping. 722

Stress distribution. The stress distribution of a rope net depends 723
on where to lift the rope net and where to wrap the target object. 724
Hence, we compute the stress distribution Fstress (R ) as the sum 725
of the stresses on each curve edge based on formula E (x ,y,R, F ) 726
(Equation (13)). The lower value of Fstress (R ), the smaller of the 727
stresses on the rope net, which implies that the rope net can per- 728
form the load-balance lifting task better. 729
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Fig. 24. Comparing with the dual layout-based rope net. The final rope

nets (a–c) are initialized by IM [Jakob et al. 2015], QF [Huang et al. 2018],

and SQD [Tarini et al. 2011a] and tightened using our tightening algo-

rithm.

Simplicity. We use the number of the rope nodes |V | and the730
length of the rope net ‖R‖ to measure the simplicity of the rope731
net. It is apparent that the fewer nodes the rope net has, the simpler732
the rope net is. For fair comparisons, we uniformly scale the input733
model to a 1 × 1 × 1 box.734

6.3 Ablation Studies735

Although we cannot find prior work solving the same problem,736
we demonstrate the rationality of our designed pipeline by com-737

Fig. 25. Comparison on the models with sharp feature and high genus. The

rope nets (le column) are the results of the Skeleton-driven method [Usai

et al. 2015] and IGM method [Bommes et al. 2013a] taken as initializers

and tightened by our tightening algorithm. The rope nets (right column)

are our results.

paring our method against a set of possible alternatives using the 738
proposed metrics. 739

Various key loop strategies. We look into an ablation experiment 740
that replaces our SDF-based key loop with dual loops (field-aware 741
geodesic loops) computed in the DLM method [Campen et al. 2012]. 742
We extract dual loops from the quad layout of its results. These 743
loops automatically construct a rope net that guarantees the 4- 744
degree property but are not necessarily satisfy the specific rope 745
net requirements. As shown in Figure 22, our method yields bet- 746
ter performance in covering the critical wrapping regions of the 747
object and is more suitable to generate a simple and cost-effective 748
rope net. 749

Various initial rope nets. We note that the dual of a quad lay- 750
out is naturally a curve network with every node having a va- 751
lence of 4, which can be directly used for the initialization of our 752
rope net. However, as shown in Figure 24, we compare our gener- 753
ated rope nets with the ones from instant meshing [Jakob et al. 754
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Fig. 26. Comparing the stress distribution of the rope net with (a) and

without (b) the loop-reinforcement step under the similar hoisting plan.

(c) The distribution of the stress on each edge with and without loop re-

inforcement. The reinforcing rope nets have smaller maximum stress and

perform better in load balancing than those without the reinforcements.

2015], feature-aligned meshing [Huang et al. 2018], and simple755
quad domain [Tarini et al. 2011a], respectively. Our results are756
considerably simpler and cost less materials for all the models.757
Moreover, our rope nets capture more easily of the crease regions758
than the other approaches. The main reason is that our initial rope759
net generation is directly guided by a shape descriptor that seg-760
ments parts of an object effectively. The misalignment of the sepa-761
ratrices traced out from irregular vertices is a long-standing prob-762
lem in quad meshing [Tarini et al. 2011b], and it can lead to arbi-763
trarily long separatrices and a complex quad layout. Even there is764
no singularity misalignment problem present in the quad layouts,765
as shown in Figure 25, our results are still simpler since the quad-766
meshing methods usually need to take into consideration the mesh767
quality that is irrelevant to our rope net generation.768

With vs. without the loop-reinforcement processing. To study the769
effectiveness of the reinforced rope net with more key loops, we770
compare our method to itself without any reinforcement. The re-771
sults of the stress distribution are shown in Figure 26. Note the772
additional key loops of weak curve edges after applying the rein-773
forcement processing step. Naturally, the rope net becomes denser774
as demonstrated in Figure 26(b). With the reinforcement step, the775
stresses distributed over the rope net are much smaller than the776
one without, as shown in Figure 26.777

6.4 Additional Results778

Gallery. Our method can compute the rope nets and hoisting779
plans over 3D models with various complexities. In Figure 27, we780
show a gallery of examples generated by our method. For each781
model, its hoisting plan consists of one lifting point (dotted by a782

Fig. 27. Gallery of examples generated by our method. We compute the

rope nets and hoisting plans over 3D models with various complexities.

