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In this article, we present a multi-class blue noise sampling algorithm by
throwing samples as the constrained Wasserstein barycenter of multiple
density distributions. Using an entropic regularization term, a constrained
transport plan in the optimal transport problem is provided to break the
partition required by the previous Capacity-Constrained Voronoi Tessella-
tion method. The entropic regularization term cannot only control spatial
regularity of blue noise sampling, but it also reduces conflicts between the
desired centroids of Vornoi cells for multi-class sampling. Moreover, the
adaptive blue noise property is guaranteed for each individual class, as well
as their combined class. Our method can be easily extended to multi-class
sampling on a point set surface. We also demonstrate applications in object
distribution and color stippling.
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1. INTRODUCTION

Sampling is a ubiquitous problem for many graphics applica-
tions [Lagae and Dutré 2008], such as rendering [Mitchell 1987],
imaging [Ulichney 1988], geometry processing [Öztireli et al.
2010], and visualization [Chen et al. 2014]. Since blue noise sam-
pling distribution yields superior image quality over alternative dis-
tributions with the same number of samples, it has been researched
extensively in recent decades. Prior research primarily focused on
single-class sampling. In fact, multi-class sampling is involved in a
variety of sampling problems, such as color stippling, visual abstrac-
tion of multi-class scatterplots, and so on. In these situations, the
blue noise distribution property needs to be preserved for every in-
dividual class of samples and their union simultaneously. Although
optimal sampling [Balzer et al. 2009; Chen et al. 2012; de Goes
et al. 2012] generates a distribution with good blue noise property
for single-class sampling, multi-class blue noise sampling remains
challenging.

There has recently been work on multi-class sampling. Based
on the analysis of the power spectrum characteristics of combined
classes, digital filter techniques are applied to generate multi-class
samples in Wang and Parker [1999]. In their method, 2n − 1 kinds
of combined patterns need to be created, where n is the number of
classes. The problem tends to become more complicated with an
increasing number of classes. Dart throwing is extended to gener-
ate multi-class samples in Wei [2010]. The main idea is to create
a conflict matrix on the accumulated two-class sampling for ex-
plicit control of sample spacing. When the density distribution of
each class is non-uniform and different from the others, it is diffi-
cult to set off-diagonal elements of the conflict matrix to balance
the blue noise property of individual classes of samples and their
combination. Chen et al. [2012] extended blue noise sampling with
Capacity-Constrained Voronoi Tessellation (CCVT) [Balzer et al.
2009] for multi-class sampling. However, it is nontrivial to preserve
the uniformity of both individual classes and the combined classes
simultaneously due to the conflict between their Voronoi diagrams.
The reason is that the conflict may make multi-class relaxation get
stuck in local minimums with insufficient sample uniformity, which
is called the failure case in Wei [2010].

In this article, we present a Wasserstein blue noise sampling algo-
rithm by throwing samples as a constrained Wasserstein barycenter,
which is constrained to be a sum of Diracs, of multiple density
distributions. The blue noise property of each class, either indi-
vidual or combined, is preserved by assuming that their distribu-
tions are independent when computing the constrained Wasserstein
barycenter. Our algorithm avoids the failure case of multi-class sam-
pling on traditional Lloyd relaxation [Wei 2010] and on Voronoi
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Fig. 1. Multi-class blue noise sampling with different sizes on three identical constant density functions. Sample distribution with the larger size remains the
blue noise pattern, and the sample distribution with the smaller size might deviate from the blue noise pattern. The number of samples for each class is 62, 250,
1,000 (top) and 100, 300, 900 (bottom). The weighted parameters are set as λ1,2,3,4 = (1, 1, 1, 1)/4.

tessellation [Chen et al. 2012], since the partition required in these
two methods is broken in our method. On the other hand, the effi-
ciency of sampling is improved by applying Wasserstein distance
with entropic constraints [Cuturi and Doucet 2014; Solomon et al.
2015]. Our method, furthermore, can be directly applied to multi-
class sampling on a point set surface [Öztireli et al. 2010].

1.1 Motivation and Contributions

Although a series of CCVT-based algorithms can generate high-
quality blue noise samples, they are not suitable to be directly
extended to multi-class blue noise sampling. The main reason is
that it is very difficult to build an adaptive equi-capacity partitioning
for multi-class sampling, which is the key to ensuring equal visual
importance for samples. Therefore, we aim at a general algorithm
that is more feasible for multi-class sampling, adaptive sampling
and surface sampling.

In this article, we present an adaptive multi-class blue noise sam-
pling algorithm by throwing samples as a constrained Wasserstein
barycenter of multiple density distribution. At the core of our algo-
rithm, it generates point distributions by minimizing a Wasserstein
distance with a entropic regularization. Experiments show that our
approach can produce high-quality blue noise spectrums for either
individual or combined classes. Our contributions are as follows:

—We formulate multi-class sampling as a constrained Wasserstein
barycenter of multiple density functions, where constrained trans-
port plans are used to replace the capacity constraints in the equal
capacity partitioning.

—Via an entropic regularization term, the constrained transport plan
breaks the partition required by the previous CCVT method. The
entropic regularization term cannot only control spatial regularity
of blue noise sampling, but it also avoids the failure case of multi-
class sampling [Wei 2010].

—The proposed approach can be easily extended to support adaptive
sampling and general domain sampling, such as sampling on a
point set surface.

