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Abstract

Pipes are the basic building block in many industrial
sites like electricity and chemical plants. Although pipes
are merely cylindrical primitives which can be defined
by axis and radius, they often consist of additional com-
ponents like flanges, valves, elbows, tees, etc. 3D pipes
are typically dense, consisting of a wide range of topolo-
gies and geometries, with large self-occlusions. Thus,
reconstruction of a coherent 3D pipe models from large-
scale point clouds is a challenging problem. In this work
we take a prior-based reconstruction approach which
reduces the complexity of the general pipe reconstruc-
tion problem into a combination of part detection and
model fitting problems. We utilize convolutional net-
work to learn point cloud features and classify points
into various classes, then apply robust clustering and
graph-based aggregation techniques to compute a co-
herent pipe model. Our method shows promising re-
sults on pipe models with varying complexity and den-
sity both in synthetic and real cases.

Keywords: Point cloud, Pipes reconstruction, Convo-
lution network, Skeleton extraction

1. Introduction

High quality 3D models of power-plants, petrochemical
plants and other industrial sites are crucial in many appli-
cations, including disaster simulations, monitoring and ex-
ecutive training. Industrial sites are built according to spe-
cific plans often accompanied by 3D CAD models of their
structures. Nevertheless, modeling a fully detailed and ac-
curate 3D replica model is a laborious task. Furthermore,
such models may not exist for older facilities or may not
reflect the current appearance of the site. Nowadays, mod-
ern laser scanners allow capturing 3D surfaces and geome-
tries with high accuracy, generating dense point cloud sam-
plings. Nevertheless, in the case of 3D pipes, capturing and
sampling the surface geometry is especially challenging.

Pipelines are dominant structures in many industrial sites
due to their functional importance and prevalence. They

Figure 1. DeepPipes enables 3D reconstruction of a full pipeline
with complex parts and relations.

consist of thin structures defined by long cylinders orga-
nized in dense and complex configurations. Although pipes
are merely cylindrical primitives which can be easily de-
fined by their axis and radius, they often consist of addi-
tional components such as flanges, valves, inlets, elbows,
tees, etc. Thus, 3D scanning and reconstruction of pipelines
is error-prone due to small pipe surfaces and their intricate
structure causing large self-occlusions, missing parts and
insufficient sampling.

A common approach in 3D reconstruction from scanned
data is fitting shape priors to the raw data in a bottom-
up manner [6, 32, 31]. Such strategies are well-suited to
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Figure 2. Overview. Left-to-right, starting from a raw pipeline scan, we apply neural network to detect parts. We use graph processing to
compute valid relations leading to a coherent full pipeline reconstruction with multiple part types at varying scales and orientations.

industrial sites and mechanical designs since most mod-
els are composed of primitive shapes [12]. Nevertheless,
such bottom-up methods suffer from locality and can rarely
reconstruct models such as full powerplants with accurate
connectivity. Bottom-up primitive fitting techniques are
also sensitive to noise and outliers due to their lack of global
and content aware considerations.

We present an automatic and robust method to pipe re-
construction from noisy 3D scans. Previous techniques [22,
27] focus on recovering the cylindrical pipes and joints
structures in industrial plants. Although cylindrical shapes
are often the dominant geometry in such sites, real data con-
sists of a large variety of other structures such as flanges,
valves, inlets, elbows, tees, etc. (see Figure 1).

We take a prior-based learning approach where we train
a deep learning network to detect any part as candidate fea-
tures in a 3D point cloud. Since such prior detection is often
noisy, we incorporate robust clustering [5] with connectivity
pruning techniques to filter detection results and generate a
consistent graph-like global pipe model. Similar to [18],
we embed the initial unreliable local prior detection in a
processing framework which accounts for global properties
and semantic structures.

Thus, our technique reconstructs local structures that
adhere to connectivity rules and semantic relations in the
pipes. Our results demonstrate that our method robustly
reconstructs complete pipe networks from point clouds of
industrial structures.

2. Related Work

In the following we discuss previous works related to
reconstruction of 3D pipes, thin structure reconstruction and
primitive fitting.

2.1. 3D Pipes Reconstruction

A commonly used approach to 3D pipe reconstruction
from point clouds is based on geometry processing and fit-
ting.