For each model, its hoisting plan consists of one lifting point (dotted by

a red sphere) and a pair of anchor points (dotted by blue spheres) on the

rope net.

red sphere) and a pair of anchor points (dotted by blue spheres) on 783
the rope net. 784

Key parameters. Our approach allows the easy change of param- 785
eters k1 and k2 in Equation (7) to adjust the simplicity of the gener- 786
ated rope net. In Figure 28, we use different k1 and k2 to generate 787
rope nets with varying simplicity. We also expose the variant λ 788
of our method to users for controlling safety aspect during hoist- 789
ing. As shown in Figure 29, we compare the performances of the 790
rope nets made of carbon fiber (Figure 29(a)) with that made of 791
nylon (Figure 29(b)). Note that when using a strong rope (carbon 792
fiber rope), we can provide a simpler rope net while satisfying the 793
stress constraint. 794

Robustness to high genus. As shown in Figures 22, 25, and 27, 795
our approach can handle models with high genus. The complex- 796
ity of the rope net depends on the cross field. High genus shapes 797
often have complicated cross field. We can easily simplify the com- 798
plexity of such kind of models by wrapping the rope nets around 799
their enveloping surfaces presented by the nested cage [Sacht et al. 800
2015], as shown in Figure 30. However, this method only can work 801
for high genus shapes with tiny holes since the enveloping surface 802
could cover the small holes. The rope net is still complex if the 803
shape models with many large holes in geometry (see Figure 22 804
and Figure 25). 805

Physical results. As shown in Figure 31, we printed 12 mod- 806
els and realized our computed rope nets on the corresponding 807
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Fig. 28. We can easily vary k1 and k2 for different simplicity to generate

the rope nets.

Fig. 29. Our method can incorporate rope usages to generate the rope nets

formed by different physical materials.

physical objects. We employ four people and provide them with808
our assembly GUI for constructing the rope net. As expected, ev-809
ery rope net can be assembled using a single rope. The assembly810
time ranges from 30 minutes to 180 minutes for one model with an811
average of 60 minutes over all 12 models.812

7 DISCUSSION AND CONCLUSION813

We introduce an interesting problem of a computational object-814
wrapping rope net, which not only tightly secures the object in815
practice but can also be composed with a single rope. We present a816
shape-aware curve network to effectively solve the problem. Both817
topology and geometry of the curve network are optimized via a818
discrete-continuous optimization to satisfy the requirements of the819
rope net. Through extensive experiments, we demonstrate that our820
approach is noticeably effective in terms of robustness and gener-821
ally applicable for 3D models with different shape complexities. Us-822
ing the visual guidance tool that we provide for users, the assemble823
property of our rope net is also demonstrated through physical ex-824
periments. Moreover, our method produces high-quality rope nets825
for a wide variety of shapes and proposes extensive metrics for the826

Fig. 30. An example of the simplification process for high genus shapes

with many small holes. To simplify the complex of rope net, we compute an

enveloping surface (plotted by the gray color) of the original chair model (a)

by the nested cage [Sacht et al. 2015] and compute the rope net wrapping

around the enveloping surface based on our method (b).

rope net evaluation that can be well generalized to new problem 827
instances. 828

As a first attempt to solve the new problem, our current solution 829
still has some limitations. Our method starts with the key loop gen- 830
eration, which is such an important step of our pipeline since every 831
other step (e.g., assistant curves, initial rope net, rope net consol- 832
idation) is computed from this initial set of loops. After that, the 833
rope net consolidation step moves the curve edges by minimizing 834
the total length of the rope. However, in some rare cases, the two 835
steps do not connect well, such as in the example of the cactus 836
model (Figure 33(c), which is due to the requirements of the rope 837
net are not directly embedded in generating the initial key loops. 838
In Figure 33(c), the optimized rope net is quite different from the 839
initial result, indicating that our initial key loops are not helpful 840
for this case. Directly incorporating mechanical aspects into our 841
formulation to find stable key loops would be a better choice. If 842
considering the frictional property of a surface, the rope net, after 843
being shortened, may not be exactly a geodesic net, as shown in 844
Figure 33(d). Then the interesting observation is that the lateral 845
frictional force is proportional to the geodesic curvature. There- 846
fore, in real-life scenarios, the rope net is not a geodesic net even 847
if in the stable state. A promising direction is to solve a coupled 848
problem by jointly learning or optimizing the key loop generation 849
and the rope net consolidation together. 850

However, the heuristic key loop strategy based on the SDF ap- 851
proach is motivated by real-world lifting experience and works 852
well for most shapes, although it still has some space to be im- 853
proved. For example, it may extract no key loops for some extreme 854
cases, such as primitive shapes and very thin parts (see Figure 33(a) 855
and (b)). In addition, it generates inconsistent key loops across var- 856
ious mesh resolutions, resulting in different rope nets of the same 857
object (see Figure 32). Nevertheless, how to obtain the stable loops 858
of 3D objects is an exciting research problem. Our algorithm, in 859
its current form, still lacks enough physics considerations, which 860
needs to be further improved in the future. 861
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Fig. 31. Some rope nets physically realized using our method.

Fig. 32. The number of faces used in the input model can effect its critical

wrapping regions extracted by the SDF-based key loops (plotted by various

colors in the top row). Although exhibiting similar shape, our rope net is

still not invariant to different resolutions.

Fig. 33. Limitations of our rope net. Our method may fail for objects where

no key loops are extracted such as primitive shape objects (a), and shapes

composed with extremely thin features that may break ropes (b). (c) With-

out considering the frictional coefficient of the surface, the rope net after

optimization is far from the initial result. (d) The stabilized rope net when

fractional force exists.

Interesting results are observed when the input models are sym-862
metric. The rope nets tend to be also symmetric. However, our863
current approach does not explicitly guarantee this property. We864
also believe that this would be a future work of our algorithm.865
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