2. RELATED WORK

2.1 Blue Noise Sampling

The blue noise distribution was introduced to solve problems of im-
age anti-aliasing [Dippé and Wold 1985]. Due to the huge applied
values of its natural property (random and uniform distributions
that match the distribution of the retina in human eyes), it has
been widely used to solve diverse kinds of problems in computer
graphics. There are three classical methods to generate blue noise
distributions. The first one is stochastic sampling. The traditional
method for stochastic sampling is called dart throwing and was first
introduced by Cook [1986]. During the sampling, dart throwing
positions samples one by one randomly and accepts a new sample,
just when there are no other samples within a disk of a given ra-
dius surrounding it. The basic idea is simple and easy to implement
but extremely time-consuming. It is possible that it might never
terminate. Since then, many variations of dart throwing were pro-
posed to solve the problem [Mitchell 1987; Jones 2006; Dunbar
and Humphreys 2006; White et al. 2007; Wei 2008; Gamito and
Maddock 2009; Ebeida et al. 2011, 2012]. However, it is still diffi-
cult to control the number of points generated with these methods,
and the distribution that is produced also has a relatively high vari-
ance by variance standards. Recently, Yuksel described a sample
elimination method that allows controlling the number of samples
[Yuksel 2015].

Optimal sampling is another type of method to generate higher
quality sampling. A well-known approach in this class is Lloyd
relaxation [Lloyd 1982]. The basic idea of this method is to relax
the original distribution to make it obtain blue noise characteristics
and improve the spectrum properties [McCool and Fiume 1992].
However, the samples produced suffer from too much regularity,
which causes an aliasing problem. To improve the irregularity, Baler
et al. [2009] proposed a variant of Lloyd’s method with capacity
constraint that enforces that each point obtains equal importance
in the distribution. Xu et al. [2011] proposed Capacity-Constrained
Delaunay Triangulation (CCDT) by replacing the Voronoi cell of
CCVT with Delaunay triangulation. Furthermore, CCDT is also ex-
tended to Capacity-constrained Surface Triangulation (CCST) [Xu
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et al. 2012] for surface sampling. De Goes et al. [2012] consid-
ered CCVT as an optimal transport problem in the space of power
diagrams (CCVT-PD). Furthermore, Xin et al. [2016] developed a
super-linear convergence algorithm for computing optimal Power
Diagram partition with capacity constraints. In addition to Lloyd’s
method, the kernel density model is also applied to optimal sam-
pling. Fattal [2011] used a radially symmetric kernel function to
produce an approximated density function. The difference between
the approximation and the given target point density function is
that it assigns an energy value to the points configuration. Jiang
et al. [2015] used a kernel function to apply the smoothed parti-
cle hydrodynamics method (SPH) for a variety of controllable blue
noise sample patterns. Compared with de Goes et al. [2012], our ap-
proach approximates the Wasserstein distance using a regularized
transport plan instead of a partition. Our approach is, therefore,
feasible for multi-class sampling.

2.2 Multi-class Sampling

Wang and Parker [1999] studied the power spectrum characteris-
tics of combined blue noise patterns and proposed a multi-class
blue noise sampling approach on digital filter techniques. However,
the approach is constrained to uniform, regular, and discrete sam-
pling. Wei [2010], Schmaltz et al. [2012], and Jiang et al. [2015]
proposed multi-class sampling approaches by enforcing the blue
noise property through the use of an interaction matrix that en-
codes the spacing between class pairs. However, the matrix can
exhibit discontinuous changes in the off-diagonal entries, which
represent the coupling between the different classes’ distribution.
Chen et al. [2012] proposed a multi-class sampling strategy based on
capacity-constrained Voronoi tessellation. A two-stage algorithm is
applied to the optimization of point distributions. The first stage is
the optimizing procedure for each individual class, and the second
stage is the optimizing procedure for the combined class. In our
approach, the combined class is directly treated as a single class.
Normalized parameters are used to balance the blue noise properties
of different classes. Compared with Wang and Parker [1999], our
approach preserves blue noise patterns in the density space rather
than in the spectrum space. Compared with Chen et al. [2012], our
approach optimizes the point distribution of each individual class
and that of the combined class simultaneously.

2.3 Wasserstein Barycenter

For completeness, we briefly review the Wasserstein barycenter in
this section. By analogy with the barycenter of points (x1, . . . , xn)
in the Euclidean space, which is obtained as the minimizer of
x ← ∑n

i=1 ||x − xi ||2, Wasserstein barycenter is defined as the
barycenter of probability measures ν1, . . . , νn in the Wasserstein
space by replacing the Euclidean distance with the Wasserstein
distance.

For an arbitrary space �, we use d : � × � → R+ to denote the
distance metric, so d(x, y) is the shortest distance from x to y along
�. We use P (�) to indicate the set of probability measures on �,
and P (� × �) to indicate that on the product space � × �,

P (�) = {μ|μ(∅) = 0, μ(�) = 1, 0 ≤ μ(U ) ≤ 1(U ⊆ �)},

where μ(U ) = ∫
U∈�

ρ(x)dx is a probability measure on �, and
ρ(x) ≥ 0 is a probability density function on �.

Given probability measures μ and ν in P (�) and p ≥ 1, the
p-Wasserstein distance [Villani 2008] between μ and ν is defined

Fig. 2. Wasserstein barycenter. (a) and (d) are two probability densities �0

and �1. (b) is the barycenter of ν1 and ν2 using l2 distance, and (c) is the
Wasserstein barycenter of ν1 and ν2 with λ1 = λ2 = 0.5.

as

Wp(μ, ν) =
(

inf
π∈∏

(μ,ν)

∫
�×�

d(x, y)pdπ (x, y)

)1/p

,

where d(x, y) is the cost of transporting one unit of mass from
x to y, and

∏
(μ, ν) is the subset of P (� × �) and meets mass

conservation laws∏
(μ, ν) = {π ∈ P (�, �)|π (·,�) = μ, π (�, ·) = ν}.