Liu et al. [22] propose a method that reduces the problem
of 3D plant reconstruction into detection of projected pipes
as 2D circles in the plane. However, this method is limited
to tube-shaped pipes that are orthogonal or parallel to the
ground.

Researchers have also investigated fully automated tech-
niques for entire pipeline reconstruction [13]. They perform
skeleton extraction followed by segmentation into individ-
ual components, and a set of parameters for them are calcu-
lated. However, this method has high time complexity and
results are easily influenced by noise.

Qiu et al. [29] combine primitive similarity detection and
fitting to increase reconstruction robustness. They use dis-
tribution of points normal to detect similar cylindrical pipes
which are then fitted by cylinders. Joints are then heuris-
tically positioned to connect pipes into a fully connected
model. Our work bears similarity to Qiu et al. in enhancing
primitive fitting with detection. Nevertheless, their work
searches specifically for self-similarities in the cylinder set
while ours is generic and learns a variety of features, learn-
ing to detect pipes, joints, flanges and other relevant part
configurations in the scene.

Commercial software [8] is also available to interactively
reconstruct pipe-runs. However, these products usually re-
quire substantial manual work. Our method, on the other
hand, is fully automatic without any user intervention.

Hough transform [30] is modified for automatic detec-
tion of cylinder parameters in point clouds [27]. After de-
tection, the relationship between cylinders is reconstructed
to form a continuous network. Data is post-processed using
Smart Plant 3D (SP3D) to model the entire pipeline. How-
ever, the range of radius is small.

A technique using normal-based region growing and
RANSAC [32] for point cloud processing is proposed
for inspection of piping systems of industrial plants [26].
Specifically, the method compares between the CAD de-
sign and real scan of the plant models. The inspection re-
sult depends strongly on quality of the input point cloud.
Similarly, automatic extraction of pipe and flange pairs in
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point clouds using geometric primitives was demonstrated
recently [24]. In their work, they superimpose a clean CAD
model with the scanned data to guide the 3D extraction of
noisy pipes and flanges. It focuses on extracting pipe and
flange pairs, not reconstructing the whole scene.

2.2. Thin Structures Reconstruction

In automated reverse engineering of industrial environ-
ment, many researchers have explored the problem of re-
constructing arbitrary thin structures such as fences, truss
bridges, steel frame buildings, etc. [35, 33]. Similar to
pipes reconstruction, they detect main structure, and joints
are added to create the connected graph to reconstruct the
whole frame.

Besides, many works discuss reconstructions of thin
tube, which focuses on the restoration of the skeleton topol-
ogy. A deformable curve model was introduced [14] that
simultaneously captures the topology and geometry of 1D
curve-like objects. Reconstruction of thin tubular struc-
tures, such as cables or ropes has been explored in [25].
The authors introduce physics simulation to faithfully re-
construct jumbled and tangled cables in 3D. Their method
estimates the topology of the tubular object in the form of a
single 1D path and also computes a topology-aware recon-
struction of its geometry. Similarly, a method that recon-
structs continuous 3D bending wires (common in furniture
design, metal sculpting, wire jewelry) was presented [20].
The method exploits both simplicity and smoothness priors
to overcome severe self-occlusions and missing data.

There is also work using RGBD camera to help rebuild
thin structures. Thin 1D curve structures were reconstructed
at interactive rates using a handheld RGBD camera [21].
The technique basically aligns and iteratively merges small
skeleton curve segments together to form the final complete
curve skeleton. Similarly, [16] utilize curves to leverage
thin structure reconstruction from sparse multi-view stereo
data. Their method integrates between 3D curves and points
to compute a 3D manifold reconstruction by considering
both.

In a different context, an automatic approach that ro-
bustly reconstructs skeletal structures of trees from scanned
points was introduced [23]. The method performs a series
of global optimizations that fit skeletal structures to the of-
ten sparse, incomplete, and noisy point data. Inspired by the
optimization of graph structure in this work, we use graph
to assist in obtaining skeleton of pipes.

Pipe reconstruction also needs to capture the skeleton
and topology. In contrast to other thin structures, pipelines
have a specific cylindrical nature while lacking regular pat-
terns such as fences. Furthermore, they are typically rigid
bodies in contrast to e.g., flexible wires and their industrial
significance demands for a highly accurate result.

