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Abstract—Many different deep networks have been used to approximate, accelerate or improve traditional image operators. Among
these traditional operators, many contain parameters which need to be tweaked to obtain the satisfactory results, which we refer to as
“parameterized image operators”. However, most existing deep networks trained for these operators are only designed for one specific
parameter configuration, which does not meet the needs of real scenarios that usually require flexible parameters settings. To
overcome this limitation, we propose a new decoupled learning algorithm to learn from the operator parameters to dynamically adjust
the weights of a deep network for image operators, denoted as the base network. The learned algorithm is formed as another network,
namely the weight learning network, which can be end-to-end jointly trained with the base network. Experiments demonstrate that the
proposed framework can be successfully applied to many traditional parameterized image operators. To accelerate the parameter
tuning for practical scenarios, the proposed framework can be further extended to dynamically change the weights of only one single

layer of the base network while sharing most computation cost. We demonstrate that this cheap parameter-tuning extension of the
proposed decoupled learning framework even outperforms the state-of-the-art alternative approaches.

Index Terms—Image Processing and Computer Vision, Filtering, Restoration, Smoothing

1 INTRODUCTION

MAGE operators are fundamental building blocks for many

computer vision tasks, such as image filtering and restoration.
To obtain the desired results, many of these operators contain
some parameters that need to be tweaked. We refer them as
“parameterized image operators” in this paper. For example,
parameters controlling the smoothness strength are widespread
in most smoothing methods, and a parameter denoting the target
upsampling scalar is always used in image super resolution.

Recently, many CNN based methods [1], [2], [3] have been
proposed to approximate, accelerate or improve these parameter-
ized image operators and achieved significant progress. However,
we observe that the networks in these methods are often only
trained for one specific parameter configuration, such as edge-
preserving filtering [1] with a fixed smoothness strength, or super
resolving low-quality images [2] with a particular downsampling
scale. Many different models need to be retrained for different
parameter settings, which is both storage-consuming and time-
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consuming. It also prohibits these deep learning solutions from
being applicable and extendable to a much broader corpus of
images.

In fact, given a specific network structure, when training
separated networks for different parameter configurations 7 L as
[11, [2], [3], the learned weights W, are highly unconstrained and
probably very different for each «. But can we find a common
convolution weight space for different configurations by explicitly
building their relationships? Namely, W}, = h(7 k), where h can
be a linear or non-linear function. In this way, we can adaptively
change the weights of the single target network based on A in the
runtime, thus enabling continuous parameter control.

To verify our hypothesis, we propose the first decoupled
learning framework for parameterized image operators by decou-
pling the weights from the target network structure. Specifically,
we employ a simple weight learning network Nweight as h to
directly learn the convolution weights of one task-oriented base
network Npqse. These two networks can be trained end-to-end.
During the runtime, the weight learning network will dynamically
update the weights of the base network according to different
input parameters, thus making the base network generate different
objective results. This should be a very useful feature in scenarios
where users want to adjust and select the most visually pleasant
results interactively.

We demonstrate the effectiveness of the proposed framework
for many different types of applications, such as edge-preserving
image filtering with different degrees of smoothness, image super
resolution with different scales of blurring, and image denoising
with different magnitudes of noise. We also demonstrate the exten-
sibility of our proposed framework on multiple input parameters
for a specific application, and combination of multiple different
image processing tasks. Experimental results demonstrate that the
proposed framework is able to achieve almost as good results as
the one solely trained for a single parameter value.
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Despite of its generality and flexibility, all the convolution
weights of NVp,se need to be updated during the runtime. In the
other words, the whole network needs to be re-evaluated when
a new parameter is selected. This is very time-consuming and
unacceptable in real user scenarios. To be adaptive for practical
applications, the proposed framework can be further extended to
dynamically change the weights of only one single layer while
sharing most of the computation. With our default Ay, network
structure, experiments demonstrate this cheap parameter-tuning
version outperforms the state-of-the-art methods [4], [5] by a large
margin.

As an extra bonus, the proposed framework makes it easy
to analyze the underlying working principle of the trained task-
oriented network by visualizing different parameters. The knowl-
edge gained from this analysis may inspire more promising
research in this area. To sum up, the contributions of this paper
lie in the following four aspects.

e We propose the first decoupled learning framework for pa-
rameterized image operators, where a weight learning net-
work is learned to adaptively predict the weights for the task-
oriented base network in the runtime.

o We show that the proposed framework can be learned to in-
corporate many different parameterized image operators and
achieve very competitive performance with the one trained
for a single specific parameter or operator.

e We extend our framework to enable cheap parameter tuning
for real user scenarios, which outperforms many state-of-the-
art methods by a large margin.

e We provide a unique perspective to understand the working
principle of the trained task-oriented network with some
valuable analysis and discussion, which may inspire more
promising research in this area.

2 RELATED WORK

In the past decades, many different image operators have been
proposed for low level vision tasks. Previous work [6], [7], [8],
[9] proposed different priors to smooth images while preserving
salient structures. Some papers [10], [11] utilized the spatial
relationship and redundancy to remove unpleasant noise in the
image. Other papers [12], [13], [14] aimed to recover a high-
resolution image from a low-resolution image. Among them, many
operators are allowed to tune some built-in parameters to obtain
different results, which is the focus of this paper.

With the development of deep learning techniques, many
different neural networks are proposed to approximate, accelerate
and improve these operators [1], [3], [15], [16], [17]. But their
common limitation is that one model can only handle one specific
parameter setting. To enable all other parameters, enormous differ-
ent models need to be retrained, which is both storage-consuming
and time-consuming. By contrast, our proposed framework allows
us to input continuous parameters to dynamically adjust the
weights of the task-oriented base network. Moreover, it can even
be applied to multiple different parameterized operators with one
single network.

Recently, Chen et al. [18] conducted a naive extension for
parameterized image operators by concatenating the parameters
as extra input channels to the network. Compared to their method,
where both the network structure and weights maintain the same
for different parameters, the weights of our base network are
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adaptively changed. Experimentally we find our framework out-
performs their strategy by integrating multiple image operators.
By decoupling the network structure and weights, our proposed
framework also makes it easier to analyze the underlying working
principle of the trained task-oriented network, rather than leaving
it as a black box as in many previous works like [18].

To enable practical image processing on mobile devices, a
simple scheme to accelerate an operator is to apply it at a low-
resolution image then upsample the result by reintroducing high-
resolution details, which is used in bilateral upsampling [19] and
the fast guided filter [20]. To unify and generalize these two
methods, [4] presents bilateral guided upsampling, which is further
extended to [5] by incorporating such a technique into an end-
to-end trained deep network. Though [4] and [5] are able to
run very efficiently on even CPU devices, their resultant image
quality is not good enough. By contrast, our cheap parameter-
tuning extension directly runs the approximated operators on the
original image resolution by sharing most of the computation costs
for different operators, which not only enables real-time parameter
adjustment on CPU devices but is also able to demonstrate its
superior performance over these recent state-of-the-art approaches
[4], [5] by a large margin.

