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Fig. 1. Our neural skeletal articulation network learns to rig and skin an input character with arbitrary connectivity, and generates neural blend shapes. Our
framework produces pose-dependent displacements that result in high quality deformations, especially in the joint regions.

Animating a newly designed character using motion capture (mocap) data
is a long standing problem in computer animation. A key consideration is
the skeletal structure that should correspond to the available mocap data,
and the shape deformation in the joint regions, which often requires a tai-
lored, pose-specific refinement. In this work, we develop a neural technique
for articulating 3D characters using enveloping with a pre-defined skele-
tal structure which produces high quality pose dependent deformations.
Our framework learns to rig and skin characters with the same articula-
tion structure (e.g., bipeds or quadrupeds), and builds the desired skeleton
hierarchy into the network architecture. Furthermore, we propose neural
blend shapes — a set of corrective pose-dependent shapes which improve
the deformation quality in the joint regions in order to address the noto-
rious artifacts resulting from standard rigging and skinning. Our system
estimates neural blend shapes for input meshes with arbitrary connectiv-
ity, as well as weighting coefficients which are conditioned on the input
joint rotations. Unlike recent deep learning techniques which supervise the
network with ground-truth rigging and skinning parameters, our approach
does not assume that the training data has a specific underlying deformation
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model. Instead, during training, the network observes deformed shapes and
learns to infer the corresponding rig, skin and blend shapes using indirect
supervision. During inference, we demonstrate that our network generalizes
to unseen characters with arbitrary mesh connectivity, including unrigged
characters built by 3D artists. Conforming to standard skeletal animation
models enables direct plug-and-play in standard animation software, as well
as game engines.
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1 INTRODUCTION

Animating a 3D character from motion capture (mocap) data is a
complex, arduous skill that animators spend years attempting to
master [O’Hailey 2018]. Given a new character, a typical scenario
involves manually creating a suitable character rig that is bound
to the input geometry via skinning weights. Careful consideration
should be given to the skeleton hierarchy of the designed character
rig so as to correspond to the skeletal structure used in mocap data.
Additionally, different poses, e.g., bending the elbow vs. extending
it, require a tailored pose-specific corrective deformation, especially
in the joint regions.

A character can be articulated by applying joint rotations (ob-
tained e.g. from motion capture data) to a skeletal deformation
model, typically linear blend skinning (LBS) [Magnenat-Thalmann
et al. 1988] or dual quaternion skinning (DQS) [Kavan et al. 2007].
Their simple and efficient formulation makes these methods a pop-
ular choice for animation software, games, and recently even deep
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learning [Xu et al. 2020]. However, such skinning and rigging defor-
mation models are an oversimplification of how humans and animals
move, resulting in notorious artifacts (e.g., elbow collapse). A high
quality deformation can be obtained using blend shapes [Lewis
et al. 2000; Weber et al. 2007] where, for example, the blending co-
efficients are conditioned on joint rotations [Loper et al. 2015] to
provide fine-grained control in delicate regions. We are inspired by
SMPL [Loper et al. 2015] (recently extended to STAR [Osman et al.
2020]), which achieves high quality deformations using predicted
blend shapes for characters with a fixed mesh connectivity. How-
ever, a limitation of SMPL in the context of rigging and skinning is
that in practice different characters almost always contain different
mesh connectivities.

In this work, we present a neural technique for articulating 3D
characters that learns rigging, skinning, and blend shapes for inputs
with arbitrary mesh connectivity. We purposefully design our archi-
tecture to use a prescribed skeleton structure, enabling generating
practical skeleton rigs that are compatible with mocap data and
simplifying the mocap-to-deformation process. Our system animates
characters using enveloping with the desired skeletal structure and
pose-specific corrective deformations. It predicts skinning weights
for the input mesh and computes a set of corrective, pose-dependent
shapes that improve the deformation quality in joint regions, coined
neural blend shapes.

During training, the network observes deformed shapes and
learns to infer the corresponding rig, skin and blend shapes us-
ing indirect supervision, bypassing the need to provide supervised
envelope or blend-shape deformation parameters. Unlike recent
deep learning techniques that supervise the network with ground-
truth rigging and skinning parameters [Liu et al. 2019; Xu et al.
2020], our approach does not assume that the training data has a
specific underlying deformation model. Our indirect supervision
enables learning an arbitrary number of blend shapes, which we
use to generate fewer blend shape bases than the original training
data. Our network also learns to mask the generated blend shapes,
creating compact and localized bases without the need for such
masks for supervision.

We learn deep features directly on the input mesh connectivity
using MeshCNN [Hanocka et al. 2019], and predict a mesh attention
map to modulate the deep vertex features, giving rise to neural
skinning weights. In addition, we learn deep features on the tar-
get skeleton hierarchy using a skeleton-aware network [Aberman
et al. 2020] to estimate the rigging parameters. We further enrich
the training data by performing mesh connectivity augmentations
(e.g., edge collapse, flip and split), which enables us to generalize to
unseen mesh connectivity during inference.

