
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

CVM PAPER ID: 91.

DeepPipes: Learning 3D PipeLines Reconstruction from Point Clouds

Lili Chenga Zhuo Weia Mingchao Suna Shiqing Xina Andrei Sharfb

Yangyan Lic Baoquan Chend Changhe Tua

aShandong University bBen-Gurion University cAlibaba Group dPeking University

Abstract

Pipes are the basic building block in many industrial
sites like electricity and chemical plants. Although pipes
are merely cylindrical primitives which can be defined
by axis and radius, they often consist of additional com-
ponents like flanges, valves, elbows, tees, etc. 3D pipes
are typically dense, consisting of a wide range of topolo-
gies and geometries, with large self-occlusions. Thus,
reconstruction of a coherent 3D pipe models from large-
scale point clouds is a challenging problem. In this work
we take a prior-based reconstruction approach which
reduces the complexity of the general pipe reconstruc-
tion problem into a combination of part detection and
model fitting problems. We utilize convolutional net-
work to learn point cloud features and classify points
into various classes, then apply robust clustering and
graph-based aggregation techniques to compute a co-
herent pipe model. Our method shows promising re-
sults on pipe models with varying complexity and den-
sity both in synthetic and real cases.

Keywords: Point cloud, Pipes reconstruction, Convo-
lution network, Skeleton extraction

1. Introduction

High quality 3D models of power-plants, petrochemical
plants and other industrial sites are crucial in many appli-
cations, including disaster simulations, monitoring and ex-
ecutive training. Industrial sites are built according to spe-
cific plans often accompanied by 3D CAD models of their
structures. Nevertheless, modeling a fully detailed and ac-
curate 3D replica model is a laborious task. Furthermore,
such models may not exist for older facilities or may not
reflect the current appearance of the site. Nowadays, mod-
ern laser scanners allow capturing 3D surfaces and geome-
tries with high accuracy, generating dense point cloud sam-
plings. Nevertheless, in the case of 3D pipes, capturing and
sampling the surface geometry is especially challenging.

Pipelines are dominant structures in many industrial sites
due to their functional importance and prevalence. They

Figure 1. DeepPipes enables 3D reconstruction of a full pipeline
with complex parts and relations.

consist of thin structures defined by long cylinders orga-
nized in dense and complex configurations. Although pipes
are merely cylindrical primitives which can be easily de-
fined by their axis and radius, they often consist of addi-
tional components such as flanges, valves, inlets, elbows,
tees, etc. Thus, 3D scanning and reconstruction of pipelines
is error-prone due to small pipe surfaces and their intricate
structure causing large self-occlusions, missing parts and
insufficient sampling.

A common approach in 3D reconstruction from scanned
data is fitting shape priors to the raw data in a bottom-
up manner [6, 32, 31]. Such strategies are well-suited to

1



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

CVM PAPER ID: 91.

Figure 2. Overview. Left-to-right, starting from a raw pipeline scan, we apply neural network to detect parts. We use graph processing to
compute valid relations leading to a coherent full pipeline reconstruction with multiple part types at varying scales and orientations.

industrial sites and mechanical designs since most mod-
els are composed of primitive shapes [12]. Nevertheless,
such bottom-up methods suffer from locality and can rarely
reconstruct models such as full powerplants with accurate
connectivity. Bottom-up primitive fitting techniques are
also sensitive to noise and outliers due to their lack of global
and content aware considerations.

We present an automatic and robust method to pipe re-
construction from noisy 3D scans. Previous techniques [22,
27] focus on recovering the cylindrical pipes and joints
structures in industrial plants. Although cylindrical shapes
are often the dominant geometry in such sites, real data con-
sists of a large variety of other structures such as flanges,
valves, inlets, elbows, tees, etc. (see Figure 1).

We take a prior-based learning approach where we train
a deep learning network to detect any part as candidate fea-
tures in a 3D point cloud. Since such prior detection is often
noisy, we incorporate robust clustering [5] with connectivity
pruning techniques to filter detection results and generate a
consistent graph-like global pipe model. Similar to [18],
we embed the initial unreliable local prior detection in a
processing framework which accounts for global properties
and semantic structures.

Thus, our technique reconstructs local structures that
adhere to connectivity rules and semantic relations in the
pipes. Our results demonstrate that our method robustly
reconstructs complete pipe networks from point clouds of
industrial structures.

2. Related Work

In the following we discuss previous works related to
reconstruction of 3D pipes, thin structure reconstruction and
primitive fitting.

2.1. 3D Pipes Reconstruction

A commonly used approach to 3D pipe reconstruction
from point clouds is based on geometry processing and fit-
ting.

Liu et al. [22] propose a method that reduces the problem
of 3D plant reconstruction into detection of projected pipes
as 2D circles in the plane. However, this method is limited
to tube-shaped pipes that are orthogonal or parallel to the
ground.

Researchers have also investigated fully automated tech-
niques for entire pipeline reconstruction [13]. They perform
skeleton extraction followed by segmentation into individ-
ual components, and a set of parameters for them are calcu-
lated. However, this method has high time complexity and
results are easily influenced by noise.