Our method is also related to evolutionary computing and
meta learning. Schmidhuber [21] suggested the concept of fast
weights in which one network can produce context-dependent
weight changes for a second network. Some other works [22],
[23], [24] casted the design of an optimization algorithm as
a learning problem, Recently, Ha et al. [25] proposed to use
a static hypernetwork to generate weights for a convolutional
neural network on MNIST and Cifar classification. They also
leverage a dynamic hypernetwork to generate weights of recurrent
networks for a variety of sequence modelling tasks. The purpose
of their paper is to exploit weight sharing property across different
convolution layers. But in our cases, we pay more attention to the
common shared property among numerous input parameters and
many different image operators.

3 METHOD
3.1 Problem Definition and Motivation

The input color image and the target parameterized image op-
erators are denoted as Z and f(7,Z) respectively. f(7,Z)
transforms the content of Z locally or globally without changing
its dimension. 7 denotes the parameters which determine the
transform degree of f and may be a single value or a multi-
value vector. For example, in Ly smoothing[26], 7 is the balance
weight controlling the smoothness strength, while in RTV filter
[8], it includes one more spatial gaussian variance. In most cases,
f is a highly nonlinear process and solved by iterative optimization
methods, which is very slow in runtime.

Our goal is to implement parameterized operator f with a base
convolution network Npgse. In previous methods like [3], [17],
given a specific network structure of Np,s., separated networks
are trained for different parameter configurations 7 % In this way,
the learned weights W, of these separated networks are highly
unconstrained and probably very different. But intuitively, for one
specific image operator, the weights Wy, of different 7 , might be
related. So retraining separated models is too redundant. Motivated
by this, we try to find a common weight space for different 71@
by adding a mapping constraint: W, = h(?k), where h can be
a linear or non-linear function.
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Fig. 1. Our system consists of two networks: the above weight learning network A,,¢;41: is designed to learn the convolution weights for the bottom
base network Ny, .. Given a parameterized image operator constraint by 7, these two networks are jointly trained, and Nuweight Will dynamically

update the weights of Ay, s for different 7 in the inference stage.

In this paper, we directly learn i with another weight learning
network Nweight rather than design it by handcraft. Assum-
ing Npese is a fully convolutional network containing a total
of n convolution layers, we denote their weights as =
(W1, Wa, ..., W,,) respectively, then

(W17W27~~»Wn) :Nweight(7) (l)

where the input of Nweight is 7 and the outputs are these
weight matrices. In the training stage, Nyqse and Nweight can
be jointly trained. In the inference stage, given different input
parameter 7, Nuweight Will adaptively change the weights of the
target base network Npqse, thus enabling continuous parameter
control.

Besides the original input image Z, the computed edge maps
are shown to be a very important input signal for the target base
network in [1]. Therefore, we also pre-calculate the edge map E
of Z and concatenate it to the original image as an extra input
channel:

Eyy = 1 XC:(IIx,y,c ~Zovyel T 1 Zoye — Zoti,y,cl @
HZoye = Zoy—1.el + Loy = Zayt1,el)

where x,y are the pixel coordinates and c refers to the color
channels.

To jointly train NVygse and Nypeighe, we simply use pixel-wise
L2 loss in the RGB color space as [18] by default:

L = | NoaseWNaeight (), L, E) — f(7, D> 3

3.2 Network Structure

As shown in Fig. 1, our base network Np,s. follows a similar
network structure as [1]. We employ 20 convolutional layers with
the same 3 x 3 kernel size, among which the intermediate 14
layers are formed as residual blocks. Except the last convolution
layer, all the former convolutional layers are followed by an
instance normalization [27] layer and a ReLU layer. To enlarge the
receptive field of AMyqse, the third convolution layer downsamples
the dimension of feature maps by 1/2 using stride 2, and the third-
to-last deconvolution layer (kernel size of 4 x 4) upsamples the
downsampled feature maps to the original resolution symmetri-
cally. In this way, the receptive field is effectively enlarged without
losing too much image detail, and meanwhile the computation cost
of intermediate layers is reduced. To further increase the receptive

field, we also adopt the dilated convolution [28] as [18], more
detailed network structure can be found in the supplementary
material.

In this paper, the weight learning network J\/’weight simply
consists of 20 fully connected (fc) layers by default. The 4.
fc layer is responsible to learn the weights W, for the i,
convolutional layer, which can be written as following:

W; ZAZ‘7+Bi7 Vi € {1,2,...,20} 4

Where A;, B; are the weight and bias of the i, fc layer. Assuming
the parameter 7 has a dimension of m and W; has a dimension
of n,;. The dimension of A; and B; would be 1,,; X m and 7,;
respectively.

Note in this paper, we don’t intend to design an optimal
network structure neither for the base network Npqse nor the
weight learning network Nweight. On the contrary, we care more
about whether it is feasible to learn the relationship between the
weights of Npqs. and different parameter configurations 7 even
by such a simple weight learning network J\/’weight.

3.3 Adaption to Cheap Parameter-Tuning

In the above default setting, the weights of all the convolution
layers in Npqse are learned by the weight learning network
Nuyeight and would be dynamically changed with the input pa-
rameters. That is to say, if users want to do some parameter tuning
for different visual effects, the whole network needs to be re-
evaluated. However in order to obtain the best image quality, most
current methods like [1], [17], [18], including our default design,
often requires to run through a complex deep networks and is very
expensive for computational cost.

To tackle the efficiency issue, we further extend our framework
from learning all the convolution weights to learning the weights
of only one single layer. Since all the following layers behind this
adjustable layer need to be re-evaluated when fed with varying
input features, it is better to put this layer as deeper as possible in
the base network. In this way, the computation of all the preceding
layers can be shared by different parameters, and only the layers
after this single adjustable layer need to be re-evaluated. This is of
great practicability for many real scenarios.

Specifically, that is to say, only the weights W; of the ith layer
is the function of input parameter 7 as Equation (4) while all the
remaining weights Wy, (k # ¢) are shared. During the runtime for
parameter tuning, we only need to re-run the layers k(k > 7). Note
that in our default network structure, WW; can be either the weights
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of the convolutional layer or the scale and shift paramters in the
following normalization layer. In this paper, by default, we choose
the last instance normalization layer as the target layer and learn
its scale and shift parameters, after which only one convolution
layer needs to be run.

Though it seems more difficult for the network to adapt its
behavior just with this single deep layer, we demonstrate its gen-
erality and effectiveness for different operators in the experiment
section. Such a network design is able to outperform the state-of-
the-art competitors [4], [5] by a large margin. More comprehen-
sive ablation study about the learned layer type (convolution or
instance normalization) and position k is conducted in the analysis
section.

4 EXPERIMENTS ON THE PROPOSED FRAMEWORK

To demonstrate the ability of our proposed framework in incor-
porating parameterised image operators while maintaining their
accuracy, we evaluate the proposed decoupled learning framework
with different training configurations as shown from subsection
4.3 to 4.4. We leverage two representative types of image process-
ing tasks: image filtering and image restoration. Within each of
them, more than four popular operators are selected for detailed
experiments. Below, we briefly introduce all the operators and
their implementation details as follows.