This work is the first deep learning based method for automatic
enveloping combined with pose-dependent blend shapes for a skin
mesh with arbitrary connectivity. Our neural blend shapes can
generate high quality mesh deformations and avoid the notorious
artifacts of LBS-based systems [Baran and Popovi¢ 2007; Liu et al.
2019; Xu et al. 2020]. Our framework conforms to popular skeletal
animation models, enabling plug-and-play of our output in standard
animation software and game engines. We demonstrate the perfor-
mance of our method on a variety of examples, including unseen,
unrigged characters built by 3D artists.
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2 RELATED WORK
2.1 Mesh deformation of articulated shapes

Deforming a mesh based on a skeletal deformation is a fundamental
problem in computer graphics. One of the earliest and most widely
used skinning techniques is linear blend skinning (LBS) [Magnenat-
Thalmann et al. 1988]. This method computes the deformation of
the mesh as a weighted sum of the character’s bone transformations,
where the skinning weights can be computed manually or automat-
ically. The simple formula of LBS allows fast evaluation and can be
easily parallelized to fully utilize modern GPUs’ high performance,
making the method an essential technique for real-time applica-
tions, such as games. Despite this success, linear blend skinning
suffers from known artifacts, such as elbow collapse and candy wrap-
per. Existing works develop improved techniques to overcome such
shortcomings, such as dual quaternion skinning [Hejl 2004; Kavan
et al. 2007; Le and Hodgins 2016], spherical based skinning [Kavan
and Zara 2005], multi-linear techniques [Wang and Phillips 2002;
Merry et al. 2006], and approaches with additional deformers or
cages [Ju et al. 2005; Joshi et al. 2007; Jacobson et al. 2011; Kavan
and Sorkine 2012; Mukai and Kuriyama 2016; Yifan et al. 2020].

While LBS and similar approaches offer efficient run-time perfor-
mance, they require additional corrective deformations to express
details, such as wrinkles and muscle bulges, and alleviate defor-
mation artifacts. Example-based methods provide users with more
control of the deformation behavior, see e.g. [Sloan et al. 2001; Lewis
et al. 2000; Weber et al. 2007; Frohlich and Botsch 2011; Loper et al.
2015]. Many such methods encode example deformations into a set
of deformation bases (i.e. blend shapes) and compute the mesh defor-
mation as a linear combination of these blend shapes and blending
coefficients. The blend shapes can be represented as vertex displace-
ments [Lewis et al. 2000; Weber et al. 2007], statistical models [Kry
et al. 2002; Loper et al. 2015], or a compact sparse format [Seo et al.
2011]. In the standard animation pipeline, animators manually ad-
just blending coefficients to deform the mesh, whereas an RBF-based
blend space [Lewis et al. 2000; Sloan et al. 2001] can facilitate this
tedious process. Bone transformations and other high-level controls
can be converted into blending coefficients by solving constrained
geometric optimization problems [Sumner et al. 2005; Weber et al.
2007; Frohlich and Botsch 2011]. Blending coefficients can also be up-
dated in a dynamic simulation to generate secondary effects [Hahn
et al. 2012; Zhang et al. 2020].

Recent research explores neural network based approaches to im-
prove traditional skinning methods. Bailey et al. [2018] approximate
the deformation of a complex production rig using neural networks,
which reduces the execution cost and allows film-quality deforma-
tion in real-time applications. Later research extends this idea to
more complicated facial rigs [Bailey et al. 2020; Song et al. 2020].
Neural networks can also be trained to convert high-level user con-
trol into rig parameters [Bailey et al. 2020] to enable user-friendly
editing of mesh deformation. Li et al. [2020] train a graph neural
network (GNN) to apply corrective displacements to linear defor-
mations and create nonlinear effects. While the model generates
high quality mesh deformation, repeatedly evaluating a deep neural
network at runtime can be expensive. Our method is also a neu-
ral skinning technique. We employ an envelope skin deformation
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Fig. 2. Method overview. Starting with a character model in T-pose and the joint rotations on the desired skeleton hierarchy, our envelope branch predicts the
corresponding skinning and rigging parameters and deforms the input character using a differential enveloping. In parallel, the residual deformation branch
uses the input mesh to predict N blend shapes and uses the joint rotations to predict the corresponding blending coefficients «;. The blend shapes add a
residual deformation that is conditioned on the input joint rotations, resulting in high-quality pose-dependent deformations. Note that our system handles
input characters with arbitrary mesh connectivity and does not use joint positions as input.

model and train a novel neural representation of blend shapes. Once
generated for an input mesh, our lightweight neural blend shapes
can be evaluated efficiently at runtime to achieve high quality mesh
deformation.

2.2 Automatic skinning and rigging

Automatically rigging a skin mesh and creating ready-to-animate
models has been a long-standing challenge in computer graphics. In
the pioneering work Pinocchio, Baran and Popovi¢ [2007] propose
a template-based method that automatically fits a user-provided
skeleton to a target mesh and creates an animation-ready rig. How-
ever, this method does not generate blend shapes, and the resulting
deformation can contain notorious LBS artifacts. Miller et al. [2010]
later demonstrate a system that automatically rigs an input mesh by
combining parts from a number of templates. Skeleton extraction
can be also achieved by analyzing the geometric features of the
input mesh [Au et al. 2008; Cao et al. 2010; Bharaj et al. 2012]. These
methods are applicable to a large range of shapes, but often lack
precise control of the topology of the output skeleton.