Qiu et al. [29] combine primitive similarity detection and
fitting to increase reconstruction robustness. They use dis-
tribution of points normal to detect similar cylindrical pipes
which are then fitted by cylinders. Joints are then heuris-
tically positioned to connect pipes into a fully connected
model. Our work bears similarity to Qiu et al. in enhancing
primitive fitting with detection. Nevertheless, their work
searches specifically for self-similarities in the cylinder set
while ours is generic and learns a variety of features, learn-
ing to detect pipes, joints, flanges and other relevant part
configurations in the scene.

Commercial software [8] is also available to interactively
reconstruct pipe-runs. However, these products usually re-
quire substantial manual work. Our method, on the other
hand, is fully automatic without any user intervention.

Hough transform [30] is modified for automatic detec-
tion of cylinder parameters in point clouds [27]. After de-
tection, the relationship between cylinders is reconstructed
to form a continuous network. Data is post-processed using
Smart Plant 3D (SP3D) to model the entire pipeline. How-
ever, the range of radius is small.

A technique using normal-based region growing and
RANSAC [32] for point cloud processing is proposed
for inspection of piping systems of industrial plants [26].
Specifically, the method compares between the CAD de-
sign and real scan of the plant models. The inspection re-
sult depends strongly on quality of the input point cloud.
Similarly, automatic extraction of pipe and flange pairs in

2



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

CVM PAPER ID: 91.

point clouds using geometric primitives was demonstrated
recently [24]. In their work, they superimpose a clean CAD
model with the scanned data to guide the 3D extraction of
noisy pipes and flanges. It focuses on extracting pipe and
flange pairs, not reconstructing the whole scene.

2.2. Thin Structures Reconstruction

In automated reverse engineering of industrial environ-
ment, many researchers have explored the problem of re-
constructing arbitrary thin structures such as fences, truss
bridges, steel frame buildings, etc. [35, 33]. Similar to
pipes reconstruction, they detect main structure, and joints
are added to create the connected graph to reconstruct the
whole frame.

Besides, many works discuss reconstructions of thin
tube, which focuses on the restoration of the skeleton topol-
ogy. A deformable curve model was introduced [14] that
simultaneously captures the topology and geometry of 1D
curve-like objects. Reconstruction of thin tubular struc-
tures, such as cables or ropes has been explored in [25].
The authors introduce physics simulation to faithfully re-
construct jumbled and tangled cables in 3D. Their method
estimates the topology of the tubular object in the form of a
single 1D path and also computes a topology-aware recon-
struction of its geometry. Similarly, a method that recon-
structs continuous 3D bending wires (common in furniture
design, metal sculpting, wire jewelry) was presented [20].
The method exploits both simplicity and smoothness priors
to overcome severe self-occlusions and missing data.

There is also work using RGBD camera to help rebuild
thin structures. Thin 1D curve structures were reconstructed
at interactive rates using a handheld RGBD camera [21].
The technique basically aligns and iteratively merges small
skeleton curve segments together to form the final complete
curve skeleton. Similarly, [16] utilize curves to leverage
thin structure reconstruction from sparse multi-view stereo
data. Their method integrates between 3D curves and points
to compute a 3D manifold reconstruction by considering
both.

In a different context, an automatic approach that ro-
bustly reconstructs skeletal structures of trees from scanned
points was introduced [23]. The method performs a series
of global optimizations that fit skeletal structures to the of-
ten sparse, incomplete, and noisy point data. Inspired by the
optimization of graph structure in this work, we use graph
to assist in obtaining skeleton of pipes.

Pipe reconstruction also needs to capture the skeleton
and topology. In contrast to other thin structures, pipelines
have a specific cylindrical nature while lacking regular pat-
terns such as fences. Furthermore, they are typically rigid
bodies in contrast to e.g., flexible wires and their industrial
significance demands for a highly accurate result.

2.3. Primitive Fitting

CAD and mechanical models are predominantly made
of repetitive basic structures to facilitate easy and economic
fabrication. Surface reconstruction involving local fitting of
primitive structures has long been the standard in reverse
engineering [32]. Starting from an input scan, Gal et al. [6]
use multi-scale partial matching to fit a small set of basic
shapes to local neighborhoods as local priors. Schnabel et
al. [2009] [31] present an interesting hole-filling algorithm
that is guided by primitive detection.

To account for both local fitting accuracy along with
global relations an algorithm was developed [18]. The local
fit of the primitive model is determined by how well the in-
ferred model agrees to the observed data, while the global
relations are iteratively learned and enforced through a con-
strained optimization.

Robust cylinder detection and extraction in raw point
clouds were introduced in [34]. They utilize point normal
and curvature for cylinder fitting followed by mean shift [4]
clustering. Due to the high noise levels in industrial plants
scans, hand-crafted features as the above may prove heuris-
tically. Instead we take a deep learning approach to pipe
features in scanned points.