4.1 Choice of Image Operators

Image Filtering: here we employ six popular image filters,
denoted as Lo [6], WLS [29], RTV [8], RGF [9], WMF [30]
and LLF [31], which have been developed specifically for many
different applications, such as edge-preserving image smoothing,
texture removal, detail exaggeration, image abstraction, and image
enhancement.

e Ly smooth [6] - sharpening major image structures while
eliminating a manageable degree of details by minimizing
Ly image gradients.

e RTV [8] - extracting structures from textures by optimizing
the new inherent variation and relative total variation mea-
sures.

o WLS [29] - constructing edge-preserving multi-scale image
decompositions for progressive coarsening of images.

o RGF [9] - removing textures by controlling detail smoothing
under a scale measure.

e WMF [30] - an efficient 100+ times faster weighted median
filter.

o LLF [31] - fast local Laplacian filters for tone mapping.

Image Restoration: The goal of image restoration is to recover
a clear image from a corrupted image. In this paper we deal
with four representative tasks in this venue: super resolution [32],
denoising [33], deblocking [34] and derain [35], which have been
studied with deep learning based approaches extensively. Except
for the derain task, all the others are tested on various parameter
settings that indicate the corruption level of the input image.

« super resolution - increasing the resolution or enhancing the
lost details from a low-resolution blurry image, which is con-
trolled by a downsampling scale with bicubic interpolation.

o denoising - restore the clear image from a noisy image,
which is composed of Gaussian white noise controlled by
the Gaussian standard deviation.
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o deblocking - recover the image details from a compressed
JPEG image differentiated by the image quality factor.
e derain - removing rain streaks from a captured rainy image.

4.2 |mplementation Details

Dataset: We take use of the 17k natural images in the PASCAL
VOC dataset as the clear images to synthesize the ground truth
training samples. The PASCAL VOC images are picked from
Flicker, and consists of a wide range of viewing conditions.
To evaluate our performance, 100 images from the dataset are
randomly picked as the test data for the image filtering task.
‘While for the restoration tasks, we take the well-known benchmark
for each specific task for testing, which is specifically BSD100
(super resolution), BSD68 (denoise), LIVE1 (deblock), RAIN12
(derain). For the filtering task, we filter the natural images with
the aforementioned algorithms to produce ground truth labels. As
for the image restoration tasks, the clear natural image is taken as
the target image while the synthesized corrupted image is used as
input.

Parameter Sampling: To make our network able to handle
continuous parameters, we generate training image pairs with a
much broader scope of parameter values rather than a single one.
We uniformly sample parameters in either the logarithm or the
linear space depending on the specific application. If the upper
bound of the parameter range is tens or even hundreds of times
larger than the lower bound, the parameters are sampled in the
logarithm space to balance their magnitudes, otherwise they are
sampled in the linear space.

4.3 Results on the Single Parameterized Operator

Image Filtering. We first evaluate the performance of six image
operators with various controllable parameters individually. We
train one network for each parameter value (\) in one operator, and
also train a network jointly on continuous random values sampled
from the operator’s parameter range, which can be inferred from
the A column in Table 1. The performance of the two networks is
evaluated on the test dataset with PSNR and SSIM error metrics.
Since our goal is to measure the performance difference between
these two strategies, we directly compute the absolute difference
of their errors and demonstrate the results in Table 1.

As can be seen from the table, though our proposed framework
trained with numerous parameter settings lags a little behind
the one trained on a single parameter value, their difference
is very small especially for the visually more important error
metric SSIM. For each image operator, previous methods usually
requires to train separate networks for each parameter value, while
our proposed approach only trains one single network jointly.
Moreover, these image operators are dedicated to different image
processing applications, the proposed framework is still able to
learn all of them well, which verifies the versatility and robustness
of our strategy.

Some visual results of our proposed framework are shown in
Figure 2. As can be seen, our single network trained on continuous
random parameter values is capable of predicting high-quality
smooth images of various strengths.

Image Restoration. We then evaluate the proposed framework on
three popular image restoration tasks as shown in Table 2, which
perform essentially different from image filtering. Our model
learns to recover from different corrupted input images, instead
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TABLE 1
Quantitative absolute difference between the network trained with a single parameter value and numerous random values for each image operator.

Lo

WLS

RTV

RGF

WMF

LLF

metric A

single nume.

diff. A

single nume.

diff. X\ single nume.

diff. A single nume.

diff.

A single nume.

diff.

single nume. diff.

0.002 40.69 39.46
0.004 38.96 38.72
0.020 36.07 35.71
0.093 33.08 31.92
0.200 31.75 30.43

PSNR

1.23 0.100 44.00 42.12
0.24 0.215 43.14 42.64
0.36 1.000 41.93 41.63
1.16 4.641 39.42 39.64
1.32 10.00 39.13 38.51

1.88 0.002 41.11 40.66
0.50 0.004 40.91 41.10
0.30 0.010 40.50 41.07
0.22 0.022 41.07 40.77
0.62 0.050 40.73 39.18

0.45 1.00 41.77 37.03
0.19 3.25 38.36 38.27
0.57 5.50 38.11 38.35
0.30 7.75 37.65 37.99
1.55 10.0 37.52 37.08

4.74 1.00 39.06 36.79
0.09 3.25 39.78 38.76
0.24 5.50 39.94 38.53
0.34 7.75 40.06 39.20
0.44 10.0 39.49 38.72

227 2
1.02 3
141 5
0.86 7
077 8

38.00 37.83 0.17
34.64 35.71 1.07
32.34 32.29 0.05
30.11 29.91 0.20
29.53 28.95 0.58

ave. 36.11 35.25

0.86 ave. 41.52 4091

0.61 ave. 40.86 40.55

0.31 ave. 38.68 37.74

0.93 ave. 39.66 38.40

1.26 ave.

32.93 32.94 0.01

0.002 0.989 0.988 0.001 0.100 0.994 0.993 0.001 0.002 0.987 0.988 0.001 1.00 0.994 0.981 0.013 1.00 0.985 0.972 0.013 2
0 0.004 0.989 0.990 0.001 3.25 0.986 0.986 0 3.25 0.985 0.979 0.006
0.020 0.982 0.981 0.001 1.000 0.992 0.991 0.001 0.010 0.990 0.991 0.001 5.50 0.985 0.986 0.001 5.50 0.986 0.981 0.005

0.004 0.986 0.987 0.001 0.215 0.993 0.993

SSIM 0.093 0.977 0.973 0.004 4.641 0.987 0.989 0.002 0.022 0.992 0.992

0.200 0.973 0.968 0.005 10.00 0.986 0.987 0.001 0.050 0.992 0.990 0.002 10.0 0.984 0.982 0.002 10.0 0.986 0.984 0.002 8

0.992 0.992 0
0.988 0.990 0.02
0.983 0.984 0.01
0.977 0.977 0
0.976 0.974 0.02

W

0 7.750.984 0.985 0.001 7.75 0.986 0.985 0.001

N

ave. 0.981 0.979 0.002 ave. 0.990 0.990 0 ave. 0.990 0.990

0 ave. 0.986 0.984 0.002 ave. 0.985 0.980 0.005 ave. 0.983 0.983 0

TABLE 2
Quantitative absolute difference in PSNR (above) and SSIM (bottom)
between the network trained on a single parameter value and
numerous random values on the three image restoration tasks. Their
parameters specifically mean downsampling scale (s), Gaussian
standard deviation (o) and JPEG quality (q).