2.3. Primitive Fitting

CAD and mechanical models are predominantly made
of repetitive basic structures to facilitate easy and economic
fabrication. Surface reconstruction involving local fitting of
primitive structures has long been the standard in reverse
engineering [32]. Starting from an input scan, Gal et al. [6]
use multi-scale partial matching to fit a small set of basic
shapes to local neighborhoods as local priors. Schnabel et
al. [2009] [31] present an interesting hole-filling algorithm
that is guided by primitive detection.

To account for both local fitting accuracy along with
global relations an algorithm was developed [18]. The local
fit of the primitive model is determined by how well the in-
ferred model agrees to the observed data, while the global
relations are iteratively learned and enforced through a con-
strained optimization.

Robust cylinder detection and extraction in raw point
clouds were introduced in [34]. They utilize point normal
and curvature for cylinder fitting followed by mean shift [4]
clustering. Due to the high noise levels in industrial plants
scans, hand-crafted features as the above may prove heuris-
tically. Instead we take a deep learning approach to pipe
features in scanned points.

A primitive-based segmentation method for mechanical
CAD models was introduced [12]. The method assumes
a limited number of dominant orientations that primitives
are either parallel or orthogonal to, narrowing down their
search space. Thus, they simply search for 2D primitives
such as circles and lines in dominant directions 2D projec-
tions. Finally, they generate an over-complete set of prim-
itives and formulate the segmentation as a set cover opti-
mization problem.

Recently, a new approach to robustly extract cylindrical
primitives from a 3D point cloud was introduced [28]. The
method computes an optimal subset of fitting cylinders from
multiple candidates through the optimization of a metric.
However, it is not aimed at reconstructing entire pipeline.

3. Overview

Our method takes as input a raw scan of a pipeline and
outputs its part-based reconstruction. Thus, our method as-
sumes that industrial plants are generally an assembly of
mechanical parts. Here we focus on parts such as pipes,
elbows, flanges, tees and crosses.

Besides parts types, their specific attributes govern their
appearance in the general pipe reconstruction. In our ex-
periments we consider parts length, radius and orientation.
Note that in real scenes, other parts may be present such
as rails, stairs, floors, etc. Our technique can incorporate
additional parts in the same manner.

Given a point cloud, semantic segmentation is usually
used to understand scene. Traditional methods [11, 36] use
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Figure 3. Our DeepPipe neural network architecture. Points are
initially fed into a network which produces the part type of each
point. Points are then filtered and fed to a second network, com-
posed of two branches, that learns the radius and orientation of
part types per point.

patch feature, such as normal vector and flatness of point
neighborhood, to achieve segmentation. To couple seman-
tic category and instance label into a single task, [9] in-
troduced patch clusters as an intermediate representation
between patches and semantic labels. The semantic seg-
mentation is achieved along with labeling. [2] proposed a
novel convolutional neural network architecture to get se-
mantic label. It applies 2D convolutional neural network
(CNN) on the extracted patch feature and depth maps of
point cloud to get semantic label. In addition to the co-
ordinates of points, it also needs the color as input. Deep
neural network has achieved good results in signal recon-
struction and inversion problems [15, 19]. Recently, it has
also been designed to learn global and multi-scale point set
features [17]. To process the point cloud directly using con-
volution, PointCNN [17] extends convolution from 2D to
3D by solving the problem of irregular and disordered point
cloud and achieves better performance in classification. It
is a general convolutional framework for learning feature of
point clouds, which learns the order of convolution input
mainly by the proposed x-transform. We use it to extract
points feature.

Since our scanned scene is composed of specific parts,
our technique first converts reconstruction into a recogni-
tion problem using neural networks. We use deep learning
and design a CNN to learn a 3D point classification and
regression. Specifically, each scan point is classified by
part type and part radius label (our part radii are discrete
classes). The part orientation is regressed using a direction
3D vector per point.

Given a classification of our point set into primitive parts,
we compute point clusters by their labeling which define
candidate parts in the scene. We then use graphs to process
part relations in the scene. We first connect candidate parts
arbitrarily and use a minimum spanning tree (MST) algo-

rithm to obtain the correct primitive relations in the scene.
This yields a skeleton graph with no loops that spans the
scene.

We use the graph skeleton relations as well as part at-
tributes to compute the final 3D model which reconstructs a
subset of predefined parts in the scene. See Figure 2 for an
overview of our method.