Automatic computation of skinning weights is a complementary
problem to skeleton extraction. Previous research exploits methods
based on projections and heat diffusion [Baran and Popovi¢ 2007;
Wareham and Lasenby 2008], bounded biharmonic energy [Jacobson
et al. 2011], geodesic voxel binding [Dionne and de Lasa 2013],
and physics-inspired approaches [Kavan and Sorkine 2012]. Data-
driven methods can utilize spatial coherence between examples
and compute high quality skeleton and skinning weights by fitting

the examples to skinning models like LBS [James and Twigg 2005;
Schaefer and Yuksel 2007; De Aguiar et al. 2008; Hasler et al. 2010;
Le and Deng 2014]. They can further extract blend shapes from
the examples [Lewis et al. 2000; Kry et al. 2002; Loper et al. 2015].
However, these methods require a set of example deformations of the
same mesh as input, which can be difficult to obtain in practice, and
they do not necessarily produce art-directable skeleton structure.
Several recent works take advantage of the power of deep neural
networks to achieve high quality rigging. NeuroSkinning [Liu et al.
2019] is a GNN-based network designed to predict skinning weights.
It is trained with supervised learning on a skinning dataset created
by professional artists. While this model can predict high quality
skinning weights, it requires creating a suitable rigged skeleton with
carefully placed joints. RigNet [Xu et al. 2020] is another GNN-based
model for automatic rigging and skinning. The network is trained to
apply mesh contraction to the input mesh and utilizes an attention-
based clustering module to detect joints. The method allows users to
guide the skeleton extraction with a tunable level-of-detail parame-
ter, but there is no direct control over the topology of the generated
skeleton. Moreover, the output of this system is an LBS-based rig
without blend shapes that suffers from the standard LBS artifacts. In
contrast to these techniques, our method automatically computes
rigging, skinning, and blend shapes for an input mesh. Notably, our
method does not assume that the training data has a specific un-
derlying deformation model, and our indirectly supervised training
does not require ground-truth rigging and skinning parameters.
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3 OVERVIEW

Our goal is to animate a newly designed character using available
mocap data and incorporate high quality pose dependent deforma-
tions. In this problem formulation, it is desirable to pre-define the
skeletal structure of the character, i.e., the bone hierarchy and joint
adjacency, to be equivalent to the mocap data skeletal structure.

Given a new unseen character, we use a deep neural network to
generate the parameters that enable articulation with pose-specific
corrective deformations. The structure of our network is inspired
by the classical animation pipeline and outputs three main compo-
nents: rigging, skinning, and blend shapes. The number of degrees
of freedom and the hierarchy of the underlying skeletal structure
are pre-defined and embedded in the network, ensuring mocap com-
patibility for animating the character.

Our framework contains two main branches: (i) an envelope de-
formation branch that learns pose-invariant parameters (i.e., rigging
and skinning), and a (ii) residual deformation branch that learns
pose-dependent residual displacements. The learned skeleton rig
is bound to the input geometry using estimated skinning weights.
When combined with joint rotations, this defines an envelope defor-
mation that is capable of articulating the shape. Our neural blend
shapes are inspired by SMPL [Loper et al. 2015], which proposed a
comprehensive model for creating exceptional deformation quality
using blend shapes represented as bases of additive displacements
to the input character in rest pose.

Our network is trained on characters with the same articula-
tion structure (i.e., bipeds), but which may have different under-
lying deformation models. Thus, no ground truth is provided to
the network-estimated rigging, skinning and blend shapes. We use
indirect supervision, namely, instead of directly supervising the
deformation parameters (rigging, skinning, and blend shapes) our
network infers them by observing how articulated vertex positions
are controlled by a set of joint rotations. As a result, the network
learns to represent the articulation of every input character using
the pre-defined envelope model, regardless of the underlying de-
formation model used during training. Our indirect supervision
enables learning an arbitrary number of blend shapes, which we
use to generate a smaller amount of blend shapes than the original
training data, as well as a learned mask on the generated blend
shapes. The network predicts compact and localized blend shapes
that are pose-dependent by construction, without the need for such
blend shapes as supervision.

Throughout the next sections we use the following notations: V
and F denote the vertex positions and the connectivity of the input
mesh, respectively. W is the output skinning weight matrix, O is
a hierarchical set of offsets that represent the output skeleton and

{B; }f\i 1 is aset of N residual shapes that represent the blend shapes,

N

interpolated with scalar coefficients {a;};" ;.

4 METHOD

Below we describe our neural articulation framework, which con-
sists of two main branches: an envelope deformation branch for
rigging and skinning, and a residual pose-dependent deformation
branch that enables predicting high-quality deformations.
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Fig. 3. The envelope deformation branch. Given a mesh in T-pose (V,F)
and joint rotations (R), our network infers the skinning (W) and rigging (O)
parameters via indirect supervision by observing the articulated character
vertex positions.

4.1 Envelope deformation branch

Our envelope deformation branch, illustrated in Figure 3, follows the
typical animation workflow of rigging and skinning. The detailed
architecture is provided in the Appendix.

Starting with an input character represented by a triangle mesh
with vertices V.€ RY*3 and faces F, our envelope deformation
network predicts skeletal offsets (the offsets between each joint
to its parent) O € R/ with a prescribed skeleton hierarchy that
contains J joints, and a skinning weight matrix W € RV>/.

Since our network is not directly supervised by skinning matrices,
our envelope branch can obtain better deformation quality than
standard LBS.

Our network learns to fit a rig of a pre-defined skeletal topology
to any input character using indirect supervision. During training,
the network is only supervised by the vertex positions of the articu-
lated characters and the corresponding joint rotations. The network
learns the relationship between joint rotations and the articulated
character via the estimated rigging and skinning parameters, which
are embedded in the network. Thus, with a sufficiently large num-
ber of examples, the network infers accurate rigging and skinning
parameters for the input character (for more details please refer to
the experiments in Section 5).

Skinning. To produce skinning weights, we incorporate a series of
mesh convolution blocks using the MeshCNN operators of Hanocka
et al. [2019]. Their work demonstrates that mesh convolutions are
particularly useful for classification of surface parts (i.e., segmenta-
tion), which is similar in spirit to skinning weights. However, our
input features are different from MeshCNN. For each edge, we calcu-
late the average positions of its two adjacent vertices. Furthermore,
we max-pool one out of five of the output channels in each hidden
layer then repeat and concatenate the result along the edge axis
to extend the receptive field, similar to the segmentation network
presented in PointNet [Qi et al. 2017]. After a forward pass, in order
to predict per-vertex values, we average adjacent edge features of
the corresponding vertex based on the mesh connectivity (similar
to Point2Mesh [Hanocka et al. 2020]) to get the skin matrix W.