A primitive-based segmentation method for mechanical
CAD models was introduced [12]. The method assumes
a limited number of dominant orientations that primitives
are either parallel or orthogonal to, narrowing down their
search space. Thus, they simply search for 2D primitives
such as circles and lines in dominant directions 2D projec-
tions. Finally, they generate an over-complete set of prim-
itives and formulate the segmentation as a set cover opti-
mization problem.

Recently, a new approach to robustly extract cylindrical
primitives from a 3D point cloud was introduced [28]. The
method computes an optimal subset of fitting cylinders from
multiple candidates through the optimization of a metric.
However, it is not aimed at reconstructing entire pipeline.

3. Overview

Our method takes as input a raw scan of a pipeline and
outputs its part-based reconstruction. Thus, our method as-
sumes that industrial plants are generally an assembly of
mechanical parts. Here we focus on parts such as pipes,
elbows, flanges, tees and crosses.

Besides parts types, their specific attributes govern their
appearance in the general pipe reconstruction. In our ex-
periments we consider parts length, radius and orientation.
Note that in real scenes, other parts may be present such
as rails, stairs, floors, etc. Our technique can incorporate
additional parts in the same manner.

Given a point cloud, semantic segmentation is usually
used to understand scene. Traditional methods [11, 36] use

3



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

CVM PAPER ID: 91.

Figure 3. Our DeepPipe neural network architecture. Points are
initially fed into a network which produces the part type of each
point. Points are then filtered and fed to a second network, com-
posed of two branches, that learns the radius and orientation of
part types per point.

patch feature, such as normal vector and flatness of point
neighborhood, to achieve segmentation. To couple seman-
tic category and instance label into a single task, [9] in-
troduced patch clusters as an intermediate representation
between patches and semantic labels. The semantic seg-
mentation is achieved along with labeling. [2] proposed a
novel convolutional neural network architecture to get se-
mantic label. It applies 2D convolutional neural network
(CNN) on the extracted patch feature and depth maps of
point cloud to get semantic label. In addition to the co-
ordinates of points, it also needs the color as input. Deep
neural network has achieved good results in signal recon-
struction and inversion problems [15, 19]. Recently, it has
also been designed to learn global and multi-scale point set
features [17]. To process the point cloud directly using con-
volution, PointCNN [17] extends convolution from 2D to
3D by solving the problem of irregular and disordered point
cloud and achieves better performance in classification. It
is a general convolutional framework for learning feature of
point clouds, which learns the order of convolution input
mainly by the proposed x-transform. We use it to extract
points feature.

Since our scanned scene is composed of specific parts,
our technique first converts reconstruction into a recogni-
tion problem using neural networks. We use deep learning
and design a CNN to learn a 3D point classification and
regression. Specifically, each scan point is classified by
part type and part radius label (our part radii are discrete
classes). The part orientation is regressed using a direction
3D vector per point.

Given a classification of our point set into primitive parts,
we compute point clusters by their labeling which define
candidate parts in the scene. We then use graphs to process
part relations in the scene. We first connect candidate parts
arbitrarily and use a minimum spanning tree (MST) algo-

rithm to obtain the correct primitive relations in the scene.
This yields a skeleton graph with no loops that spans the
scene.

We use the graph skeleton relations as well as part at-
tributes to compute the final 3D model which reconstructs a
subset of predefined parts in the scene. See Figure 2 for an
overview of our method.

4. Technical Details

4.1. Deep Learning Pipes

We initially train a convolution network to predict for
each point p in the scanned data S three labels: the part
type it belongs to, the part radius and orientation. We use
the per-point orientation vector to compute the part position
in 3D space. While part types and radius are discrete terms,
point orientation is continuous and thus is regressed using
our network (Figure 4).

In pipeline design, pipe scenes are composed of pipe
components and pipe support elements. In this work we
choose to focus on pipe components and ignore supports
such as floors, fences, etc. due to the problem magnitude.
Nevertheless, it is easy to use our framework to add and
remove components. To demonstrate our technique, we
choose five types of pipe components as our primitives:
pipe, flange, elbow, tee and cross. We also maintain a no-
part label for points in the 3D scene belonging to parts out-
side the above five types.

Figure 4. DeepPipes learn the ra-
dius R and the orientation vector
D per scan point. D is also or-
thogonal to the displacement of a
scanning point to the central axis
of a pipe part.

We also use a dis-
crete set of predefined
radii for each compo-
nent type as this is the
common case in the
industry. Thus, we
have 5 times the num-
ber of radii number
of classes. Utilization
of discrete classes in-
stead of continuous re-
gression has also bet-
ter accuracy and per-
formance. To compute
the part orientation we
regress a normalized
orientation vector per-
point. Thus, we can
compute the position,
size and orientation of
each part and fit it to
the points.

Our network is illustrated in figure 3. It obtains as input
a point cloud p ∈ S where a point is defined by its position
p(x, y, z). To classify per-point primitive type, the top-left

4



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

CVM PAPER ID: 91.

network branch uses PointCNN and learns a 6-channel fea-
ture map using multilayer perceptron (MLP) followed by a
soft-max activation. We then use this classifier to filter our
outliers, noise and points not belonging to our part labels
(dashed box).