4. Technical Details

4.1. Deep Learning Pipes

We initially train a convolution network to predict for
each point p in the scanned data S three labels: the part
type it belongs to, the part radius and orientation. We use
the per-point orientation vector to compute the part position
in 3D space. While part types and radius are discrete terms,
point orientation is continuous and thus is regressed using
our network (Figure 4).

In pipeline design, pipe scenes are composed of pipe
components and pipe support elements. In this work we
choose to focus on pipe components and ignore supports
such as floors, fences, etc. due to the problem magnitude.
Nevertheless, it is easy to use our framework to add and
remove components. To demonstrate our technique, we
choose five types of pipe components as our primitives:
pipe, flange, elbow, tee and cross. We also maintain a no-
part label for points in the 3D scene belonging to parts out-
side the above five types.

Figure 4. DeepPipes learn the ra-
dius R and the orientation vector
D per scan point. D is also or-
thogonal to the displacement of a
scanning point to the central axis
of a pipe part.

We also use a dis-
crete set of predefined
radii for each compo-
nent type as this is the
common case in the
industry. Thus, we
have 5 times the num-
ber of radii number
of classes. Utilization
of discrete classes in-
stead of continuous re-
gression has also bet-
ter accuracy and per-
formance. To compute
the part orientation we
regress a normalized
orientation vector per-
point. Thus, we can
compute the position,
size and orientation of
each part and fit it to
the points.

Our network is illustrated in figure 3. It obtains as input
a point cloud p ∈ S where a point is defined by its position
p(x, y, z). To classify per-point primitive type, the top-left
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network branch uses PointCNN and learns a 6-channel fea-
ture map using multilayer perceptron (MLP) followed by a
soft-max activation. We then use this classifier to filter our
outliers, noise and points not belonging to our part labels
(dashed box).

Next, we predict the per-point part radius and orientation
in the top-right and bottom-right networks respectively. In
Multi-task network [3], multiple learning tasks are solved
at the same time, while exploiting commonalities and dif-
ferences across tasks. As claimed in [3], we can enable our
model to generalize better on original task by sharing rep-
resentations between related tasks. Both radius and orien-
tation are related to the displacement vector from the scan
points to the part axis. Thus, we define a multi-task net-
work that handles both classification and regression. Part
radii range from 0.2 to 4.6 meters, with 23 discrete val-
ues specified by the pipe design standard. The classification
branch outputs a 23-channel feature map followed by a soft-
max activation function (top-right). The regression branch
(bottom-right) outputs 3-channel feature maps correspond-
ing to the 3D orientation vector.

We perform multi-task training to train the full network
simultaneously. We use cross-entropy loss on the classifica-
tion outputs:

LCE(y, ŷ) = − 1
N

N∑
i=1

C∑
j=1

y
(i)
j ln ŷ

(i)
j ,

where y is ground truth, ŷ is predicted label, N is the num-
ber of samples and C is the number of categories, and L2

loss on the regression output. In Multi-task network, we
adopt a weight sharing framework between the two tasks,
where tasks share the first few CNN layers, leading to bet-
ter accuracy and convergence rates.

4.2. Relational Skeleton Graph

The network output is typically inconsistent in terms of
per-point part types, radii and also noisy regression output.
Specifically, adjacent points may be assigned different la-
bels, especially in noisy parts and at boundaries between
different part types. In this section we process our network
output to obtain a coherent part assignment and fitting.

Given per point type and radii labels as well as 3D orien-
tations, we compute primitive part candidates in the scene.
As one of the most common clustering algorithms, density-
based spatial clustering of applications with noise (DB-
SCAN) is a density-based clustering non-parametric algo-
rithm, which groups together points that are closely packed
together (points with many nearby neighbors). Using the
parts center and axis (i.e., position and orientation) we pro-
ceed by clustering together parts based on their type, posi-
tion and orientation attributes using DBSCAN. This yields
clusters of candidate parts, reducing the number of candi-
dates by the clusters. We then filter out points with no clus-
ters and too small clusters as outliers and noise.

𝑂1

𝑂1

𝑂2𝑂1

𝑂2𝑂2

𝑂3

𝑂2𝑂1

𝑂3

𝑂4

Figure 5. Illustration of our different part relations rules. Left-to-
right are pipes, elbows, tees and crosses.