Rigging. GivenV and F, our goal is to learn the rigging parameters
0 € R/*3 of a specific skeleton hierarchy that consists of J offsets.
Intuitively, each offset O; of the character’s rig can be inferred from
its surrounding mesh vertices. To learn a vertex representation that
fits that task, we first pass the edge representation of V (similar to
the skinning block) through several MeshCNN blocks to obtain a
learned deep vertex representation V' € RV*K with K channels.
Then, the output skinning matrix is used to apply a skinning based
pooling on the deep vertices, which collapses the V features into a
set of J deep offsets using the relative skinning weight via

14 .V

O/j _ Zi:é WiV, , )

2oy Wij
where O/j € RX represents a deep feature corresponding to the jth
offset, and W;; is the skin weight that ties vertex i to offset j. This
operation is similar to attention based pooling, and ensures that
each offset is calculated only as a function of the vertices that are
bound to it.

Given the deep offsets 0, we predict the explicit skeleton off-
sets to construct the rig. Since the skeletal topology is fixed in our
network, we can exploit joint connectivity, such that each offset is
calculated only by its corresponding deep offset and its close neigh-
bors. Hence, we use a block of skeleton-aware operators [Aberman
et al. 2020] to predict the explicit offset O € R/>3.

Envelope training. In order to learn skinning and rigging parame-
ters that are not provided during training, in each iteration we inject
a pose described by local joint rotations R = {R;} where R; € R3*3,
which guides the deformation of the input character along with
the predicted rig and skin. We use two steps to convert the local
joint rotations and offsets to a global affine per-joint transformation
T; € R¥4, which can be applied to the input vertices. First, for
each joint we accumulate the local affine transformations {R;, O;}
along its kinematic chain (starting from the root) through a forward
kinematics layer. Then, we apply a differential linear blend skinning
(LBS) layer that calculates a per-vertex global transformation based
on the skinning matrix via

Tr, = >, W;iTi. (2
i

Once the transformation is calculated, the per-vertex affine trans-
formation Tg = {Tg;} is applied to the input character:

VR=TROV, (3)

where © denotes the per-vertex operation of the global affine trans-
formations Tr on the input vertices. An f»-loss is applied to the
difference between the reconstructed vertex positions to the ground-
truth articulation Vg:

Ly = [[Vg - Vrl% 4

4.2 Residual deformation branch

Our residual deformation branch is inspired by the concept of blend
shapes, and predicts a set of fixed residual shapes that are interpo-
lated by pose-dependent coefficients and added to the input char-
acter to improve the deformation quality (illustration in Figure 4).
In our case, both the shapes and their coefficients are learned by a
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Fig. 4. The residual deformation branch predicts blend shapes and blending
coefficients based on the input mesh connectivity and input joint rotations.
The network learns to estimate blend shapes for arbitrary mesh connectivi-
ties and blending coefficients that are conditioned on the joint rotations.
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Fig. 5. Inference time. Given a new character, we can extract skin, rig, and

blend shapes within a single forward pass of our network. To animate the
character we need only a small network that calculates pose dependent
blend shape coefficients. Conforming to standard skeletal animation models
enables direct plug-and-play application in standard animation software.

neural network. During inference we feed the input character to the
network once to receive the residual blend shapes, whereas the joint
rotations for every frame are needed to animate the pose-dependent
deformations for the character in real-time, as illustrated in Figure 5.

Residual blend shapes. Given the input vertex positions V and
connectivity F, the residual branch starts with the skinning and
geometry blocks with fixed weights that were pretrained in the
envelope deformation branch. Then the output skinning W is con-
catenated to the deep vertices \'4 along the channel dimension
({V/, W} € RV*&*)) and the result is fed into the network. The
combination of deep vertex and skin provides the blend shapes net-
work with rich information about the vertices and their relationship
to the skeleton, which is essential for the generation of the blend
shapes. Similar to the envelope branch, we use the edge feature rep-
resentations of these three components, which are passed through a
block of mesh convolutions, resulting in a set of N residual shapes
{B,-}i.\il, B; € RV, In parallel, we feed a small neural network that
contains ] MLP blocks, where each is conditioned by a single joint
rotation, and output a series of pose dependent coefficients {a; ]}f\i 1
per joint j. These coeflicients are used to interpolate between the

ACM Trans. Graph., Vol. 40, No. 4, Article 1. Publication date: August 2021.
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Fig. 6. Visualization of the network predicted rigging and skinning weights for various unseen characters. From left to right we see random test characters
from each of the three test set groups: SMPL dataset, garment dataset, and characters handcrafted by 3D animator.

residual shapes that are summed up and added to the input vertices:

J N
V=V+Zzaijiji, (5)

j=1i=1
where m; is a binary mask that specifies the vertices that are as-
sociated with joint j. This computation is done by picking all the
non-zero entries in the skinning matrix that are associated with
the two bones corresponding to the joint. This operation enables
us to enforce localization in the structure of the blend shape and
avoid undesired deformation of vertices associated with static joints
(similar to [Osman et al. 2020]). Similar to the envelop branch, the
loss is calculated as the difference between the articulated character

and the corresponding ground truth using Eq. (4).

5 EXPERIMENTS AND EVALUATIONS

In this section we evaluate our results, compare them to other rig-
ging, skinning, and deformation techniques, and demonstrate the
effectiveness of various components in our framework through ab-
lation study. In order to qualitatively evaluate our results to the
fullest extent, please refer to the supplementary video.