Super Resolution Denoising Deblock

s single nume. diff.

31.78 31.62 0.16
28.78 28.76 0.02 25
27312731 0 50

29.29 29.23 0.06 ave.
2 0.894 0.892 0.002 15

g

15

single nume.

31.17 31.07
28.94 28.98
26.22 26.14 0.08

28.77 28.73 0.04 ave. 30.37 30.30 0.07

0.881 0.883 0.002 10 0.817 0.817 O
3 0.798 0.796 0.002 25 0.821 0.822 0.001 20 0.881 0.882 0.001
4 0.728 0.726 0.002 50 0.722 0.718 0.004

ave. 0.806 0.804 0.002 ave. 0.808 0.807 0.001 ave. 0.849 0.849 0

diff. ¢ single nume. diff.

0.10 10 29.26 29.17 0.09
0.04 20 31.49 31.43 0.06

AW

ave.

of learning to obtain different visual effects given the same input
image as in the image filtering task.

As shown in Table 2, our results trained jointly on continuous
random parameter values also show no big difference from the
one trained solely on an individual parameter value, which further
validate our algorithm in a broader image processing literature.
Some corresponding visual results of our proposed framework are
shown in Figure 3.

4.4 Results on Jointly Training Multiple Image Opera-
tors

Intuitively, another challenging case for our proposed framework
is to incorporate multiple distinct image operators into a single
learned neural network, which is much harder to be trained due to
their different implementation details and purposes. To explore the
potential of our proposed neural network, we experiment by jointly
training over (i). 6 filtering based operators, (ii). 4 image restora-
tion operators or (iii). all the 10 different operators altogether.
To generate training images of each image operator, we sample
random parameter values continuously within its parameter range.
Since there is no parameter tuning for the derain task, we leverage
its default parameter setting for training.

The input to the weight learning network now takes two
parameters, one indicates the specific image operator while the
other is the random parameter values assigned to the specified
filter. These 10 image operators are denoted simply by 10 discrete
values that range from 0.1 to 1.0 in the input parameter vector.
Since the absolute parameter range may differ a lot from operator
to operator, for example, [2,4] for super resolution and [0.002,0.2]
for Lg filter, we rescale the parameters in all the operators into
the same numerical range to enable consistent back-propagated
gradient magnitude.

As shown in Table 3, training on each individual image
operator achieves the highest numerical score (#ope.=1), which
is averaged over multiple different parameter settings just like in
previous tables. While jointly training over either 6 image filters
or 4 restoration tasks (#ope.=6/4), even for the case where all
10 image operators are jointly trained (#ope.=10), their average
performance degrades but still achieves close results to the best
score. It means with the same network structure, our framework
is able to incorporate all these different image operators together
into a single network without losing much accuracy.

4.5 Comparison with Baseline [18]

We compare our proposed framework with one naive approach
that employs only the base network with additional input channels
as [18], which indicates the parameter values and image operators
separately. Each additional channel is occupied with a single value.

The results are shown in Table 3, which trains ten different
image operators including both image filtering and restoration
tasks together. We can see that the baseline from [18] lags behind
us across all ten image operators. The potential reason for this
phenomenon could be that it is more difficult to learn unified
convolution weights to be suitable for tasks different in both goals
and implementations. By contrast, the convolutional weights of
our base network are adaptively changed for different tasks and
input parameters. Theoretically speaking, our learned network
should have the capability to express the base network with more
numerous possibilities.

4.6 Generalization to Higher Dimensional Parameter
Space

Except for experimenting on a single input parameter, we also
demonstrate the experiments on inputting multiple types of pa-
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TABLE 3
Numerical results of our proposed framework jointly trained over different number of image operators (#operators). “6/4” refers to the results jointly
trained over either the front 6 filtering based approaches or the last 4 restoration tasks. “10” is the results of jointly training all 10 tasks. Our
approach also achieves superior performance over one baseline [18] on all the 10 image operators.

metric  method  #ope. Lo WLS RTV RGF WMF LLF SR denoise deblock derain average

1 3525 4091 40.55 37.74 3840 3294 2923 28.73 30.30 29.86  34.40
Ours 6/4 3327 3739 37.00 3541 36.06 30.08 28.89 28.67 30.10 3032 32.72

PSNR 10 32,67 36.59 36.03 34.64 3508 29.77 2853 2836 29.69 3045 3218
[18] 10 31.01 3485 3420 33.10 33.61 2858 2821  28.05 29.48 29.12  31.02

1 0979 0991 099 0984 0.980 0984 0.804 0.807 0.849 0.893  0.926

SSIM Ours 6/4 0969 0980 0979 0974 0967 0976 0.797  0.800 0.842 0.893  0.918

10 0965 0978 0975 0969 0962 0971 0.789 0.789 0.837 0.895  0.913
[18] 10 0949 0969 0964 0953 0947 0961 0.779 0.777 0.834 0.863  0.899

0.020 0.093 0.200

Fig. 2. Visual examples produced by our framework trained on continuous parameter settings of six image filters independently. Note all the visual
effects for one filter are generated by a single network.
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Fig. 3. Visual examples produced by our framework trained on continuous parameter settings of three image restoration tasks independently. Note
all the clean images for one restoration task are generated by a single network.

TABLE 4
Quantitative evaluation (PSNR) on the higher dimensional parameter
space of the RTV filter. “#dim.” indicates the number of leveraged
parameter dimensions, and “#ope.” is the number of jointly trained
image operators.

A (RTV)
0.010 0.022

41.07 40.77
40.78 40.56
40.95 40.93
40.95 40.87

36.50 35.51

0.004

41.10
40.89
40.82
40.83

37.16

0.050

39.18
39.23
39.78
39.68

33.52

#ope. #dim. 0.002

1 40.66
1 40.70
1 40.19
1 40.18

10 37.44

average

40.55
40.43
40.53
40.50

36.03

[SORN N SN OS I SR

rameters that belongs to either one image operator or various
operators.

In this section, we evaluate the performance on the famous
texture removal tool RTV [8]. RTV has multiple parameters to
adjust its visual effects, such as A which balances between the data
prior term and smoothness term in its energy function, o which
controls the spatial scale for computing the windowed variation
and is even more effective in removing textures, €5 that controls
the sharpness of the final results and maxIter that refers to the
number of iterations in the optimization.