Given the pipe parts candidates denoted P , we build a
corresponding graph G(P,E) where each node pi ∈ P cor-
responds to a pipe part in the scene. For each part pi ∈
P , we select its k-nearest neighbors {pi1, pi2, pij , ..., pik}
based on their centers Euclidean distance and define their
connecting edges in the graph. We filter out edges with Eu-
clidean distance higher than a threshold ε, as this defines
too far parts.

We define the edge weight between two nodes in the
graph as their Euclidean distance. We use edge weights to
compute a minimum spanning forest T = {t1, ..., ti, ...}
which yields the pipeline skeleton graph of the scene. Min-
imum spanning forest is a union of the MST for connected
components of a graph. Specifically, for each MST in the
forest ti, we compute its diameter (i.e., max distance path),
remove it from ti and add it to our skeleton graph. We then
update the minimum spanning forest by recomputing trees
after the diameter removal. This process repeats iteratively
and computes long pipe paths as trees diameters until all
parts are added to the skeleton graph. Our skeleton graph
computation algorithm is summarized in Algorithm 1.

Algorithm 1: Compute skeleton graph
input : candidate parts set P
output: pipe skeleton graph D

initialize G(P,E)
foreach part p ∈ P do

compute k-nearest neighbors to p with distance
≤ τ1

calculate minimum spanning forest T of G
while P 6= ∅ do

foreach t ∈ T do
calculate diameter path d of t
add d to D
remove all nodes p ∈ d from P
update T

Finally, we refine the pipeline graph to conform to the
following relations between parts (Figure 5):

• pipe and flange parts have two neighbors in the graph
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Figure 6. 3D reconstruction of a complex pipeline. Left-to-right are the input point cloud, DeepPipes segmentation and labeling (colors
denote different part types), skeleton graph and 3D model reconstruction.

(at most);
neighbors endpoints form an angle close to straight
within a certain threshold;

• elbow parts have two neighbors in the graph (at most);
neighbors endpoints form a perpendicular angle;

• tee parts have three neighbors (exact);
neighbor endpoints form angles either perpendicular or
straight (forming a T-shape);

• cross parts have four neighbors (exact);
neighbor endpoints form angles either perpendicular or
straight (forming a cross shape);

In the last step, we replace graph nodes by the actual
3D part models and reconstruct the scene. For fine tun-
ing, we readjust the parts fitting using iterative closest point
(ICP) [1], which is an algorithm employed to minimize
the difference between two clouds of points, and transform
them to better fit the point data.

5. Results

To evaluate our method, we have used PointCNN neural
networks for classification and regression tasks. Our net-
works consist of four convolutional layers, four deconvo-
lutional layers and MLP. Each MLP has three layers. For
MLP in primitive type classifier, the width of the three lay-
ers is 128, 128, 6. Similarly, the width for radius and ori-
entation networks are 128, 128, 23 and 128, 128, 3, re-
spectively. The radius and orientation networks are trained
in parallel and consist of weight sharing connections since
they perform similar tasks.

We trained our model on synthetic pipeline models. For
this purpose, we implemented a 3D pipeline generator that
resemble real-world models. We initially generate random
skeleton graphs. Next, for each graph node, we randomly
assign part type and radius labels as well as orientation. We
generate the pipeline 3D model by fitting and assembling
the correct parts together following our random graph and
node labels.

We use a virtual scanner library to sample the 3D
pipeline surface with points, resembling scanned data. For

each scanned point, we acquire its part type, radius and
orientation from its projection on the surface, yielding our
ground truth scanned training data.

Our generator is implemented in Python, taking approx.
1 minute to generate an entire pipeline scene using a desk-
top PC with Intel(R) Core(TM) I7-7700K CPU, 4.20 GHz
with 16-GB RAM. By this way, we create our DeepPipes
training set consisting of 1750 different pipeline models
ranging from 70K to 200K of scanned points per model.

We have implemented our DeepPipes on a desktop PC
with Intel(R) Core(TM) I7-7700K CPU, 4.20 GHz with 16-
GB RAM. We train our part segmentation network sepa-
rately and then in parallel train the radius and orientation
networks. Each of the two training steps take approx. 60
hours to converge. During testing time, for 180K points, it
takes 8 seconds to run networks and get per-points labels,
10 seconds to compute MST paths and 25 seconds to fit
parts and obtain reconstructed model. Table 1 summarizes
our pipeline models in terms of number of scan points and
number of different pipe parts.