5.1 Implementation details

Our neural articulation framework is implemented using the Py-
Torch library [Paszke et al. 2019], and the experiments were per-
formed on NVIDIA GeForce GTX Titan Xp GPU (12 GB) and Intel
Core i7-6950X/3.0GHz, CPU (16 GB RAM).

We train the network using a two stage course to fine approach.
In the first phase, we train the envelope branch, and in the second
phase, we fix the envelope network weights and train the residual
branch. In this phase, we found that for our specific training dataset,
we can boost the performance by providing supervision for the
blend-shapes. However, since the blend-shape of SMPL and our
model do not share the same properties (number of blend-shapes,
number of vertices per blend shape) we extract our blend-shapes
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ground truth samples by optimizing the MLP network and {Bl}f\i 1
such that the output satisfies some high quality deformed ground
truth. Then the extracted blend shapes can be used to supervise
directly the generation of residual shapes {Bi}ﬁ 1- We optimize the
parameters of our framework using the Adam optimizer [Kingma
and Ba 2014]. We use different learning rates for the different blocks,
and these are specified in Table 5. Training our network took about
3 days.

5.1.1 Data. Our network is trained on the SMPL dataset [Loper
et al. 2015] which contains ten shape (pose-independent) blend
shapes and 207 pose-dependent blend shapes. This enables gener-
ating a variety (e.g., height, weight, proportions) of different shape
identities and high quality deformations using the joint rotations
provided in the SMPL model. Since the SMPL shapes represent a
relatively sterile character (i.e., naked and hairless humans), we in-
corporate an additional dataset of clothed humans proposed in Multi
Garment Network [Bhatnagar et al. 2019]. The latter contains 96
characters with SMPL mesh connectivity. We used 80 out of the
96 clothed humans for training (reserving 16 models for testing).
To train the network, we sample joint rotations from two different
distributions (one for each branch). For the envelop deformation
branch, the distribution for a single joint is U (Sz) XN (0, (7r/6)2),
namely, the rotation axis is uniformly sampled from a 3D sphere and
the rotation angle is sampled from a normal distribution with zero
mean and variance of (1r/6)2. For the residual deformation branch,
the rotation distribution is U (S?) x U [0, 2] to enable capturing
of even larger and exaggerated deformations. In each branch we
sample rotations for each joint except for the root joint.

Our network assumes that the input character has a consistent
upright and front facing orientation. Following SMPL [Loper et al.
2015], the input should also be in T-pose in order to effectively
learn blend shapes, which is important for obtaining high quality
deformations. In addition, the vertex positions are spatially aligned
during training such that the hand tips are in a fixed height (as in
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Fig. 7. Our predicted envelope deformation produces favorable results, compared to LBS. Adding neural blend shapes to the enveloping results in corrective
pose-dependent displacement, which improves the deformation quality in the joint regions.

the SMPL model). In test time, if the character does not belong to the
SMPL distribution, we translate it to the same height and scale the
vertices such that the two extreme hand tip vertices have a certain
distance, similar to the distance in the raw SMPL model, with no
shape blend shapes.

As outlined in MeshCNN [Hanocka et al. 2019], our system can
handle inputs which contain boundaries, self-intersections, or dis-
connected components. In the case of non-manifold geometries (non-
manifold mesh edges or vertices), these should simply be deleted.
In general, there should be a meaningful shape surface to propagate
the deep mesh features; so in the case of an extreme polygon soup
some form of remeshing [research 2020] or tetrahedralization [Hu
et al. 2020] can be employed.

Test data. Our test set consists of three groups. The first group is
five biped characters manually created by a professional animator.
The second group is thirty random SMPL characters, which are
sampled with different proportions and shapes than we trained on.
The third group is a random subset of 16 characters from the SMPL
clothes dataset that were reserved for the test set.

Garment augmentation. We also use the dataset of Bhatnagar et
al. [2019] to enlarge the geometric features observed by our network.
Since the shapes in this dataset have the same connectivity as SMPL,
we can extract the garment displacements in two steps. First, we find
the closet SMPL character that matches the surface of the clothed
character (via optimization on SMPL parametric space), and then we
subtract the clothed character from the fitted SMPL character to get
a set of displacements, which are used to augment shapes by adding

garments. This creates a variety of geometric variability in the
training data, especially with regard to the location of the skin w.r.t.
the character bone. We show the importance of this augmentation
in the ablation study.

Mesh connectivity augmentation. In order to enrich the set of
samples that the network is trained on and to enhance its robustness
to different mesh connectivity, we augment the data samples by
applying three topological operators on edges: collapse, split and
flip [Hoppe 1996; Botsch et al. 2010].

5.2 Experiments

Our framework can generate high quality rigs with skin weights
and blend shapes on various characters with arbitrary connectivity.
Figure 6 shows some of our results. The test characters shown here
are from each of the three test data groups: the SMPL dataset, the
garment dataset, and the characters handcrafted by a 3D anima-
tor. None of these characters are used during training. In order to
visualize the skinning weights we associated each bone in the skele-
ton with a unique color, then the color of the vertex is calculated
as weighted average of the colors of the bones bound to it in the
skinning weights.

Figure 7 demonstrates the quality of the deformations generated
by our predicted skeleton rigs. The baseline deformations on the
left are generated using LBS weights and the ground-truth skinning
weights of each character, while the deformations generated by our
envelope deformation branch and residual deformation branch are
shown in the middle and on the right of the figure, respectively.