Next, we predict the per-point part radius and orientation
in the top-right and bottom-right networks respectively. In
Multi-task network [3], multiple learning tasks are solved
at the same time, while exploiting commonalities and dif-
ferences across tasks. As claimed in [3], we can enable our
model to generalize better on original task by sharing rep-
resentations between related tasks. Both radius and orien-
tation are related to the displacement vector from the scan
points to the part axis. Thus, we define a multi-task net-
work that handles both classification and regression. Part
radii range from 0.2 to 4.6 meters, with 23 discrete val-
ues specified by the pipe design standard. The classification
branch outputs a 23-channel feature map followed by a soft-
max activation function (top-right). The regression branch
(bottom-right) outputs 3-channel feature maps correspond-
ing to the 3D orientation vector.

We perform multi-task training to train the full network
simultaneously. We use cross-entropy loss on the classifica-
tion outputs:

LCE(y, ŷ) = − 1
N

N∑
i=1

C∑
j=1

y
(i)
j ln ŷ

(i)
j ,

where y is ground truth, ŷ is predicted label, N is the num-
ber of samples and C is the number of categories, and L2

loss on the regression output. In Multi-task network, we
adopt a weight sharing framework between the two tasks,
where tasks share the first few CNN layers, leading to bet-
ter accuracy and convergence rates.

4.2. Relational Skeleton Graph

The network output is typically inconsistent in terms of
per-point part types, radii and also noisy regression output.
Specifically, adjacent points may be assigned different la-
bels, especially in noisy parts and at boundaries between
different part types. In this section we process our network
output to obtain a coherent part assignment and fitting.

Given per point type and radii labels as well as 3D orien-
tations, we compute primitive part candidates in the scene.
As one of the most common clustering algorithms, density-
based spatial clustering of applications with noise (DB-
SCAN) is a density-based clustering non-parametric algo-
rithm, which groups together points that are closely packed
together (points with many nearby neighbors). Using the
parts center and axis (i.e., position and orientation) we pro-
ceed by clustering together parts based on their type, posi-
tion and orientation attributes using DBSCAN. This yields
clusters of candidate parts, reducing the number of candi-
dates by the clusters. We then filter out points with no clus-
ters and too small clusters as outliers and noise.

𝑂1

𝑂1

𝑂2𝑂1

𝑂2𝑂2

𝑂3

𝑂2𝑂1

𝑂3

𝑂4

Figure 5. Illustration of our different part relations rules. Left-to-
right are pipes, elbows, tees and crosses.

Given the pipe parts candidates denoted P , we build a
corresponding graph G(P,E) where each node pi ∈ P cor-
responds to a pipe part in the scene. For each part pi ∈
P , we select its k-nearest neighbors {pi1, pi2, pij , ..., pik}
based on their centers Euclidean distance and define their
connecting edges in the graph. We filter out edges with Eu-
clidean distance higher than a threshold ε, as this defines
too far parts.

We define the edge weight between two nodes in the
graph as their Euclidean distance. We use edge weights to
compute a minimum spanning forest T = {t1, ..., ti, ...}
which yields the pipeline skeleton graph of the scene. Min-
imum spanning forest is a union of the MST for connected
components of a graph. Specifically, for each MST in the
forest ti, we compute its diameter (i.e., max distance path),
remove it from ti and add it to our skeleton graph. We then
update the minimum spanning forest by recomputing trees
after the diameter removal. This process repeats iteratively
and computes long pipe paths as trees diameters until all
parts are added to the skeleton graph. Our skeleton graph
computation algorithm is summarized in Algorithm 1.

Algorithm 1: Compute skeleton graph
input : candidate parts set P
output: pipe skeleton graph D

initialize G(P,E)
foreach part p ∈ P do

compute k-nearest neighbors to p with distance
≤ τ1

calculate minimum spanning forest T of G
while P 6= ∅ do

foreach t ∈ T do
calculate diameter path d of t
add d to D
remove all nodes p ∈ d from P
update T

Finally, we refine the pipeline graph to conform to the
following relations between parts (Figure 5):

• pipe and flange parts have two neighbors in the graph

5



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

CVM PAPER ID: 91.

Figure 6. 3D reconstruction of a complex pipeline. Left-to-right are the input point cloud, DeepPipes segmentation and labeling (colors
denote different part types), skeleton graph and 3D model reconstruction.

(at most);
neighbors endpoints form an angle close to straight
within a certain threshold;

• elbow parts have two neighbors in the graph (at most);
neighbors endpoints form a perpendicular angle;

• tee parts have three neighbors (exact);
neighbor endpoints form angles either perpendicular or
straight (forming a T-shape);

• cross parts have four neighbors (exact);
neighbor endpoints form angles either perpendicular or
straight (forming a cross shape);

In the last step, we replace graph nodes by the actual
3D part models and reconstruct the scene. For fine tun-
ing, we readjust the parts fitting using iterative closest point
(ICP) [1], which is an algorithm employed to minimize
the difference between two clouds of points, and transform
them to better fit the point data.