π is a transportation plan, which describes the amount of mass
π (x, y) to be placed from μ at x toward y to create ν in aggrega-
tion. Wasserstein distance, therefore, describes the minimum cost
of transporting the source μ to the target ν.

Based on the Wasserstein distance, the Wasserstein barycen-
ter [Agueh and Carlier 2011; Cuturi and Doucet 2014; Bonneel
et al. 2016] of N probability measures ν1, . . . , νN in P (�) is de-
fined as

μ = arg min
μ

N∑
i=1

λiW
p
p (μ, νi) s.t.

N∑
i=1

λi = 1, λi ≥ 0. (1)

The Wasserstein barycenter is an optimal probability measure μ to
approximate probability measures ν1, . . . , νN with weights in the
Wasserstein space. If the Wasserstein barycenter μ is a discrete prob-
ability measure, then μ represents sampling points. The Wasserstein
barycenter is, therefore, a general approach for sampling in the space
�. Figure 2 shows a simple example about Wasserstein barycenter.

3. ALGORITHM

In this article, we take single-class blue noise samples as the con-
strained Wasserstein barycenter of a probability measure. Multi-
class blue noise samples are chosen as the combined Wasserstein
barycenter of multiple probability measures.

3.1 Single-Class Blue Noise Sampling

Given an arbitrary space � and a density function �(x) on the space
�, a probability measure is defined as

ν(U ) =
∫

U

�(x)dx,U ⊆ �,

s.t.

∫
�

�(x)dx = 1, �(x) ≥ 0.

(2)

Sampling the density function �(x) consists of picking a few repre-
sentative points xi that capture � well. These representative points
xi represent a discrete probability measure μ,

μ =
n∑

i=1

ρiδxi
s.t.

n∑
i=1

ρi = 1, δxi
=

{
1 xi ∈ �
0 others,

where n is the number of samples and ρi is the probability at xi .
Sampling, therefore, means that the method aims to find μ that
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captures ν well. We can use the constrained Wasserstein barycenter
to model a single-class sampling as

μ = arg min
μ

Wp
p (μ, ν) = arg min

μ
inf
π

∫
X×�

d(xi, y)pdπ (xi, y),

s.t.

∫
�

π (xi, y) = ρi,

n∑
i=1

∫
U⊆�

π (xi, y)dy = ν(U ),

(3)

where X = {x1, x2, . . . , xn} ⊆ �.
Compared with previous methods on CCVT [Balzer et al. 2009;

de Goes et al. 2012], the constrained Wasserstein barycenter pro-
vides a more general framework for sampling. Previous methods on
CCVT are special cases of Equation (3). In the previous method, the
transport plan π , which is the solution for the discrete transportation
problem [Balzer et al. 2009] or semi-discrete optimal transportation
problem [de Goes et al. 2012], satisfies the property

π (xi, y) · π (xj , y) = 0 (i �= j ). (4)

Equation (4) means that the mass in a certain domain can only
be transported to one sampling point. For example, the certain do-
main corresponding sampling points is a few discrete points in the
Voronoi cell in Balzer et al. [2009], and the power diagram region
in de Goes et al. [2012]. In fact, Equation (4) is a very strict condition
for the variational problem in Equation (3). It can only be satisfied
when ν is a continuous probability measure. It also introduces a
“failure case” for multi-class sampling [Wei 2010]. We will discuss
how to break the condition on the transport plan (Equation (4)) and
the reason for the “failure case” in the next subsection.

3.2 Multi-class Blue Noise Sampling

For multi-class blue noise sampling, each individual class and com-
bined classes exhibit blue noise characteristics [Wei 2010]. In this
regard, we model multi-class sampling by accounting for indi-
vidual probability measures and combined probability measures
simultaneously.

Let {�1, . . . , �N } be N individual probability density functions
to be sampled on the space �. Let {�i1,...,ik }(k ≤ N, i ∈ {N +
1, N + 2 . . . , K}, ij ∈ {1, 2, . . . , N}, N < K ≤ 2N − 1) be K − N
probability density functions of the combined classes, which is
combined by the i1th, . . . , ikth classes, and

�i1,i2,...,ik = (�i1 + �i2 + . . . , +�ik )/k.

Let Xi be sampling points of the probability density function �i ,

Xi = {x1
i , x

2
i , . . . , x

ni

i } (1 ≤ i ≤ N ), xj

i ∈ �(1 ≤ j ≤ ni),

where ni is the number of sampling points Xi .
In terms of Equation (2), there is a corresponding probability

measure νi(1 ≤ i ≤ K) for every �i or �i1,i2,...,ik . The probability
measure νi(1 ≤ i ≤ N ) corresponds to �i , and the probability mea-
sure νi(N < i ≤ K) corresponds to �i1,...,ik . For sampling points Xi

or {Xi1 , Xi2 , . . . , Xik }, there is a corresponding discrete probabil-
ity measure μi(1 ≤ i ≤ K). For multi-class blue noise sampling,
every class sampling point Xi should capture the probability func-
tion �i well, and the combined sampling points {Xi1 , Xi2 , . . . , Xik }
should also capture the probability density function �i1,i2,...,ik well.
Thus, every discrete probability measure μi should approximate the
corresponding probability measure νi well.