ACM Trans. Graph., Vol. 40, No. 4, Article 1. Publication date: August 2021.
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Notably, because our envelope branch is trained on high-quality
data, we can already generate mesh deformations that are better than
the baseline results using LBS and the skinning weights computed
by our envelope model. This improvement can be easily spotted
in Figure 7, where the volume loss around the buttocks area is
significantly mitigated in the results showing in the middle. The
quality of the deformation can be further improved using the blend
shapes computed by our residual deformation branch. As shown in
Figure 7, the volume of the meshes around the knee and the elbow
are preserved even when the corresponding joints are transformed
dramatically.

A challenging task for neural networks is the ability to generalize
and extrapolate beyond the training data, which will always contain
only a subset of the real world data we expect to encounter in test
time. We validate how robust our system is to characters found in
the wild, by animating characters from the Mixamo dataset [Adobe
Systems Inc. 2018] using our model which has not seen Mixamo
characters during training. Mixamo is a particularly challenging
set since the characters contain vastly different mesh connectiv-
ity, body proportions, and decorative geometries. While Mixamo
already contains rigging and skinning, it does not contain the re-
quired skeletal structure for animating with a given mocap data,
and there are no blend shapes or pose-dependent corrective defor-
mations. To this end, we use our system to predict a rig with a
desired skeletal-structure, enabling animating Mixamo characters
using mocap motions with neural blend shapes. This result is espe-
cially remarkable, since the mesh contains three times the amount
of vertices which we trained our network on. In Figure 8(a), we
see the result of our skinning and rigging on the Mixamo charac-
ter, where our predicted skeleton rig is ready to animate with the
given mocap data. Our neural blend shapes creates a corrective
deformation in the muscle area resulting in accurate preservation
of the muscle bulging, whereas as the original Mixamo dataset does
not incorporate high quality deformations as shown in Figure 8(c)
and the supplementary video. In addition, see Figure 8(b), where
the original Mixamo character rig is not compatible with mocap
skeleton structure, whereas our network predicts a mocap-ready
skeleton on the same character.

Connectivity robustness. In this experiment, we demonstrate that
training with mesh connectivity augmentations (edge flip, split, col-
lapse) results in a system that is robust to changes in the input mesh
connectivity. Given the same input character, we perform a signifi-
cant amount of connectivity augmentations to achieve variations of
the mesh input. We observe that the network estimated skinning
and rigging parameters remain stable, which can be seen in Figure 9.
We also show that the corresponding enveloping produces stable
deformations for such input connectivity variations, which can be
seen in the supplementary video.

Neural Blend Shapes. In this experiment we visualized the cor-
rective effect of the learned pose dependent blend shapes. For a
given character, we fed our network with 3 sets of joint rotations
(equivalent to 3 poses) and visualized the output in Figure 10. The
top row exhibits the deformed character for each of the poses, while
the bottom raw visualizes the magnitude of the resulting displace-
ments (via color map), on top of the same character in rest pose.
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Mixamo Ours

Fig. 8. Our system generalizes to characters from other datasets (Mixamo).
(a) Original Mixamo character and its skeleton (left) and our mocap-ready
output skeleton with the corresponding skinning weights (right). (b) Original
Mixamo skeleton posed (left) and our mocap-ready skeleton posed (right).
(c) Original Mixamo deformation (left) and our high quality deformation
which is achieved by the corrective blend shape that predicts muscle bulge
(right).

It can be seen that our neural blend shapes displace the vertices
in regions that correspond to the bent joint (elbow, knee, and hip
joints) resulting in a corrective deformation in these regions.

In addition to the corrective displacements, we also visualize the
learned blending coefficients on top of a particular motion in order
to examine the active joints which can be seen in Figure 11. For
each pose, each joint is colorized according to the average values of



Fig. 9. Robustness to variations in connectivity. Given the same input char-
acter, we perform connectivity augmentations and observe that the corre-
sponding skinning weights are stable.
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Fig. 10. Neural blend shape corrective displacement visualization. Top: the
same shape is shown in three different poses, bottom: corresponding blend
shape displacement (visualized with a heat map). Observe that a rotation
in the elbow, knee, and hip joints resulted in corrective deformations in the
corresponding regions.

j » High
A\g r i{‘\‘ | Activgtinn
|
) ! L Adli-:av:inn

Fig. 11. Neural blend shape coefficients visualization. In each pair the left
shape is our output deformed character, and on the right is the correspond-
ing posed rig. The joints are colored by the blend shape coefficient activation
corresponding to the joint.

the displacement that are associated with it based on the skinning
matrix. The results demonstrate that when the joint is active (bent)
the activation of the corresponding coefficients is higher. Please
refer to the supplementary video to see the full animation.

In addition, we ran an experiment to evaluate the number of
blend shapes needed to obtain high quality pose dependent defor-
mations. We trained the network with a varying number of blend
shapes N and found that 9 blend shapes was enough to obtain high
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quality deformations, both quantitatively and qualitatively. See the
quantitative results in Figure 12.
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Fig. 12. Number of blend shapes as a function of high quality deformation
error.

5.3 Evaluation

In this section we compare our method to state-of-the-art skinning
and rigging methods as well as off-the-shelf tools.