5. Results

To evaluate our method, we have used PointCNN neural
networks for classification and regression tasks. Our net-
works consist of four convolutional layers, four deconvo-
lutional layers and MLP. Each MLP has three layers. For
MLP in primitive type classifier, the width of the three lay-
ers is 128, 128, 6. Similarly, the width for radius and ori-
entation networks are 128, 128, 23 and 128, 128, 3, re-
spectively. The radius and orientation networks are trained
in parallel and consist of weight sharing connections since
they perform similar tasks.

We trained our model on synthetic pipeline models. For
this purpose, we implemented a 3D pipeline generator that
resemble real-world models. We initially generate random
skeleton graphs. Next, for each graph node, we randomly
assign part type and radius labels as well as orientation. We
generate the pipeline 3D model by fitting and assembling
the correct parts together following our random graph and
node labels.

We use a virtual scanner library to sample the 3D
pipeline surface with points, resembling scanned data. For

each scanned point, we acquire its part type, radius and
orientation from its projection on the surface, yielding our
ground truth scanned training data.

Our generator is implemented in Python, taking approx.
1 minute to generate an entire pipeline scene using a desk-
top PC with Intel(R) Core(TM) I7-7700K CPU, 4.20 GHz
with 16-GB RAM. By this way, we create our DeepPipes
training set consisting of 1750 different pipeline models
ranging from 70K to 200K of scanned points per model.

We have implemented our DeepPipes on a desktop PC
with Intel(R) Core(TM) I7-7700K CPU, 4.20 GHz with 16-
GB RAM. We train our part segmentation network sepa-
rately and then in parallel train the radius and orientation
networks. Each of the two training steps take approx. 60
hours to converge. During testing time, for 180K points, it
takes 8 seconds to run networks and get per-points labels,
10 seconds to compute MST paths and 25 seconds to fit
parts and obtain reconstructed model. Table 1 summarizes
our pipeline models in terms of number of scan points and
number of different pipe parts.

We evaluate our technique both qualitatively and quan-
titatively using synthetic and real pipeline raw scans. In
figure 1 we show the 3D reconstruction result of a scanned
mid-scale pipeline plant. It consists of besides pipes also
flanges, elbows and different connectors. Besides missing a
tee connector and a flange (top and bottom parts of the im-
age), our technique was able to accurately recover the entire
model and parts.

Figure 6 demonstrates the full 3D reconstruction process
of a complex pipeline scan with intermediate steps. Given a
raw scan, we predict its segmentation into parts using Deep-
Pipes. Colors represents different part types where gray-
pipe, green-elbow, blue-tee, yellow-cross and red flange.
Following is the relations graph and the final 3D recon-
structed model.

In Figure 7 we compare our technique with different
methods for processing 3D scanned pipelines. We evaluate
our method based on the relevant indicators of the radius
and the number of pipeline extractions. Considering the
limitation of the radius range and radius accuracy, Liu et
al. [22] method is the most suitable comparison method
compared to other methods. We compare our method with

6



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

CVM PAPER ID: 91.

Figure 7. Comparisons on four pipelines of different complexity ranging from low to high (top-to-bottom rows resp.). Left-to-right are the
scanned data, our skeleton, our reconstruction, Huang et al. [10] skeleton, Liu et al. [22] reconstruction, EdgeWise Plant [8] reconstruction
and ground truth.

the method of Liu et al. [22] which detects and reconstructs
pipes using their 2D projections on dominant planes. Simi-
larly, we compare our technique to Huang et al. [10] which
extracts skeletal structures from points using a robust L1

approach. Their method was especially designed to handle
points consisting of noise and large missing parts as is the
case with pipeline scans. Therefore, we compare our skele-
ton computation with theirs. Finally, we also compare our
results with a commercial software EdgeWise Plant [8].

Our comparison consists of four different scanned
pipelines of different scale and complexity, ranging from
simple small scale to complex large scale (top-to-bottom
rows respectively).

The methods of Liu et al. [22] and Huang et al. [10]
are both missing pipe parts when complexity and pipe den-
sity increases. EdgeWise Plant [8] involves manual interac-
tion and therefore can obtain more accurate reconstructions.
Note that both our skeleton extraction and reconstruction
outperforms other methods. This is mainly due to our uti-
lization of neural networks which yield accurate detection
and segmentation of primitive parts in noisy scans.

To evaluate the robustness of our algorithm we introduce
noise and sparsity in the scanned synthetic 3D pipelines
(Figure 8). This simulates problems encountered in real
world pipeline scanning such as occlusions, poor illumina-
tion and reflections resulting in high noise levels and miss-

ing parts.
Starting from a dense clean scan, we gradually increase

per-point noise and sparsity by controlling the virtual scan-
ner parameters. Specifically, sparsity level is controlled by
the number of virtual cameras and the number of views per
camera. We then add per-point Gaussian noise levels by
adjusting the Gaussian parameters. In Figure 8 rows show
increasing levels of scan sparsity and noise (top-to-bottom,
resp.). Density levels are 100%, 80%, 65%,50%.

Table 2 summarizes the quantitative evaluation of our
method compared to others on different noise levels. Re-
sults are showing that our method was able to generate good
results suffering from a moderate decrease in quality that
corresponds to the increase in noise and sparsity. In this
comparison, our method still outperforms other techniques.