Compared with a single-class sampling, we cannot compute an
optimal μi for every νi in terms of Equation (3) independently for

multi-class sampling. This is because sampling points Xi are influ-
enced by individual probability measures νi and combined proba-
bility measuress νi′ (i ′

j = i) simultaneously. We describe multi-class
sampling as a combined Wasserstein barycenter,

μ̄ = arg min
μ̄

K∑
i=1

λiW
p
p (μi, νi) s.t.

K∑
i=1

λi = 1, (λi ≥ 0), (5)

where μ̄ = {μ1, . . . , μN, μN+1, . . . μK}, μi(1 ≤ i ≤ N ) is a dis-
crete probability measure corresponding to Xi , μi(N < i ≤ K) is a
discrete probability measure corresponding to combined sampling
points.

In an extended version of Wei [2010], Wei pointed out that multi-
class sampling on a traditional relaxation method [Balzer et al.
2009] might result in insufficient sample uniformity for the reason
below: for a given sample s, different class combinations may have
different opinions about the desired centroid location to which s
should move. In essence, conflicts of desired centroid locations are
introduced by the hard condition on transport plans π (Equation (4)).
In the traditional relaxation method [Balzer et al. 2009], the mass
in a certain domain can only be transported to the nearest sampling
point. Thus, the transport plan is local, and the minimum unit of
transported mass is constrained by the resolution of the domain.
The two limits make relaxing conflicts of desired centroid locations
more difficult.

To preserve sufficient sample uniformity for multi-class sam-
pling, we introduce the regularized Wasserstein distance instead
of Wasserstein distance in Equation (5) via entropic regular terms
as Cuturi [2013]. Regularized Wasserstein distance is defined as

Wp(μ, ν) =
(

inf
π∈∏

(μ,ν)

∫
�×�

d(x, y)pdπ (x, y) + εH (π )

)1/p

, (6)

where ε is a positive regularization parameter, and H (π ) =
−∫

�×�
π (x, y)lnπ (x, y)dxdy is the entropy of π . Compared with

traditional Wasserstein distance, the optimal transport plan corre-
sponding to regularized Wasserstein distance is required with suffi-
cient smoothness [Cuturi 2013]. Entropic regular terms, therefore,
relax transport plans and break the condition on the transport plan
(Equation (4)). The optimal transport plan π is a separable trans-
port plan in Equation (6), which means the mass, located in a small
domain, can be transported to different samples other than only one
sampling point. It extends the minimum unit of transported mass
to computational accuracy. Furthermore, Entropic regularization
terms expand the transport range to the whole domain rather than
the nearest transport in the traditional relaxation method [Balzer
et al. 2009]. It provides more flexibility for reducing conflicts of the
desired centroid. Compared with multi-class sampling [Wei 2010],
our approach is an efficient relaxation method for multi-class blue
noise sampling.

3.3 Numerical Optimization

Equation (5) is a unified variational model for single-class and
multi-class sampling. We only consider numerical optimization of
Equation (5) for multi-class sampling. For every discrete probability
measure μi ∈ μ̄, we represent it as

μi =
ni∑

j=1

ρ
j

i δ
x

j
i

s.t.

ni∑
j=1

ρ
j

i = 1, (7)

where ρ
j

i is probability at sampling point x
j

i for the ith-class sam-
pling and ni is the number of sampling points for the ith-class
sampling. For convenience of representation and computation, we
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Fig. 3. Pseudocode of multi-class blue noise algorithm.

extend the discrete probability measure μi to all class sampling
points. We define all sampling points as

X = (X1, X2, . . . , XN )T = (x1
1 , . . . , x

n1
1 , . . . , x1

N, . . . , x
nN

N )T, (8)

and the probability vector at all sampling points is

gi = (0, 0, . . . , 0︸ ︷︷ ︸
i−1∑
j=1

nj

, ρ1
i , ρ

2
i , . . . , ρ

ni

i , 0, 0, . . . , 0︸ ︷︷ ︸
N∑

j=i+1
nj

)T , (9)

for the ith-class probability measure. Thus, we can represent the
discrete probability measure μi as

μi =
n∑

j=1

g
j

i δx
j
i
, (10)

where n = ∑N

i=1 ni . For blue noise sampling, ρ
j

i is a constant
and ρ

j

i = 1/ni . Thus, we need only to compute variables X in
Equation (5).

Every probability measure νi in Equation (5) may be a continu-
ous probability measure or a discrete probability measure. If νi is
a continuous probability measure, then we discretize νi as a dis-
crete probability measure to compute the integrations required in

Fig. 4. Comparisons of CCVT, CCVT-PD, and our algorithm for a single-
class blue noise sampling. (a) shows the comparison for the case of constant
density. (b) shows the comparison for the case of a quadratic density function.

Equation (5) by quadrature,

νi =
mi∑
j=1

�
j

i δy
j
i

s.t.

mi∑
j=1

�
j

i = 1, (11)

where �
j

i = �i(y
j

i )V
y

j
i

and V
y

j
i

is the area with density �i(y
j

i ) at the

point yj

i when the density function �i is approximated with a positive
piecewise constant function, �i is the probability density function of
the probability measure νi , and mi is the number of discrete points
of the ith-class probability measure νi . In this article, we apply a
regular discretization with the same area for all sampling points y

j

i .
We also apply the same sampling points for all probability measures
νi , which is

mi = mk = m, y
j

i = y
j

k = yj i �= k.