Rigging. We first compare to the recent work of Xu et al. [2020]
which proposed a deep neural network that learns to generate arbi-
trary skeletal rigs and the corresponding skinning weights using
supervised learning, and demonstrated impressive performance on
shapes with varying skeletal hierarchies. However, their system
does not enable the user to control the output skeletal hierarchy but
only allows to modify the density of the predicted joints through a
single scalar. Yet, animating an arbitrary skeleton rig using mocap
data is not directly possible due to incompatibility in the skele-
tal structure. The latter requires motion retargeting between two
skeletons with different, unseen, structures, which is still an open
problem [Gleicher 1998; Aberman et al. 2020]. Although the recent
work of Aberman et al. [2020] proposed a method to retarget mo-
tion of skeletons with different hierarchical structures, it requires
having datasets contain different characters with the exact same
hierarchical structures for both source and target skeletons, which
is incompatible with our setting. Figure 13 shows 3 different outputs
of RigNet for an input character that was designed by a 3D artist
and for different input scalar values (0.015, 0.028, 0.09). It can be
seen that every output rig contains different number of joints (12,
25, 50) and different skeletal hierarchies which can not be controlled
directly by the user. In practice, we tried to find the scalar value
that leads to 24 joints — the number of joints in our target skeleton,
and couldn’t (the closet we found is 25). In contrast, our network
predicts skeleton with a fixed hierarchy which is embedded in the
network, thus, can be animated with corresponding mocap data.

We next compare our results to the method of Baran and Popovi¢
[2007] (a.k.a Pinocchio) which fits a template skeleton for each input
character. The target template is selected from a set of predefined
skeletal hierarchies based on a cost function that evaluates its geo-
metric fitting to the input shape. Figure 14 shows the comparison
to the automatic rigging results of Pinocchio and RigNet for two
different humanoids. It can be seen that the selected output skeletal

ACM Trans. Graph., Vol. 40, No. 4, Article 1. Publication date: August 2021.



1:10 « Li,P.etal

oy My

RigNet 12 RigNet 25

8
S - vv{_————v
Target skeleton ) |
hierarchy N
i
I
AT !
SN
0
Ny i1 My
RigNet 50 Ours

Fig. 13. Predicted skeleton rig on a character designed by a 3D artist. RigNet [Xu et al. 2020] only provides scalar control over the granularity of the skeleton
(shown: predicted rig with 12, 25, or 50 bones corresponding to the scalar 0.015, 0.028, 0.09), but cannot control the skeleton hierarchy. We were not able to
obtain the desired number 24, which is achieved by the output of our method, complying with the target skeletal hierarchy (rightmost example). Note the
undesirable placement of the root node, and extraneous joints in the knee region.

Table 1. Quantitative comparison between our rigging results to the Pinoc-
chio [Baran and Popovi¢ 2007] and RigNet [Xu et al. 2020].

CD-J2J CD-J2B CD-B2B

Pinocchio [Baran and Popovi¢ 2007]  0.474 0.164 0.025
RigNet [Xu et al. 2020] 0.194  0.084 0.009
Ours 0.012 0.007  0.004

hierarchy of Pinocchio is sparse (18 joints), which limits the granu-
larity of deformation that can be achieved and requires a manual
specification of joint correspondence in order to animate the output
with motion from mocap data.

We employ the metrics CD-J2], CD-J2B, and CD-B2B proposed
by [Xu et al. 2020] to quantitatively evaluate the automatic rigging
results. Briefly speaking, these metrics evaluates the quality of a
rigging by measuring the spacial distances between the joints and
bones. Ideally, all CD-J2], CD-J2B, and CD-B2B measures should
be low for a high quality rig. We refer interested reader to the
original paper for detailed definitions of these metrics. The results
are reported in Table 1. It can be seen that our method outperforms
the other methods quantitatively. Note that the metrics enables to
calculate distances between skeleton with different hierarchies.

Skinning and Deformation. We compared our skinning and de-
formation results to the output of Blender software which uses an
updated version of the skinning algorithm from Pinocchio [Baran
and Popovi¢ 2007]. To measure the skinning error we use a simple
L1 metric between the estimated skinning matrix and the ground-
truth one. In order to perform this comparison we had to ensure
that the number of joints is similar in all of the outputs, thus, we
provided Blender with the ground-truth skeleton. In this way, we
received skinning matrix with similar dimensions to the ground
truth. For the deformation evaluation, we have chosen a fixed test
sequence for each comparison and calculated the average error of
vertex displacements and max error. The results are reported in
Table 2 and the output skinning matrix weights of each methods is
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Table 2. Quantitative comparison between our skinning results to Pinocchio
[Baran and Popovi¢ 2007].

Skinning Weight(L1) Avg Dist. Max Dist.

Pinocchio [2007] 23.1 0.27 20.3
Ours 2.56 0.011 1.68

Table 3. Ablation Study

Envelope No Mesh Aug No Garm Aug  All

0.024 0.66 0.23 0.011

visualized in Figure 15. It can be seen that our method out performs
the Blender software quantitatively and qualitative.

5.4 Ablation study

Residual Branch. In this section, we perform an ablation study to
evaluate the importance of each of the components in our system.
In particular, we retrain our framework (a) without neural blend
shapes (only envelope), (b) without connectivity augmentation, and
(c) without garment augmentation. We calculate the L2 distance be-
tween the ground-truth displaced vertices and the predicted vertex
displacements on the test dataset. The results are shown in Table 3.
We can see that each of these components is important to our sys-
tem, and removing any one of them will result in a drop in accuracy.
Moreover, the most critical component which has the most impact
on quantitative deformation accuracy is the mesh augmentation
component. Although only using envelope (without using neural
blend shapes) has the least numeric influence of the three, it is ex-
tremely important for a high visual quality deformation as we have
showed throughout the paper.

Connectivity Augmentation. The network trained without con-
nectivity augmentations produces undesirable deformation artifacts
in the joints, and struggles to generate meaningful corrective blend
shape displacements, which can be seen in the supplementary video
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Fig. 14. Automatic rigging results on two different humanoids. Left to right: Pinocchio [2007], RigNet [2020], ours and ground truth.

and in Figure 16. This shows that our connectivity augmentations
are key to the generalization capabilities of the neural blend shapes
on different mesh connectivity.