We have also applied our synthetically trained technique
to real-world scanned pipelines. Figure 9 demonstrates re-
construction results on three real-world pipelines datasets.
Top row, we reconstruct a 3D pipeline model of 600K points
sampling a 150 × 100 × 150 meters scene. Since there are
many non-pipe points, our algorithm filters them out after
the per-point part labeling step using our first PointCNN
network. Middle row shows a pipeline plant of 190K points
sampling a 160 × 140 × 170 meters scene. And bottom
row shows a similar pipeline plant of 220K points sampling
a 160 × 110 × 110 meters scene. Here a significant num-

7



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

CVM PAPER ID: 91.

Figure 8. 3D pipeline reconstruction evaluation with different scan noise levels ranging from low to high (top-bottom rows resp.). Left-to-
right are the scanned data, our skeleton, our reconstruction, Huang et al. [10] skeleton, Liu et al. [22] reconstruction, EdgeWise Plant [8]
reconstruction and ground truth.

ber of points belong to floors and walls and stairs which are
extracted and manually fitted for visual purposes.

To provide a quantitative evaluation of our method, we
compare our reconstruction results with ground truth in the
synthetic cases. We define an error metric that takes in ac-
count the absolute error between radius and orientation pre-
diction and ground truth. Since absolute error is affected by
radius size, we also normalize radius distance defining a rel-

ative error. Given a point p with r and r
′

being ground truth
and predicted radii respectively, we define a relative dis-

tance, normalized by radius scale as: Erelative = ||r−r
′
||

r .

We also compute the recall ratio Rratio and precision
Pratio for each scene. Let NT be the number of total
parts instances in the scene. Nright the number of true
detected parts and Ndetect is the total number of detected

8



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

CVM PAPER ID: 91.

Figure 9. 3D reconstruction of two real-world pipelines (top-bottom rows). Left-to-right are the input scan, 3D reconstruction by our
method, Liu et al. [22] and rightmost col. EdgeWise Plant [8].

parts. Then,

Rratio =
Nright

NT

and
Pratio =

Nright

Ndetect

We summarize the quantitative evaluation of our method
in Table 3. Each row of the table provides precision and
recall values of our technique compared to other methods.
Note that Huang et al. method could not provide meaning-
ful parts and we compute the error among skeletons. Simi-
larly, since EdgeWise software does not provide parts with
meaningful radii, we could not compute a meaningful error
distance.

Similarly, we summarize our results on the real-world
data in Table 4. Note that for real-world pipelines, we ask
an expert to manually reconstruct the 3D pipeline from the
scan and provide a ground truth.

6. Conclusions

In this work we take a prior-based approach for recon-
struction of entire 3D pipelines from raw scans. In our

approach, we learn recognition of parts in the scene, thus
reducing the complexity of the general pipe reconstruction
problem into a combination of part detection and model fit-
ting problems. We utilize a convolutional network to learn
3D point cloud features and the classification into various
classes. The pipe classification is noisy and we apply robust
clustering and graph-based aggregation techniques to com-
pute a coherent pipe model. Our method shows promising
results on pipe models with varying complexity and density
both in synthetic and real cases.

In terms of limitations, while our neural networks yield
good classification and segmentation results, they do not
consider part relations, connectivity and pipeline topology.
Therefore, results are still incoherent and require further
processing using clustering, graphs and MST computation.

Our method can be extended to some scenes assembled
by basic components. There are many scenarios similar to
the pipeline organization structure, such as the steel bars in
the reinforced concrete at construction sites and the steel
frame buildings mentioned in [33]. These structures are ba-
sically constructed according to fixed rules and consist of
repeating parts. The proposed method can be extended to

9



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

CVM PAPER ID: 91.

Table 1. Data summary
model #point Pipe Flang. Elbow Tee Cross
Fig 7 Row1 47K 24 31 7 5 14
Fig 7 Row2 114K 93 23 22 23 0
Fig 7 Row3 331K 366 23 120 30 43
Fig 7 Row4 523K 619 78 189 68 61
Fig 8 Row1 231K 232 26 66 31 21
Fig 8 Row2 187K 232 26 66 31 21
Fig 8 Row3 150K 232 26 66 31 21
Fig 8 Row4 115K 232 26 66 31 21
Fig 9 Row1 599K 198 0 84 29 2
Fig 9 Row2 187K 33 0 16 0 0
Fig 9 Row3 213K 76 0 32 7 1

Table 2. Quantitative evaluation of synthetic pipelines under various noise levels. (Figure 8)

Models Row1 Row2 Row3 Row4
Error Precision Recall Error Precision Recall Error Precision Recall Error Precision Recall

Liu 0.0400 0.7958 0.5889 0.0581 0.6982 0.5089 0.0689 0.6064 0.3800 0.0815 0.5185 0.2489
Huang 0.6087 nan nan 0.7361 nan nan 0.8015 nan nan 0.9169 nan nan

EdgeWise nan 0.8966 0.5778 nan 0.7147 0.4956 nan 0.6266 0.3356 nan 0.6698 0.3200
Ours 0.0098 0.8981 0.7244 0.0168 0.8833 0.6733 0.0281 0.7273 0.5333 0.0302 0.6759 0.4355

reconstruct these scenes by detecting the types of basic parts
and obtaining the relationships between them.