Thus, we use Y = (y1, y2, . . . , ym)T to represent all sampling points
for probability measures νi . Based on the discrete representation
of probability measures in Equation (11), the variational problem
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Table I. Comparison of Several Frequencies and Spatial Statistics
of Sampling Patterns

Methods veff � δmin δavg Q6

[Balzer et al. 2009] 0.88 2.395 0.765 0.886 0.488
[De Goes et al. 2012] 0.855 2.014 0.739 0.872 0.417

ε = 1/150 0.865 2.136 0.76 0.877 0.42
ε = 1/40 0.275 0.211 0.012 0.508 0.367
ε = 1/80 0.665 0.572 0.342 0.755 0.347

Our ε = 1/120 0.815 1.686 0.548 0.846 0.397
algorithm ε = 1/160 0.840 1.857 0.673 0.856 0.415

ε = 1/200 0.910 2.998 0.561 0.894 0.557
ε = 1/240 0.905 2.905 0.568 0.893 0.537
ε = 1/280 0.910 2.994 0.564 0.894 0.592
ε = 1/320 0.910 2.969 0.526 0.894 0.595

Notes: veff and � are the effective Nyquist and oscillation measures. The value of
δmin corresponds to the Poisson disk radius, and δavg roughly measures how uniformly
the points are distributed [Schlömer et al. 2011]. Q6 measures the similarity of a point
distribution to a hexagonal arrangement [Kansal et al. 2000].

Fig. 5. Evaluation of sampling ratio. The number of sampling points is
1,024. When the sampling ratio is less than or equal to 1/4, the blue noise
property is preserved well in our approach.

(Equation (5)) can be represented as

X = arg min
X

K∑
i=1

λi < Di , �i >,

s.t. �i1 = �i, �T
i 1 = gi ,

K∑
i=1

λi = 1, λi ≥ 0,

(12)

where Di , �i ∈ Rn×m
+ , Di is the distance matrix and D

(j,k)
i =

d(xj

i , yk)p , �i is the ith-class transport cost matrix and 

(j,k)
i =


i(x
j

i , yk) represents the mount of mass transported from x
j

i to
yk for the ith-class, �i is the probability density vector and �i =
(�1

i , �
2
i , . . . , �

m
i ), λi is a weighted parameter, 1 is an all-1 vector,

and < ·, · > is the Frobenius product of two matrixes.
We proceed with sample generation by computing an optimal so-

lution of the variational problem (Equation (12)). We apply a loop
iteration algorithm to extremize the variational problem by repeat-
edly performing a minimization step over positions X followed by
a projection step over transport plans �k .

For a fixed set of points X, we compute relaxed transport plans
through a regularized Wasserstein distance (Equation (6)). Equa-
tion (6) can be discretized as

Wp
p (Di , �i) = arg min

�i

< Di , �i > −εH (�i),

s.t. �i1 = �i, �T
i 1 = gi .

(13)

Furthermore, Equation (13) can be re-written as the smallest
Kulback-Leibler (KL) divergence,

Wp
p (Di , �i) = ε min

�i

KL(�i |ξi),

from �i to the distance-based kernel ξi = e− Di
ε (here, the exponen-

tial is computed component-wise). KL divergence is defined as

KL(�i |ξi) =
∑

j

∑
k



(j,k)
i

(
log

(



(j,k)
i

ξ
(j,k)
i

)
− 1

)
.

This minimization is convex. The optimal transport plan �i is
the projection of the distance-based kernel ξi onto �i , and can be
obtained by iterative Bregman projection [Cuturi 2013; Benamou
et al. 2015],

�i = diag(u)ξidiag(v), (14)

where u ∈ R
n
+ and v ∈ R

m
+. More details can be found in Cuturi

[2013], Cuturi and Doucet [2014], and Benamou et al. [2015].
Suppose 
i(i = 1, . . . , K) is fixed and the variational formula

Equation (12) is the sum of a convex quadratic function of X when
p = 2. If we only update Xi at every iteration, then X can be
obtained by the Newton iterative method,

X ← (1 − θ )X + θY�T
i diag(ρi

−1) (0 ≤ θ ≤ 1). (15)

We also apply a random Newton iterative method to update all
sampling points X simultaneously,

X ← (1 − θ )X + θ

K∑
i=1

λiriY�T
i diag(ρi

−1),

s.t.

K∑
i=1

ri = 1, ri ≥ 0,

(16)

where ri is a random number. Figure 3 shows the pseudocode of
this schedule. Figure 6 compares the results of two class sampling
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Fig. 6. The comparison of Wei’s algorithm and our algorithm for two-class blue noise sampling. In our algorithm, λ1, λ2, λ3 are the weighted parameters for
red samples, blue samples, and the combined samples. The number of samples for each class is 1000. (b) and (c) are the results without random parameters
ri . (d), (e), and (f) are the results with random parameters ri . The weighted parameter λi has an influence on the trade-off between a good distribution of the
samples belonging to each individual class and a good distribution of total samples. Large λi preserves the blue noise property of the ith well.

with and without random parameters ri . The results show that there
is no significant difference between the results. The reason is that
the entropy regularization term has already played an important role
to improve randomness of samples. The random parameters ri only
play a minor role for randomness of samples.