We train our network on the continuous parameter range of
A first, therefore the input parameter is a one-element vector and
constrained in the one dimensional space. Its results are shown
in Table 4 with #ope. and #dim. both equal to 1. Then we add
one more parameter at a time to increase the input parameter di-
mension until all the aforementioned four parameters are included
to form a four-element input vector, where #dim. equals to 4.
Moreover, following the experimental setting in Table 3, we also

train our network on 10 different image operators including the
balance weight A for RTV to form a two dimensional parameter
space. We evaluate the performance on 5 discrete parameter values
of )\ that is commonly adopted for all the parameter dimensions.

We can see that when focusing on a single image operator
(RTV) with up to even 4 parameters, the resultant performance of
different parameter values are similar to each other in a reasonable
range. But when we incorporate more image operators into joint
training, the performance on RTV filter decreases significantly. A
reasonable explanation for this phenomenon is that as the visual
effects introduced by the additional input parameter are more
different from the existing one, it becomes harder to incorporate
the additional input parameter for joint training. Regarding the
experiment in Table 4, the additional parameter for more image
operators introduces more different visual effects compared to the
four inherent parameters in the RTV filter, and hence becomes
harder for joint training.

Note while incorporating more parameter dimensions into the
training process, we don’t modify the amount of training samples
and iterations. Each training sample is generated by randomly
sampling the leveraged parameters.

5 EXPERIMENTS ON THE CHEAP PARAMETER-
TUNING VERSION

In this section, we evaluate the cheap parameter-tuning adaption of
our proposed framework with many recent filtering and restoration
approaches. Most compared approaches design some complex and
advanced deep neural network to achieve the optimal performance
for their specific dedicated tasks. In order to balance between
the performance and computation costs, we slightly modify the
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structure of Np,se by utilizing the depth-wise convolution [36]
and increasing the intermediate feature channels (64 to 128) in this
section. We validate and study the effectiveness of the proposed
framework, which not only runs efficiently for parameter tuning
but also achieves state-of-the-art performance compared to many
recent deep learning approaches.

5.1 Image Filtering

We compare our proposed framework with two recent state-of-
the-art approaches [4], [5], which share the closest spirit as ours
in reproducing the image filters as well as possible while running
in real-time by varying between different image operators.

To conduct on a broader scope of image operators like the
other two approaches, besides the aforementioned six image
filters, we further add four operators with more different visual
effects for a fair comparison as follows.

o LLF remapping [31] - fast local Laplacian filters for tone
mapping by leveraging a remapping function.

o« WLS enhancement [29] - detail exaggeration implemented
via multi-scale image decompositions.

o Stylization [31] - transfer the look of one photographers
masterpiece onto another photo via fast local Laplacian
filters.

o Abstraction [46] - pencil drawing by combining the tone and
stroke structures, which complement each other in generating
visually constrained results.

Note the six image filters mentioned in Section 4 contains
controllable parameters that indicate different visual effects, while
each of the above four operators represents a unique fixed visual
effect. All these ten image operators are fed through the networks
for joint training. The input parameters are sampled similarly as
in section 4.4.

The image operators deployed in [4], [5] are relatively diverse,
which include both photographic effects [31] and image structure
manipulations [26] that are also demonstrated in our paper. Even
if our deployed image operators are not exactly the same as theirs
[4], [5], we believe the idea proposed in their paper is general
enough, and we apply them to the same operators in our paper
(some included and some not included in their papers).

In Table 6, we demonstrate the numerical results of our
proposed framework compared with the competitors BGU [4] and
DBL [5]. For a fair comparison, the evaluation is conducted on one
parameter setting (the default one) for each image operator follow-
ing the other two approaches. As can be seen from the numerical
errors (PSNR and SSIM), our results achieve significantly better
results. The average PSNR over 10 image operators are about SdB
larger than the second best competitor.

Note both BGU and DBL learn to reproduce one specific
operator with the default parameter setting, while our approach
learns all the 10 image operators with their full range of parame-
ter values jointly within one single network, which is much more
difficult and challenging.

5.2

Furthermore we compare our framework on the four aforemen-
tioned image restoration tasks: super resolution, denoising, de-
blocking and derain with many recent restoration methods as
shown from Table 7 to Table 10. Except for the derain task, all
the others are tested on various parameter settings that indicate

Image Restoration

TABLE 5
Running time evaluation (milliseconds) of our decouple learning
framework and its cheap parameter tuning module on different image
resolutions, along with the baseline [18]. It's evaluated on GPU devices
by default without specifications.

Resolution [18] Ours ParaTuning ParaTuning (CPU)
VGA (640x480) 487 6.20 0.59 0.65
720p (1280x720) 5.02 645 0.72 0.85
1080p (1920 1080) 5.88 6.90 0.79 0.98

the corruption level of the input image. Though these existing
algorithms are dedicated on each specific field with specifically
designed algorithms or network structures, our proposed frame-
work is still able to achieve very competitive results on all these
tasks. Need to note that all these tasks are jointly trained with one
single network by our approach.

Given each new example for the restoration tasks, it needs to
rerun the whole network from the beginning. Therefore it’s not
a very valid case to justify our cheap parameter-tuning frame-
work. However, theoretically this experiment still demonstrates
the extraordinary ability of deep networks to incorporate different
restoration capabilities within a very limited parameterized opera-
tion (the last instance normalization layer).

5.3 Running Time Comparison

In this section, we evaluate the running time of our proposed
framework and the cheap parameter tuning module on different
popular image resolutions. As shown in Table 5, given a new
input, we need to run through the whole model that takes less than
10 milliseconds for a 1080p image, but while switching between
different image operations it takes only less than 1 millisecond
on either GPU or CPU device, which is almost ten times faster
than running the full model. Our implementation leverages the
multi-core CPU package (NNPACK) in the MXNet framework
for acceleration, and our model runs on a 20-core CPU device.

We also evaluate the running time of the baseline [18]. Note
their approach and ours share most of the base network structure,
while their parameter tuning is implemented by adding additional
input channels to the base network, which doesn’t increase the
computation cost much. On the other hand, our framework in-
cludes one more weight learning network and hence lags behind
them on the running time. From this table, we can also see that the
weight learning network takes around 1.02 milliseconds to process
a 1080p image, which is very computationally efficient.

6 UNDERSTANDING AND ANALYSIS

To better understand the base network Npqse and the weight
learning network N ght> we analyze some meaningful behavior
behind our framework in this section.