Garment Augmentation. The network trained without garment
augmentations struggles to generalize to unseen characters. This
operation augments the input characters with piecewise smooth
displacements extracted from the dataset of clothed characters and
enables the network to not only generalize to clothed characters
but also to achieve better results for naked, unseen characters. We
believe this is because the garment augmentation creates a variety
of geometric variability in the training data, especially with regard
to the location of the skin w.r.t. the character bone. In particular, we
observe that the garment augmentation is critical factor in enabling
our system to generalize the character created by a 3D artist, which
can be seen in Figure 17 and in the supplementary video.

Envelope. We trained our network only on the envelope deforma-
tion (i.e., without neural blend shapes). While our envelope obtains
better deformations than LBS, it cannot produce pose-dependent
corrective displacements in the joint regions. We can see that the
quality of the deformation is improved when using the blend shapes
residual corrective displacement. A result of this is shown in Fig-
ure 7, where the volume of the mesh around the elbow are perfectly
preserved even when the corresponding joints are transformed dra-
matically. Please refer to the supplementary video for more results.

Table 4. Indirect supervision - Ablation study

Indirect Sup. Direct Sup.

Ly converges to 0.14 0.10
L converges to 0.012 0.009
# of iters to reach £y = 0.024 80,000 45,000

Indirect Supervision. Our network is trained with indirect super-
vision, namely, ground-truth skinning and rigging samples are not
provided during training, and the network is supervised only by the
ground-truth deformation. This relaxes the assumption that the data
samples should have a specific underlying deformation model. How-
ever, our training framework can easily employ direct supervision
when ground-truth samples of skinning and rigging are available.
In such a case, we can apply #2-loss to the difference between the
generated skeleton and skinning weight to the ground-truth via

Lsupervised =Ls+ Ly = ||O—O||2+||W—W||2, (6)

where L and Ly, are the skeleton and skinning loss terms.

As demonstrated throughout the paper, indirect supervision ap-
proach is capable to learn high deformation quality. However, as
shown in Table 4, direct supervision configuration converges faster
comparing to the indirect supervision, although the deformation
quality of both training configurations is comparable.

ACM Trans. Graph., Vol. 40, No. 4, Article 1. Publication date: August 2021.
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Fig. 15. Comparison with the automatic skinning and deformation method in Blender (Based on Pinocchio [2007]).

6 DISCUSSION AND CONCLUSION

We presented an approach to train a neural network to rig and skin
an input character mesh with a specific, prescribed skeleton struc-
ture and automatically generate neural blend shapes to enhance the
articulated deformation quality in a pose-dependent manner. The
fact that our framework incorporates the desired skeleton structure
makes it practical for animation with existing motion data, such
as available mocap libraries or legacy animation data of previously
designed characters; the overall process is compatible with typical
workflows in animation software. At the same time, the learned
blend shapes ensure high quality of the output deformation, avoid-
ing the usual LBS pitfalls, and are in general a powerful means to
learn various deformation effects and apply them to unseen meshes
with arbitrary connectivity. Unlike many existing example-based
approaches, our system only requires a single mesh as input to
compute the skeleton rig and the neural blend shapes, which makes
it applicable to a large range of scenarios.

As is typical in the deep learning paradigm, the output of our
method is bounded by the quality of the deformations that exist
in the training dataset. Most of the results shown in this paper
are trained using examples generated by SMPL-like models [Loper
et al. 2015; Bhatnagar et al. 2019]. The resulting rigs give rise to
high quality mesh deformation in most of our experiments, but can
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generate artifacts in certain cases where the selected model was not
trained sufficiently. Fortunately, our indirectly supervised learning
does not assume that the training data has a specific underlying
model and can be easily extended to leverage other types of examples
to learn versatile deformations. A direct enhancement to the results
shown here is to train the system based on production rigs. We are
also interested in exploring the possibility of learning secondary
dynamics from simulation in the future.

Our system is trained to generate rigs with a prescribed skele-
ton structure. Changing this skeleton structure, e.g., adding extra
joints or altering the connectivity, requires retraining the entire
network. In future work, it would be interesting to explore skeleton-
aware models, such as those proposed in [Aberman et al. 2020],
to embed the skeleton structure in the rigging network to support
arbitrary rigs using the same model, as well as relaxing some of
the assumption we make on the input character (manifold mesh,
T-pose shape, etc.). Automatically adapting and combining multiple
template skeleton structures to multi-component characters [Miller
et al. 2010; Bharaj et al. 2012] would be another interesting problem
to explore.



Fig. 16. Connectivity augmentation ablation. Top: network trained without
connectivity augmentation, bottom: our network trained with connectivity
augmentations. On the left are the network predicted skinning weights and
on the right the deformed character. Observe that training with connectivity
augmentations are key to generalization of the neural blend shapes on
different mesh connectivity.
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Fig. 17. Garment augmentation ablation. Top: network trained without
garment augmentation, bottom: our network trained with garment augmen-
tations. On the left are the network predicted skinning weights and on the
right the deformed character. Training with garment augmentations are key
to our systems ability to generalize to the character created by a 3D artist.
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A  NETWORK ARCHITECTURES

In this section we describe the details for the network architectures.

Table 5 describes the architecture for our envelope deformation
branch and residual deformation branch, where MConv, SConv,
FC, LRelLU, Pool and Softmax denote mesh convolution [Hanocka
et al. 2019], skeleton-aware convolution [Aberman et al. 2020], fully
connected layer, leaky ReLU, max-pool 1/5 channels and softmax
activation.
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