In future work, we plan to investigate a full neural net-
work for 3D pipeline reconstruction. Using recurrent neural
network (RNN) and Long short-term memory (LSTM) [7]
architectures, we may incorporate neighborhood relations
and topology in the scanned pipeline processing framework.

Acknowledgments

This work was supported by National Key Research and
Development Project (2017YFB1002603) end the NSFC
Project (61772318, 61772016).

References

[1] P. J. Besl and N. D. McKay. Method for registration of 3-
d shapes. In Sensor fusion IV: control paradigms and data
structures, volume 1611, pages 586–606. International Soci-
ety for Optics and Photonics, 1992. 6

[2] J.-X. Cai, T.-J. Mu, Y.-K. Lai, and S.-M. Hu. Deep point-
based scene labeling with depth mapping and geometric
patch feature encoding. Graphical Models, 104:101033,
2019. 4

[3] R. Caruana. Multitask learning. Machine learning,
28(1):41–75, 1997. 5

[4] D. Comaniciu and P. Meer. Mean shift: A robust approach
toward feature space analysis. IEEE Transactions on pattern
analysis and machine intelligence, 24(5):603–619, 2002. 3

[5] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-
based algorithm for discovering clusters a density-based al-
gorithm for discovering clusters in large spatial databases
with noise. In Proceedings of the Second International

Conference on Knowledge Discovery and Data Mining,
KDD’96, pages 226–231, 1996. 2

[6] R. Gal, A. Shamir, T. Hassner, M. Pauly, and D. Cohen-
Or. Surface reconstruction using local shape priors. In Pro-
ceedings of the Fifth Eurographics Symposium on Geometry
Processing, SGP ’07, pages 253–262, Aire-la-Ville, Switzer-
land, Switzerland, 2007. Eurographics Association. 1, 3

[7] S. Hochreiter and J. Schmidhuber. Long short-term memory.
Neural computation, 9(8):1735–1780, 1997. 10

[8] http://www.clearedge3d.com/. Clearedge3d: Edgewise
plant, 2012. 2, 7, 8, 9

[9] S.-M. Hu, J.-X. Cai, and Y.-K. Lai. Semantic labeling and
instance segmentation of 3d point clouds using patch context
analysis and multiscale processing. IEEE transactions on
visualization and computer graphics, 2018. 4

[10] H. Huang, S. Wu, D. Cohen-Or, M. Gong, H. Zhang, G. Li,
and B. Chen. L1-medial skeleton of point cloud. ACM Trans.
Graph., 32(4):65–1, 2013. 7, 8

[11] H. S. Koppula, A. Anand, T. Joachims, and A. Saxena. Se-
mantic labeling of 3d point clouds for indoor scenes. In Ad-
vances in neural information processing systems, pages 244–
252, 2011. 3

[12] T. Le and Y. Duan. A primitive-based 3d segmentation algo-
rithm for mechanical cad models. Computer Aided Geomet-
ric Design, 52:231–246, 2017. 2, 3

[13] J. Lee, H. Son, C. Kim, and C. Kim. Skeleton-based 3d
reconstruction of as-built pipelines from laser-scan data. Au-
tomation in Construction, 35:199 – 207, 2013. 2

[14] G. Li, L. Liu, H. Zheng, and N. J. Mitra. Analysis, recon-
struction and manipulation using arterial snakes. ACM Trans.
Graph., 29(6):152, 2010. 3

10



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

CVM PAPER ID: 91.

Table 3. Quantitative evaluation of synthetic pipelines (Figure 7)

Models Row1 Row2 Row3 Row4
Error Precision Recall Error Precision Recall Error Precision Recall Error Precision Recall

Liu 0.0508 0.6429 0.5556 0.0401 0.6273 0.4286 0.0426 0.7429 0.5342 0.0630 0.5938 0.5054
Huang 0.6261 nan nan 0.7812 nan nan 0.6857 nan nan 0.7991 nan nan

EdgeWise nan 0.6711 0.6296 nan 0.6720 0.5217 nan 0.8635 0.5308 nan 0.6167 0.3734
Ours 0.0081 0.8169 0.7160 0.0231 0.9177 0.9006 0.0177 0.8565 0.7106 0.0277 0.7616 0.8276

Table 4. Quantitative evaluation of real pipelines(Figure 9)

Models Row1 Row2 Row3
Precision Recall Precision Recall Precision Recall

Liu 0.5618 0.5402 0.7500 0.3061 0.6779 0.4090
EdgeWise 0.7500 0.2797 0.7692 0.6122 0.7936 0.4545

Ours 0.7290 0.7009 0.7750 0.6327 0.6938 0.6181

[15] S. Li, B. Liu, Y. Ren, Y. Chen, S. Yang, Y. Wang, and
P. Jiang. Deep learning inversion of seismic data. arXiv
preprint arXiv:1901.07733, 2019. 4