6.1 Complexity of the Model Size

The saved weights of our proposed decouple learning framework
come from two parts, the weight learning network and base
network. Let’s discuss our basic implementation where all the
convolution weights are adaptively learned by the weight learning
network with n input parameters. The base network contains 2,432
instance normalization weights and 696,256 convolution weights
to be learned. While the convolution weights are adaptively pre-
dicted by the weight learning network, and hence are not required
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TABLE 6
Quantitative comparison with state-of-the-art approaches in reproducing image operators.

metric  method Lo WLS RTV RGF WMF LLF LLFremap WLS enhance Stylization Abstraction Average
BGU 31.76 27.03 26.15 2271 2127 2697 33.05 26.93 14.31 16.11 24.62
PSNR DBL 28.67 30.63 28.52 27.11 26.88 25.13 29.34 28.29 25.08 19.61 26.92
Ours 31.81 36.59 3428 3329 3400 29.74 3241 34.40 26.66 25.61 31.87
BGU 0912 0915 0.848 0.776 0.765 0.936 0.978 0.931 0.673 0.427 0.816
SSIM DBL 0.852 0.890 0.826 0.805 0.786 0.899 0.945 0.944 0.887 0.502 0.833
Ours 0.946 0971 0948 0945 0.940 0.967 0.969 0.986 0.927 0.835 0.943
TABLE 7
Quantitative results (PSNR/SSIM) of the JPEG deblocking task on the LIVE1 benchmark.
Quality JPEG ARCNN [34] TNRD [37] DnCNN [38] MemNet [39] Ours
10 27.77/0.7730  28.96/0.8076  29.15/0.8111 29.19/0.8123  29.45/0.8193  29.31/0.8170
20 30.07/0.8512  31.29/0.8733  31.46/0.8769 31.59/0.8802  31.83/0.8846  31.60/0.8816
TABLE 8
Quantitative results (PSNR/SSIM) of the image super resolution task on the BSD100 benchmark.
Scale Bicubic SRCNN [15]  VDSR [40] DRCN [41] DnCNN [38] MemNet [39] Ours
2 29.56/0.8431 31.36/0.8879  31.90/0.8960 31.85/0.8942  31.90/0.8961  32.08/0.8978  31.67/0.8934
3 27.21/0.7385  28.41/0.7863  28.82/0.7976  28.80/0.7963  28.85/0.7981  28.96/0.8001  28.76/0.7969
4 25.96/0.6675 26.90/0.7101  27.29/0.7251  27.23/0.7233  27.29/0.7253  27.40/0.7281  27.29/0.7257
TABLE 9 10 image operators with two input parameters only occupies 5.33
Quantitative results (PSNR) okl;therzmags denoising task on the BSD68  MB, which is sufficient for embedded systems.
enchmark. While adapted for cheap parameter tuning, only the weights
o BM3D[42] WNNM [43] TNRD [37] DCDP [44] Ours ina s?ngle instance normalization laygr are learned by the weight
learning network. The total saved weights of our framework are
15 31.07 31.37 31.42 31.63 31.48 . .
25 28.57 28.83 78.92 29.15 29.11 even closer to the one of an independent base network, therefore it
50 25.62 25.87 25.97 26.19 26.22 becomes more efficient to jointly train multiple image operators.
As the base network is bigger in this case, it takes 7.99 MB to
save the whole model.
TABLE 10
Quantitative results (PSNbIZ)nnggrﬁeram task on the RAIN12 6.2 The Effective Receptive Field
In neuroscience, the receptive field is the particular region of the
DerainNet [45]  DnCNN [38]  Ours sensory space in which a stimulus will modify the firing of one
28.94 30.90 30.08 specific neuron. The large receptive field is also known to be

to be saved. For each convolution layer in the base network, the
weight learning network contains a single fully connected layer to
predict its weights. Hence the learned weights for the fc layer are
totally 2,088,768 (696,256 < 3), where n equals to 2 for the case of
jointly training multiple image operators. Then the total weights
required to save our decouple learning framework are 2,091,200
(2,088,768+2,432).

As analyzed above, most saved weights come from the weight
learning network, which is equivalent to n+1 times the convo-
lution weights in the base network. Regardless of the detailed
base network design, such a conclusion still holds. While jointly
training multiple image operators, the total saved weights of our
framework are almost 3 times the weights of the independent base
network, however it implements theoretically numerous image
operations defined by the continuous input parameter range. In
our PyTorch implementation, the saved model for jointly training

important for modern convolutional networks. Different strategies
are proposed to increase the receptive field, such as deeper
network structure or dilated convolution. Though the theoretical
receptive field of one network may be very large, the real effective
receptive field may vary with different learning targets. So how
is the effective receptive field of NVy4s. changed with different
parameters 7 and Z ? Here we use Ly smoothing [26] as the
default example operator.

In Fig. 4, we study the effective receptive field of a non-
edge point, a moderate edge point, and a strong edge point
with different smoothing parameters A respectively. To obtain the
effective receptive field for a specific spatial point p, we first feed
the input image into the network to get the smoothing result,
then propagate the gradients back to the input while masking
out the gradient of all points except p. Only the points whose
gradient value is large than 0.025 % grad;,qe (9radm,mqz: is the
maximum gradient value of input gradient) are considered within
the receptive field and marked as green in Fig. 4. From Fig. 4,
we observe three important phenomena: 1) For a non-edge point,
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(b) 1 = 0.01

(a) Input image

() 1 = 0.02
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(d) 2 = 0.03 (e) 1 = 0.04

Fig. 4. Effective receptive field of Ly smoothing for different spatial positions and parameter \. The top to bottom indicate the effective receptive

field of a non-edge point, a moderate edge point, and a strong edge point.

the larger the smoothing parameter A is, the larger the effective
field is, and most effective points fall within the object boundary.
2) For a moderate edge point, its receptive field stays small until
a relatively large smoothing parameter is used. 3) For a strong
edge point, the effective receptive field is always small for all the
different smoothing parameters. It means, on one hand, the weight
learning network N ,cignt can dynamically change the receptive
field of Npqse based on different smoothing parameters. On the
other hand, the base network Npqse itself can also adaptively
change its receptive field for different spatial points.

6.3

In this subsection, we discuss about the relationship between
different learned convolutional kernels, and alternatives of the
learned parameter position and type to better understand our
proposed framework.

Investigation into the Learned Weight

6.3.1 Difference of the learned convolution kernels be-
tween jointly trained network and solely trained network

To analyse the difference of the convolution weights between
networks jointly trained on numerous random parameter values
(“nume.”) and a single parameter value (“fixed”), we compute
their correlation coefficient, individual mean and variance for each
layer as shown in Table 11.

As can be seen, the correlation coefficient is almost 0 every-
where, which means there is no linear relationship between the two
groups of convolution kernels. The absolute mean and variance of
jointly trained network is also significantly smaller than that of
the solely trained network. Therefore, in each way, their learned
convolution weights are very different from each other, even if
the learned smoothing effect is almost the same (PSNR/SSIM:
35.51dB/0.983 (nume.) vs. 35.83dB/0.982 (fixed)).

This simple experiment further verifies the huge solution space
in the form of learned convolution kernels. Two exactly same
results may be represented by very different convolution weights.
The linear transformation in our proposed weight learning network
actually connects all the different image operators and constrains

their learned convolution weights in a limited high dimensional
space.

6.3.2 Study of the learned parameter position and type

For most image operators presented in the paper, there is only
one parameter needed. It might be too complex to use a weight
learning network that only takes a scalar to manipulate all the
convolution layers in the base network. To conduct a comprehen-
sive study of the effects of where and what the learned controllable
parameters are, we start by three experimental settings, (i). learned
instance normalization parameters at different network depth. (ii).
learned different types of convolution parameters at a fixed net-
work depth. (iii). learned parameters in either all the convolutional
or instance normalization layers.