We evaluate our technique both qualitatively and quan-
titatively using synthetic and real pipeline raw scans. In
figure 1 we show the 3D reconstruction result of a scanned
mid-scale pipeline plant. It consists of besides pipes also
flanges, elbows and different connectors. Besides missing a
tee connector and a flange (top and bottom parts of the im-
age), our technique was able to accurately recover the entire
model and parts.

Figure 6 demonstrates the full 3D reconstruction process
of a complex pipeline scan with intermediate steps. Given a
raw scan, we predict its segmentation into parts using Deep-
Pipes. Colors represents different part types where gray-
pipe, green-elbow, blue-tee, yellow-cross and red flange.
Following is the relations graph and the final 3D recon-
structed model.

In Figure 7 we compare our technique with different
methods for processing 3D scanned pipelines. We evaluate
our method based on the relevant indicators of the radius
and the number of pipeline extractions. Considering the
limitation of the radius range and radius accuracy, Liu et
al. [22] method is the most suitable comparison method
compared to other methods. We compare our method with
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Figure 7. Comparisons on four pipelines of different complexity ranging from low to high (top-to-bottom rows resp.). Left-to-right are the
scanned data, our skeleton, our reconstruction, Huang et al. [10] skeleton, Liu et al. [22] reconstruction, EdgeWise Plant [8] reconstruction
and ground truth.

the method of Liu et al. [22] which detects and reconstructs
pipes using their 2D projections on dominant planes. Simi-
larly, we compare our technique to Huang et al. [10] which
extracts skeletal structures from points using a robust L1

approach. Their method was especially designed to handle
points consisting of noise and large missing parts as is the
case with pipeline scans. Therefore, we compare our skele-
ton computation with theirs. Finally, we also compare our
results with a commercial software EdgeWise Plant [8].

Our comparison consists of four different scanned
pipelines of different scale and complexity, ranging from
simple small scale to complex large scale (top-to-bottom
rows respectively).

The methods of Liu et al. [22] and Huang et al. [10]
are both missing pipe parts when complexity and pipe den-
sity increases. EdgeWise Plant [8] involves manual interac-
tion and therefore can obtain more accurate reconstructions.
Note that both our skeleton extraction and reconstruction
outperforms other methods. This is mainly due to our uti-
lization of neural networks which yield accurate detection
and segmentation of primitive parts in noisy scans.

To evaluate the robustness of our algorithm we introduce
noise and sparsity in the scanned synthetic 3D pipelines
(Figure 8). This simulates problems encountered in real
world pipeline scanning such as occlusions, poor illumina-
tion and reflections resulting in high noise levels and miss-

ing parts.
Starting from a dense clean scan, we gradually increase

per-point noise and sparsity by controlling the virtual scan-
ner parameters. Specifically, sparsity level is controlled by
the number of virtual cameras and the number of views per
camera. We then add per-point Gaussian noise levels by
adjusting the Gaussian parameters. In Figure 8 rows show
increasing levels of scan sparsity and noise (top-to-bottom,
resp.). Density levels are 100%, 80%, 65%,50%.

Table 2 summarizes the quantitative evaluation of our
method compared to others on different noise levels. Re-
sults are showing that our method was able to generate good
results suffering from a moderate decrease in quality that
corresponds to the increase in noise and sparsity. In this
comparison, our method still outperforms other techniques.

We have also applied our synthetically trained technique
to real-world scanned pipelines. Figure 9 demonstrates re-
construction results on three real-world pipelines datasets.
Top row, we reconstruct a 3D pipeline model of 600K points
sampling a 150 × 100 × 150 meters scene. Since there are
many non-pipe points, our algorithm filters them out after
the per-point part labeling step using our first PointCNN
network. Middle row shows a pipeline plant of 190K points
sampling a 160 × 140 × 170 meters scene. And bottom
row shows a similar pipeline plant of 220K points sampling
a 160 × 110 × 110 meters scene. Here a significant num-
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Figure 8. 3D pipeline reconstruction evaluation with different scan noise levels ranging from low to high (top-bottom rows resp.). Left-to-
right are the scanned data, our skeleton, our reconstruction, Huang et al. [10] skeleton, Liu et al. [22] reconstruction, EdgeWise Plant [8]
reconstruction and ground truth.

ber of points belong to floors and walls and stairs which are
extracted and manually fitted for visual purposes.