4. RESULTS

We ran our algorithm on a variety of inputs: from constant den-
sity to stripe and a point set surface. Various illustrations based on
regularity and spectral analysis are used throughout the article to
allow for an easy evaluation of our algorithm and to demonstrate
how it compares to previous works. We use methods in Schlömer
and Deussen [2011] and Wei and Wang [2011] to analyze the
spectrum properties of sample distributions in two-dimensional
space and two-dimensional manifold separately. The relative radius
[Lagae and Dutré 2008] is used to analyze the spatial uniformity. In
all experiments, we set θ = 0.8.

Single class sampling. Blue noise point distribution for a con-
stant density shows a characteristic blue noise profile in spectral
space and a typical spatial arrangement. In Figure 4, we compare
our algorithm with the CCVT [Balzer et al. 2009] and CCVT-
PD [de Goes et al. 2012] methods for the case of constant density in

spectral space. We also provide evaluations of the spatial properties
in Table I. We also evaluate blue noise sampling for an intensity
ramp in Figure 4 by counting the number of points for each quarter
of the ramp. It can be shown that our algorithm is comparable to
CCVT [Balzer et al. 2009] and CCVT-PD [de Goes et al. 2012] for
both the cases of constant density and the intensity ramp.

Since the numerical optimization that is involved is based on
the discrete representation of sampled density functions in our ap-
proach, we evaluate the effect of the sampling ratio (n/m) on blue
noise property by comparing our approach with CCVT [Balzer et al.
2009] in Figure 5. When the sampling ratio is equal to 1/4, sampling
on CCVT [Balzer et al. 2009] does not show the blue noise property
well. With the decreasing sampling ratio, the blue noise property
is shown more and more effectively. However, the sampling ratio
hasn’t an important effect in our approach. This is because the re-
laxed transport plan makes more original points exert influence on
one sampling point in our approach, while only the nearest original
points have a role in CCVT [Balzer et al. 2009].

Multi-class sampling on constant density. To evaluate the blue
noise distribution for multi-class sampling, we first analyze the
simplest case where all classes have a constant density function
and the same number of samples. Figures 6–8 illustrate the re-
sult generated by our method, compared to Wei’s [2010] and SPH
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Fig. 7. The comparison of Wei’s algorithm, SPH, and our algorithm for three-class blue noise sampling. λ1,2,3,4,5,6,7 = (1, 1, 1, 2, 2, 2, 9)/18. λ1, λ2, and λ3

are weighted parameters for each individual class. λ4, λ5, and λ6 are weighted parameters for combined classes with two individual classes. λ7 is the weighted
parameters for the total samples. The number of samples of each individual class is 1,024.

[Jiang et al. 2015] on two-class, three-class, and seven-class sam-
pling separately. In two-class sampling (Figure 6), we illustrate the
influence of the weighted parameter λi on the trade-off between a
good distribution of the samples belonging to each individual class
and a good distribution of the total samples. A Large λi preserves
the blue noise property of the ith-class well. Depending on which

distribution is more important, λi can be chosen for different appli-
cations. When λ1+λ2 = λ3, the balance between a good distribution
of the samples belonging to each individual class and a good distri-
bution of the total samples is achieved in Figure 6(f). It shows that
our results are comparable to that of Wei’s. In three-class sampling
(Figure 7), we evaluate the blue noise distribution of samples of
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Fig. 8. Seven-class blue noise sampling on our algorithm. λ1,2,3,4,5,6,7,8 = (1, 1, 1, 1, 1, 1, 1, 7)/14. λ1, . . . , λ7 are weighted parameters for each individual
class, λ8 is the weighted parameter for the total set. The number of samples of each individual class is 1,024.

different combined classes. Compared with Wei’s method [Wei
2010] and SPH [Jiang et al. 2015], the blue noise profile of the
combined class with two individual classes is improved in our
method while the blue noise distribution of each individual class
is preserved. In seven-class sampling (Figure 8), the blue noise pro-
file is still kept for samples of each individual class and total class.
It shows that our method is feasible for more numbers of class
sampling.

To evaluate the efficiency of relaxing conflicts of desired cen-
troid locations in our approach, we compare our approach with
Wei’s method [2010] on the difference between centroid locations
of Voronoi diagrams for single-class samples and multi-class sam-
ples in Figure 9. We apply a conflicts ratio to evaluate the difference
between desired centroid locations. The conflicts ratio is defined as

R =
⎛
⎝ N∑

i=1

ni∑
j=1

||CI

x
j
i

− CC

x
j
i

||
⎞
⎠/ ⎛

⎝ N∑
i=1

ni∑
j=1

D(xj

i )

⎞
⎠ ,

where CI

x
j
i

and CC

x
j
i

are centroid locations of Voronoi diagrams of

the sample x
j

i for individual class samples and combined class
samples, and D(xj

i ) is the distance between the sample x
j

i and its
nearest neighbor sample and n is the number of samples. Compared
with Wei’s approach [2010], the conflicts ratio in our approach
is decreased by approximately 50%. It shows that our approach
avoids the failure case of multi-class sampling in Wei [2010], and
is an efficient relaxation method for multi-class sampling.

Adaptive multi-class sampling on a ramp. To evaluate multi-
class blue noise sampling on a non-uniform density function, we
applied two intensity ramps and counted the number of points for
each quarter of the ramp. Figure 10 shows samples generated by
our method and Wei [2010]. While samples of every individual
class and the combined class represent approximately the proper
counting of points per quarter, it can be seen that our results show
noticeably less noise.