[16] S. Li, Y. Yao, T. Fang, and L. Quan. Reconstructing thin
structures of manifold surfaces by integrating spatial curves.
In 2018 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 2887–2896, 2018. 3

[17] Y. Li, R. Bu, M. Sun, W. Wu, X. Di, and B. Chen. Pointcnn:
Convolution on x-transformed points. In Advances in Neural
Information Processing Systems, pages 820–830, 2018. 4

[18] Y. Li, X. Wu, Y. Chrysathou, A. Sharf, D. Cohen-Or, and
N. J. Mitra. Globfit: Consistently fitting primitives by dis-
covering global relations. ACM Trans. Graph., 30(4):52:1–
52:12, July 2011. 2, 3

[19] B. Liu, Q. Guo, S. Li, B. Liu, Y. Ren, Y. Pang, X. Guo,
L. Liu, and P. Jiang. Deep learning inversion of electrical re-
sistivity data. IEEE Transactions on Geoscience and Remote
Sensing, 2020. 4

[20] L. Liu, D. Ceylan, C. Lin, W. Wang, and N. J. Mitra.
Image-based reconstruction of wire art. ACM Trans. Graph.,
36(4):63:1–63:11, July 2017. 3

[21] L. Liu, N. Chen, D. Ceylan, C. Theobalt, W. Wang, and N. J.
Mitra. Curvefusion: Reconstructing thin structures from
rgbd sequences. ACM Trans. Graph., 37(6):218:1–218:12,
Dec. 2018. 3

[22] Y.-J. Liu, J.-B. Zhang, J.-C. Hou, J.-C. Ren, and W.-Q. Tang.
Cylinder detection in large-scale point cloud of pipeline
plant. IEEE transactions on visualization and computer
graphics, 19(10):1700–1707, 2013. 2, 6, 7, 8, 9

[23] Y. Livny, F. Yan, M. Olson, B. Chen, H. Zhang, and J. El-
Sana. Automatic reconstruction of tree skeletal structures
from point clouds. ACM Transactions on Graphics (TOG),
29(6):151, 2010. 3

[24] R. Maalek, D. D. Lichti, R. Walker, A. Bhavnani, and J. Y.
Ruwanpura. Extraction of pipes and flanges from point
clouds for automated verification of pre-fabricated modules
in oil and gas refinery projects. Automation in Construction,
103:150–167, 2019. 3

[25] T. Martin, J. Montes, J.-C. Bazin, and T. Popa. Topology-
aware reconstruction of thin tubular structures. In SIG-

GRAPH Asia 2014 Technical Briefs, SA ’14, pages 12:1–
12:4, 2014. 3

[26] C. H. P. Nguyen and Y. Choi. Comparison of point cloud
data and 3d cad data for on-site dimensional inspection of
industrial plant piping systems. Automation in Construction,
91:44 – 52, 2018. 2

[27] A. K. Patil, P. Holi, S. K. Lee, and Y. H. Chai. An adap-
tive approach for the reconstruction and modeling of as-built
3d pipelines from point clouds. Automation in construction,
75:65–78, 2017. 2

[28] M. Pistellato, F. Bergamasco, A. Albarelli, and A. Torsello.
Robust cylinder estimation in point clouds from pairwise
axes similarities. In 8th International Conference on Pat-
tern Recognition Applications and Methods, pages 640–647,
01 2019. 3

[29] R. Qiu, Q.-Y. Zhou, and U. Neumann. Pipe-run extraction
and reconstruction from point clouds. In European Confer-
ence on Computer Vision, pages 17–30. Springer, 2014. 2

[30] T. Rabbani and F. Van Den Heuvel. Efficient hough trans-
form for automatic detection of cylinders in point clouds. Is-
prs Wg Iii/3, Iii/4, 3:60–65, 2005. 2

[31] R. Schnabel, P. Degener, and R. Klein. Completion and re-
construction with primitive shapes. Computer Graphics Fo-
rum (Proc. of Eurographics), 28(2):503–512, 2009. 1, 3

[32] R. Schnabel, R. Wahl, and R. Klein. Efficient ransac for
point-cloud shape detection. In Computer graphics forum,
volume 26, pages 214–226. Wiley Online Library, 2007. 1,
2, 3

[33] M. Song and D. Huber. Automatic recovery of networks of
thin structures. 2015 International Conference on 3D Vision,
pages 37–45, 2015. 3, 9

[34] T.-T. Tran, V.-T. Cao, and D. Laurendeau. Extraction of
cylinders and estimation of their parameters from point
clouds. Computers & Graphics, 46:345–357, 2015. 3

[35] B. Ummenhofer and T. Brox. Point-based 3d reconstruction
of thin objects. In 2013 IEEE International Conference on
Computer Vision, pages 969–976, 2013. 3

[36] G. Vosselman. Point cloud segmentation for urban scene
classification. Int. Arch. Photogramm. Remote Sens. Spat.
Inf. Sci, 1:257–262, 2013. 3

11