To provide a quantitative evaluation of our method, we
compare our reconstruction results with ground truth in the
synthetic cases. We define an error metric that takes in ac-
count the absolute error between radius and orientation pre-
diction and ground truth. Since absolute error is affected by
radius size, we also normalize radius distance defining a rel-

ative error. Given a point p with r and r
′

being ground truth
and predicted radii respectively, we define a relative dis-

tance, normalized by radius scale as: Erelative = ||r−r
′
||

r .

We also compute the recall ratio Rratio and precision
Pratio for each scene. Let NT be the number of total
parts instances in the scene. Nright the number of true
detected parts and Ndetect is the total number of detected
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Figure 9. 3D reconstruction of two real-world pipelines (top-bottom rows). Left-to-right are the input scan, 3D reconstruction by our
method, Liu et al. [22] and rightmost col. EdgeWise Plant [8].

parts. Then,

Rratio =
Nright

NT

and
Pratio =

Nright

Ndetect

We summarize the quantitative evaluation of our method
in Table 3. Each row of the table provides precision and
recall values of our technique compared to other methods.
Note that Huang et al. method could not provide meaning-
ful parts and we compute the error among skeletons. Simi-
larly, since EdgeWise software does not provide parts with
meaningful radii, we could not compute a meaningful error
distance.

Similarly, we summarize our results on the real-world
data in Table 4. Note that for real-world pipelines, we ask
an expert to manually reconstruct the 3D pipeline from the
scan and provide a ground truth.

6. Conclusions

In this work we take a prior-based approach for recon-
struction of entire 3D pipelines from raw scans. In our

approach, we learn recognition of parts in the scene, thus
reducing the complexity of the general pipe reconstruction
problem into a combination of part detection and model fit-
ting problems. We utilize a convolutional network to learn
3D point cloud features and the classification into various
classes. The pipe classification is noisy and we apply robust
clustering and graph-based aggregation techniques to com-
pute a coherent pipe model. Our method shows promising
results on pipe models with varying complexity and density
both in synthetic and real cases.

In terms of limitations, while our neural networks yield
good classification and segmentation results, they do not
consider part relations, connectivity and pipeline topology.
Therefore, results are still incoherent and require further
processing using clustering, graphs and MST computation.

Our method can be extended to some scenes assembled
by basic components. There are many scenarios similar to
the pipeline organization structure, such as the steel bars in
the reinforced concrete at construction sites and the steel
frame buildings mentioned in [33]. These structures are ba-
sically constructed according to fixed rules and consist of
repeating parts. The proposed method can be extended to
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Table 1. Data summary
model #point Pipe Flang. Elbow Tee Cross
Fig 7 Row1 47K 24 31 7 5 14
Fig 7 Row2 114K 93 23 22 23 0
Fig 7 Row3 331K 366 23 120 30 43
Fig 7 Row4 523K 619 78 189 68 61
Fig 8 Row1 231K 232 26 66 31 21
Fig 8 Row2 187K 232 26 66 31 21
Fig 8 Row3 150K 232 26 66 31 21
Fig 8 Row4 115K 232 26 66 31 21
Fig 9 Row1 599K 198 0 84 29 2
Fig 9 Row2 187K 33 0 16 0 0
Fig 9 Row3 213K 76 0 32 7 1

Table 2. Quantitative evaluation of synthetic pipelines under various noise levels. (Figure 8)

Models Row1 Row2 Row3 Row4
Error Precision Recall Error Precision Recall Error Precision Recall Error Precision Recall

Liu 0.0400 0.7958 0.5889 0.0581 0.6982 0.5089 0.0689 0.6064 0.3800 0.0815 0.5185 0.2489
Huang 0.6087 nan nan 0.7361 nan nan 0.8015 nan nan 0.9169 nan nan

EdgeWise nan 0.8966 0.5778 nan 0.7147 0.4956 nan 0.6266 0.3356 nan 0.6698 0.3200
Ours 0.0098 0.8981 0.7244 0.0168 0.8833 0.6733 0.0281 0.7273 0.5333 0.0302 0.6759 0.4355

reconstruct these scenes by detecting the types of basic parts
and obtaining the relationships between them.

In future work, we plan to investigate a full neural net-
work for 3D pipeline reconstruction. Using recurrent neural
network (RNN) and Long short-term memory (LSTM) [7]
architectures, we may incorporate neighborhood relations
and topology in the scanned pipeline processing framework.
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