Multi-class sampling on a point set surface. Our method can be
directly applied to multi-class sampling on a point set surface. We
assume that the original points represent a discrete probability mea-
sure ν = ∑m

k=1 �kδyk as Equation (11) on the surface. �k is set as the

Fig. 9. The evaluation for conflicts of desired Voronoi centroid locations
of individual classes and combined class.

normalized area element at the point yk for multi-class blue noise
sampling with a constant density function. D

(j,k)
i is the geodesic

distance. For convenience, we applied the Euclidean distance in-
stead of the geodesic distance in this article. Samples are initialized
on the surface. After each iteration, every sample is mapped back
onto the surface by a moving least-square projection [Alexa et al.
2001]. In Figure 11, we make a two-class blue noise sampling on a
bunny model and show the Differential Domain Function [Wei and
Wang 2011] to demonstrate the blue noise profile of different class
sample distributions.

Multi-class blue noise sampling with different sizes. Anal-
ogous to setting a different radius of Poisson disks for different
classes in dart throwing, different sizes of samples can be set using
a discrete probability measure μi for different classes in our method.
Suppose that the same constant density function �i(1 ≤ i ≤ N ) is
used for different classes, we set the discrete probability density as
ρ

j

i = 1/ni for every individual class and ρ
j

i = 1/Nni for every
combined class, where N is the number of individual classes of the
combined class. When two-class sampling is done with N1 and N2

samples (N1 > N2), every sample belonging to the second class is
given more measure than every sample belonging to the first class
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Fig. 10. Adaptive two-class sampling of a non-uniform density function
with 1,000 points for each class. The percentages in each quarter indicate
the ink density of different colors in the image. By contrast, our results show
precise adaptation for every single sampling and total sampling.

Fig. 11. Two-class blue noise sampling on a point set surface. λ1,2,3 =
(1, 1, 2)/4, and the number of samples belonging to each class is 2,000.

Fig. 12. Running time in log scale. Comparison of sampling times of
single-class blue noise sampling on different sampling ratios.

in the combined class. When the density function of the combined
class is a constant function, the second-class sample has a larger
size than the first-class sample. The radius of every sample can be
approximated as

ri = λrimax
/n,

where rimax
is the maximum possible disk radius of the ith class and λ

is a relative radius parameter. In our experiments, we found that there
is an overlap between any pair of samples when 0 ≤ λ ≤ 0.5. In
Figure 15, our method is applied for three-class blue noise sampling
with different sizes on a square and a two-dimensional manifold.

The entropic regularization parameter ε. Compared with the
previous method on CCVT, the regularized Wasserstein distance
(Equation (6)) is used in the proposed approach instead of the
Wasserstein distance in CCVT [Balzer et al. 2009; de Goes et al.
2012]. When the regularization parameter ε is set as 0, the regu-
larized Wasserstein distance degenerates to Wasserstein distance.
We evaluate the importance of regularized Wasserstein distance by
analyzing the role of the regularization parameter ε. In Figure 13,
we compare single blue noise samplings on different ε for the case
of a constant density in spectral space. We also provide evaluations
of the spatial properties in Table I. It shows that various blue noise
profiles can be generated on different ε. We also have found that
spatial regularity of sampling becomes more and more prominent
with the decreasing of ε. In fact, the regularity term in Equation (6)
reduces the solution space of Equation (3) without the regularity
term. Hexagonal lattices are the optimal solutions of the problem in
Equation (3) without the regularity term. The regularity term breaks
the optimal solutions. Therefore, we can set ε to control spatial reg-
ularity of sampling, other than using a stochastically scrambled
configuration in the numeral procedure [de Goes et al. 2012]. We
also evaluate the role of the parameter ε for multi-class sampling in
Figure 9. We compare conflicts ratios on different ε for two class
sampling. The conflicts ratio is becoming less and less with the
increasing of ε, since the regularization terms expand the transport
range. Therefore, it also interprets the reason why the failure case
happens when Wasserstein distance is used in Wei’s [2010]. For
single sampling and multi-class sampling, blue noise property is
preserved well when 1/120 < ε < 1/160. We set ε = 1/150 by
default in other experiments.
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Fig. 13. Comparison of single blue noise samplings on different ε for the case of a constant density. The number of sampling points is 1,024. Various blue
noise profiles can be generated on different ε. Spatial regularity of samples becomes more and more prominent with the decreasing of ε.

Complexity. One iteration of our algorithm involves an iterative
Bregman projection. The time complexity depends on what classes
are involved in the framework. For a single-class sampling, the time
complexity is O(MN ). Although this is worse than O(NlogN+M),
an iterative Bregman projection can be easily parallelized on the
GPU. When only a total set is used as a combined class, the time
complexity is O(2MN ). If all 2n − 1 classes are involved, then
the complexity is O(2n−1MN ). In most applications, it is enough
for only every single class and a combined class of the total set
to be with the blue noise property, such as in Figures 16 and 17.
Therefore, the time complexity is O(2MN ) in general. While our
algorithm performs well for small datasets, our method is limited
by its memory requirements O(2MN ) for large datasets, such as
the experiment in Figure 16.