We compare the performance of different network settings in
Table 12. These experiments are made by reproducing the 10
image filters with the base network described in Section 3.2.

(i). At first, we adjust the position of learned controllable
parameters with four discrete network depth. It ranges from the
first (1) instance normalization layer to the last (19) layer (the 20th
convolutional layer is not followed by instance normalization).
From the table, we can see that as the learned parameters become
deeper in the network, the performance degrades. It’s a reasonable
phenomenon, since the deeper the parameters are, the smaller the
network capacity to differentiate various image operators is, and
thus it’s harder to incorporate all the operators in the network.

We can also observe that the average error (PSNR) over all
the 10 image operators only decreases by about 2.5dB from the
first layer to the last layer, however it significantly improves the
running speed when varying between different image operators in
the network.

(ii). To explore the influence of other types of parameters in
the network to separate these image operators, we replace the
controllable parameters in the instance normalization layer with
the ones in the convolutional layer.

Each convolutional layer contains a M x N xkxk weight
tensor and a M-length bias vector. M is the number of output
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TABLE 11
Comparison between the statistics of convolution kernels learned with random parameter values and a single parameter value. The numbers are
generated based on the WLS filter while A equals to 10.

layer index 1 2 3 4 5 6 7 8 9 10

correlation 0.005 -0.001 0.008 0.004 -0.005 0.007 0.008 0.010 -0.002 -0.012
mean (nume.) 0219  0.066 0.004 -0.069 -0.227 -0.183 -0.214 -0.131 -0.152 -0.141
mean (single) 0.542 0.801 0.604 -0.571 -2.090 -0.685 -0.520 -1.638 -1.604 -1.326
variance (nume.) 15514 12.166 15.511 18231 17.676 20.408 16.578 19.420 16.447 18.292
variance (single) 542.28 37370 490.53 419.55 482.71 559.00 532.14 505.67 471.50 437.69
layer index 11 12 13 14 15 16 17 18 19 20

correlation 0.011 0.184 -0.014 0.001 0.012 0.024 0.011 -0.001 -0.071 -0.017
mean (nume.) -0296 -0.168 -0.084 -0.310 -0.137 -0.201 0.003 -0.239 -0.407 0.634
mean (single) -1.117  -1.134 2417 -1.437 -1.043 -1977 -0.596 1.898 -3.203 3.358
variance (nume.) 17.704 20.141 18.767 21.080 28.461 23.795 19.475 14.592 13.703 4.220
variance (single) 549.51 500.61 585.75 507.40 792.44 588.06 581.66 501.08 487.62 140.33

TABLE 12

Numerical analysis of learned parameter type and position. “norm” and “conv” indicates the learned parameter type in either the instance
normalization layers or convolution layers. The number in the brackets behind the parameter type refer to the position where the learned layer is
located, “1” for the 1st layer and “all” for all the layers.

metric method Lo WLS RTV RGF WMF LLF LLFremap WLS enhance Stylization Abstraction Average
norm(1) 31.06 34.86 33.75 32.87 3349 29.22 3221 32.59 27.26 24.81 31.21
norm(7) 30.86 34.75 33.54 3297 3339 29.24 31.99 32.79 27.07 24.81 31.14
norm(14) 30.64 3431 33.06 3242 3321 29.15 31.80 32.53 27.05 24.83 30.90
norm(19) 28.53 31.22 29.46 29.72 30.69 27.03 30.36 29.78 25.57 24.38 28.67

PSNR conv(19) 30.57 34.17 3245 31.84 3296 28.80 32.07 31.95 27.46 26.30 30.85
conv channell(19) 29.54 32.80 31.14 3094 31.97 28.09 31.53 31.39 27.07 25.89 30.03
conv channel2(19) 24.87 26.63 24.86 26.17 27.48 23.26 24.86 25.29 21.82 24.45 24.96
norm(all) 31.71 3551 3431 33.10 33.96 29.56 32.45 33.11 27.32 25.21 31.62
conv(all) 31.64 35.02 33.67 32.81 3397 29.59 32.52 32.69 28.12 26.35 31.63
norm(1) 0.949 0.971 0959 0.954 0.948 0.966 0.981 0.982 0.923 0.819 0.945
norm(7) 0.945 0.969 0.958 0.955 0.948 0.967 0.980 0.982 0.917 0.812 0.943
norm(14) 0.935 0.963 0942 0.947 0.945 0.966 0.979 0.980 0.917 0.816 0.939
norm(19) 0.871 0.890 0.809 0.881 0.876 0.947 0.970 0.965 0.889 0.796 0.889

SSIM conv(19) 0.931 0948 0913 0.932 0.932 0.965 0.979 0.989 0911 0.826 0.932
conv channell1(19) 0.905 0.927 0.862 0917 0921 0.957 0.976 0.974 0.906 0.822 0.916
conv channel2(19) 0.741 0.727 0.629 0.700 0.737 0.844 0.899 0.914 0.848 0.741 0.778
norm(all) 0954 0972 0960 0.956 0.953 0.970 0.982 0.984 0.924 0.823 0.947
conv(all) 0.954 0.969 0.952 0.953 0.954 0.969 0.982 0.982 0.925 0.833 0.947

feature channels, N is the number of input feature channels, k is
the kernel size. M equals to IV for the intermediate convolutional
layers in our baseline network. Since the convolutional layer is
followed by an instance normalization layer, the added bias in the
convolutional layer will be balanced out by the following normal-
ization operation and becomes useless. Therefore we experiment
only by varying the parameters in the convolutional weights.

We study with three types of learned convolutional pa-
rameters, which are separately: “conv”, all the weight kernels
(M XN xkxk); “conv channell”, one slice of weight kernels
(M x1xkxk); “conv channel2”, another slice of weight kernels
(1xX N xkxk). The learned convolutional layer shares the same
network depth as the last instance normalization layer.

As can be seen from the table, learning all the weight kernels in
the convolutional layer (conv) achieves the highest performance,
which is very reasonable. While learning all the convolutional
kernels that are only related to one single input channel (conv
channell), the performance degrades by about 0.8dB. Learning
all the parameters that are related to one single output channel
(conv channel2) obtains the worst performance. Note even if

“conv channell” and “conv channel2” share the same number
of controllable parameters, all the learned parameters in “conv
channel2” only result in adjustment of a single channel of output
feature map, which influence the following layers much less than
“conv channell” and hence achieve worse results.

Interestingly, by learning the convolutional parameters (conv
and conv channell) achieves better results than learning instance
normalization parameters at the same network depth. This may be
because the convolutional layer is ahead of the instance normal-
ization, and the learned convolutional parameters (even M X kxk
for “conv channell”, k equals to 3 in our case) is much more than
the normalization’s (M x 2).

(iii). To further explore the difference between learning convo-
Iution and normalization layers, we try to learn the parameters in
either all the convolutional layers or all the instance normalization
layers in the network, which should theoretically achieves the best
performance of incorporating all the image operators.

As shown in the “conv(all)” and “norm(all)” rows, surprisingly
they achieve almost the same performance on the either PSNR
or SSIM error metric. This means it already touches the top
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numerous random parameter values with (“nume. (fc2R)”) and without (“nume. (fc2)”) ReLU layers inbetween.

TABLE 13
Quantitative evaluation of a few variants of the proposed network trained on the WLS filter [29]. We experiment separately by training only the base
network on a fixed single parameter value (“single (base)”), extending the weight learning network to two or more fully connected layers trained on

A single single (base) nume. nume. (fc2R) nume. (fc2)

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

0.100 4400 0994 4416 0994 42.12 0993 42.02 0992 4236 0.993
0.215 43.14 0993 43.08 0993 4264 0993 4223 0993 4243 0.993
1.000 4193 0992 40.61 0991 41.63 0991 4025 0991 4028 0.991
4.641 3942 0987 38.01 0988 39.64 0989 3731 0988 3735 0.988
10.00 39.13 0986 36.83 0986 38.51 0987 36.00 0985 3594 0.986
average 41.52 0990 40.54 0990 4091 0.990 39.56 0.990 39.67 0.990

TABLE 14

12

Quantitative evaluation of our proposed framework trained only with a set of fixed parameter values (“various (fixed)”) on the Lo smoother [6]. The

parameters used for training our framework are taken from the 5 non-boldface parameters between [0.002, 0.2] in the table. The extra 4

parameters with boldface are only used in the test stage. The absolute difference between the network trained on a single parameter (“single”) and

various fixed parameters (“various (fixed)”) is displayed in the bottom.

0.0020 0.0025 0.0033 0.0043 0.0200 0.0928 0.1200 0.1600 0.2000 average

sinole PSNR 40.69 40.19 39.77 3896 36.07 33.08 31.78 31.13 31.75 3594
smng SSIM 0989 0987 0986 0986 0.982 0.977 0973 0972 0973 0.981
various (fixed) PSNR 39.61 3933 3895 3851 3537 31.80 3140 30.69 3054 35.13
SSIM 0988 0987 0986 0986 0979 0.972 0972 0971 0970 0.979

difference PSNR 1.08 0.86 0.82 045 0.7 128 038 0.44 1.21 0.81
SSIM  0.001 0 0 0 0.003 0.005 0.001 0.001 0.003 0.002

performance limit of incorporating the 10 image operators with
this neural network.

Note learning all the normalization parameters (norm(all))
only obtains a little improvement (0.41dB) than learning the one
in the first layer (norm(1)), from which we can see it’s more
important which position the controllable parameters are instead
of how many layers the parameters are located in.

6.4

To help understand the connection between the base network
Niase and the weight learning network Nweight, we decompose
the parameter vector 7 and the weight matrix A; into independent
elements 71, ..., ¥ and Ay, ..., Az, respectively, then:

Interpretation of the Weight Learning Network

m
(A7 +B)®r=)Y nAn®@c+Bioxr (5

k=1
where & denotes convolution operation, and m is the dimen-
sion of 7 In other words, the one convolution layer, whose
weights are learned with one single fc layer, is exactly equivalent
to a multi-path convolution block as shown in Figure 5. Learning
the weight and bias of the single fc layer is equivalent to learning
the common basic convolution kernels B;, A;1, Asa, ..., Ajyn in

the convolution block.

6.5 Analysis of More Variants of Our Proposed Network

In this subsection, we experiment with a few variants of our
network to justify its effectiveness.

6.5.1

Since training a fully convolutional network alone has been
employed frequently by previous image processing papers [17],

Training the base network only

[1], [18], which presents a strong baseline, we experiment with
this alternative (‘“nume. (base) ) which only leverages the base
network by training it on one specific parameter configuration.
As show in Table 13, our proposed framework (“single”) achieves
even better performance than the baseline under the PSNR error
metric.

6.5.2 Training with more fc layers

We also try a deeper weight learning network with more fully
connected layers. Here we simply add one more fully connected
layer to the default weight learning network, and demonstrate the
performance of its two variants with (“nume. (fc2R)”’) and without
(“nume. (fc2)”) ReLU between these two layers respectively. As
shown in Table 13, they all achieve comparable performance with
that of single layer (“nume.”) used in our paper. The potential
reason for this phenomenon is that this one-layer weight learning
network is sufficient for adaptively learning various parameter
settings, while adding more weights/complexity to the network
does not contribute to the performance much.

6.6 Interpolation Ability of the Proposed Framework on
Unseen Input Parameters

Since the weight learning network contains a single fully con-
nected layer with no non-linear activation layers, the predicted
convolution weights should be a linear transformation of the input
parameters. Given such a fact, any convolutional kernels of a
specific parameter should be the linear interpolation of the other
two. Hence we are curious about the interpolation ability of the
proposed framework.

To verify such a property, we train the network using only
a few fixed parameter values, which corresponds to the 5 non-
boldface parameter values in Table 14. But in the test stage, we
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: element-wise add

>

VmAim
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Ai)/ + Bi —y> x Bi

: convolution

Fig. 5. Equivalent analysis of the connection between the base network Ayq,. and the weight learning network A, eiqn:- One convolution layer
whose weights are learnt by the fc layer is exactly equivalent to a multi-path convolution blocks.

use another 4 parameter values (boldface in Table 14) that have
not been seen by the network in the training stage but are between
the lower and upper bound of its parameter range. As shown in
Table 14, we can see that the network performs similarly to the
one trained with only one parameter value, but more importantly
for the interpolated boldface parameter values that the network
does not recognize, it also surprisingly achieves very comparable
results.

This means that a few parameter values are already sufficient
for learning a good linear transformation in the weight learning
network from input parameters to convolution weights. However,
as in a real scenario, the number of such fixed training parameters
is usually difficult to decide, due to many different parameter
ranges of image operators. As a result, we choose to sample
random parameter values instead of only a few of them for training
in our paper.

7 CONCLUSION

In this paper, we propose the first decouple learning framework
for parameterized image operators, where the weights of the task-
oriented base network Np,s. are decoupled from the network
structure and directly learned by another weight learning network
Nweight. These two networks can be easily end-to-end trained,
and Nyeignt dynamically adjusts the weights of Ny, for differ-
ent parameters 7 during the runtime. We show that the proposed
framework can be applied to different parameterized image oper-
ators, such as image smoothing, denoising and super resolution,
while obtaining comparable performance as the network trained
for one specific parameter configuration. It also has the potential
to jointly learn multiple different parameterized image operators
within one single network. For real user scenarios, we further
extend our framework to enable cheap parameter tuning, which
obtains superior performance over state-of-the-art methods by
a large margin. To better understand the working principle, we
also provide some valuable analysis and discussions, which may
inspire more promising research in this direction. More theoretical
analysis is worthy of further exploration in the future.
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