Performance. All of our performance is measured on a worksta-
tion with Intel Xeon 3.50GHz dual-core CPUs and 32GB memory,
and NVIDIA Quadro K5000 GPU with 2GB memory. For single
blue noise sampling, we compare our method with the traditional
CCVT [Balzer et al. 2009] and power diagrams method [de Goes
et al. 2012] on running time in Figure 12. Our approach exhibits
comparable performance and even outperforms the power dia-
grams method [de Goes et al. 2012] on running time. Since the
most time is spent on integral computation in the power diagrams
method [de Goes et al. 2012] and distance matrix computation in
our approach, it is possible that CCVT [Balzer et al. 2009] per-
forms better in running time than these two methods when the
number of sampling points is small. With the increasing of the sam-
pling points, our approach outperforms CCVT [Balzer et al. 2009].
When the number of sampling points is larger than 4,096, our ap-
proach is almost two times faster than CCVT [Balzer et al. 2009].
For mutli-class blue noise sampling, we compare our method with
Wei’s method [Wei 2010] on running time in Table II. Our ap-
proach is at least two times faster than Wei’s method [Wei 2010].
In Table II, we also show the memory usage in our approach for
single-class and multi-class sampling. Since we have used a global
distance matrix in our algorithm, more memory space is needed to
store the matrix in our algorithm than in the other algorithm. In
every iteration, updating the matrix accounts for most of the run-
ning time. Our approach, therefore, faces a challenge when there

Table II. Memory Usage and Comparison of Sampling Times
of Single Blue Noise Sampling

Number of Times(s) Memory(M)
Class [Wei 2010] Ours Ours

2 34.769 14.670 128.11
3 151.727 37.553 288.11
7 414.031 212.133 448.31

The number of sampling points of every individual class is 512. The sampling ratio
is 1/16 for every individual class sampling.

are large numbers of original points and sampling points. However,
we also notice that it is, in general, a sparse matrix. It is possible to
further improve the performance of our approach by making use of
a sparse distance matrix.

5. APPLICATIONS

Surface reconstruction of noisy point clouds. Surface reconstruc-
tion of noisy point clouds is a challenging problem. In this article,
we take original point clouds with noise as a discrete probability
measure of a two-dimensional surface, and we take samples on the
surface as another discrete probability measure. Samples on the
surface are the constrained Wasserstein barycenter of the original
point clouds. We can apply a single-class blue noise sampling to
generate samples on the surface. Triangulation is then implemented
by the open source code provided by Rahmani et al. [2014]. Fig-
ure 14 shows an example for surface reconstruction of point clouds
with heavy noise. Since the entropic regular term in the Wasserstein
barycenter plays a role in the smoothing of the transport plan with
hard constraint (Equation (4)), our approach can generate a smooth
surface.

Object distribution. Object placement without regularity arti-
facts plays an important role in texture synthesis. Blue noise sam-
pling provides a feasible approach for such a distribution. However,
placing multi-class objects with different sizes on the surface is a
difficult problem. Our approach can be directly applied to this prob-
lem. Figure 1 shows an example of placing three class objects with
different sizes on a square. Figures 1 and 15 show two examples for
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Fig. 14. Surface reconstruction of noisy point clouds. (a) is the original
point clouds with 8,856 points. (c) is the mesh reconstruction result on 3,946
sampling points. (b) is the rendering result with point clouds (a) and mesh
model (c). (d) is the close-up view of (c) at the square mark.

Fig. 15. Object placement on a complex geometry model. The number of
samples of each class is 200, 1,000, and 1,000.

placing three class objects with different sizes on two-dimensional
surfaces.

Color stippling. Color stippling is another very important appli-
cation related to blue noise sampling. We can apply our method to
multi-class color stippling on a CMY-RGB-K color model using the
input image as a weighted density field. The weighted value rep-
resents the importance of each color channel and is used to set the
number of each color dot. More dots are placed in the area where the
corresponding color is dominant. The discrete probability value ρ

j

i

is set as a constant 1/ni for every class. As shown in Figure 16, our
method can achieve reasonable color stippling. Note that the visual
quality depends on the color decomposition and blending method.

Visual abstraction. Scatterplots are widely used to visualize a
scatter dataset. When multi-class scattered points are shown within
a single scatterplot view, heavy overdraw of different class points
makes it inefficient for analysis (Figure 17). We apply our algo-
rithm to reduce the overdraw of original scattered points and to
preserve the point distributions in Figure 17. Compared with the
dart throwing method [Wei 2010; Chen et al. 2014], it is not neces-
sary to compute a continuous density function for each class in our
method.

6. CONCLUSION AND FUTURE WORK

We have presented a new multi-class blue noise sampling method
that takes initial samples and optimizes them to be constrained
Wasserstein barycenters of multi-class density function. Our ap-
proach introduces weighted parameters to explicitly adjust point
distributions of each individual class and the combined classes. By
adjusting the discrete density value at samples, we are able to gen-
erate multi-class samples with different sizes. Our approach is also
easy to be implemented in parallel, which ensures the efficiency
of computations. We have also performed applications on object
placement and color stippling.

Fig. 16. Color stippling by using the RGB-CMYK color model. The num-
ber of samples is 48k.

Fig. 17. Visual abstraction of multi-class scatterplots. The numbers of
original points in (a) are 14,880, 14,130, and 12,600 for yellow, red, and
blue points, respectively. The numbers of samples in (b) are 496, 471, and
420.

In the future, an interesting problem would be to study how to
extend our approach to the synthesis of point distributions. Another
possible direction is to study how to improve the efficiency for large
databases.
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A. Cengiz Öztireli, Marc Alexa, and Markus Gross. 2010. Spectral sampling
of manifolds. ACM Trans. Graph. (TOG) 29, 6 (2010), 168:1–168:8.

Hossein Rahmani, Arif Mahmood, Du Q. Huynh, and Ajmal Mian. 2014.
HOPC: Histogram of oriented principal components of 3D pointclouds
for action recognition. In Proceedings of the European Conference on
Computer Vision. 742–757.
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