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Fig. 1. We introduce an algorithm for multi-robot collaborative dense reconstruction of unknown indoor scenes (a). Given the partially scanned scene, we
extract a set of task view points based on the uncertainty in the current reconstruction and assign them to the robots (b-c). The task assignment is formulated
as an Optimal Mass Transport (OMT). For each robot, a smooth movement path is planned based on the tasks assigned to it. Our algorithm enables the robots
to efficiently coordinate with each other, evenly distribute their scanning effort, and efficiently achieve a full coverage and high-quality reconstruction (d).

We present an autonomous scanning approach which allows multiple robots
to perform collaborative scanning for dense 3D reconstruction of unknown
indoor scenes. Our method plans scanning paths for several robots, allowing
them to efficiently coordinate with each other such that the collective scan-
ning coverage and reconstruction quality is maximized while the overall
scanning effort is minimized. To this end, we define the problem as a dy-
namic task assignment and introduce a novel formulation based on Optimal
Mass Transport (OMT). Given the currently scanned scene, a set of task
views are extracted to cover scene regions which are either unknown or
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uncertain. These task views are assigned to the robots based on the OMT op-
timization. We then compute for each robot a smooth path over its assigned
tasks by solving an approximate traveling salesman problem. In order to
showcase our algorithm, we implement a multi-robot auto-scanning system.
Since our method is computationally efficient, we can easily run it in real
time on commodity hardware, and combine it with online RGB-D recon-
struction approaches. In our results, we show several real-world examples
of large indoor environments; in addition, we build a benchmark with a
series of carefully designed metrics for quantitatively evaluating multi-robot
autoscanning. Overall, we are able to demonstrate high-quality scanning
results with respect to reconstruction quality and scanning efficiency, which
significantly outperforms existing multi-robot exploration systems.
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1 INTRODUCTION

Reconstructing and mapping indoor environments is critical to a
large variety of applications, ranging from 3D content creation
for augmented and virtual reality to localization for domestic robot
navigation. On the hardware side, we have witnessed the emergence
and proliferation of commodity range sensors (e.g., Microsoft Kinect,
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Intel RealSense, etc.) that capture depth data in real-time. On the
software side, researchers have made incredible progress developing
online RGB-D reconstruction methods [Izadi et al. 2011; Newcombe
et al. 2011] that are able to reconstruct large environments [Chen
et al. 2013; Nießner et al. 2013] along with robust camera tracking
[Dai et al. 2017; Whelan et al. 2015; Zhang et al. 2014].

The real-time capabilities of these approaches allow human opera-
tors to reconstruct environments in an interactive fashion; e.g., by
moving a hand-held sensor through a scene guided by the imme-
diate visual feedback. Unfortunately, these frameworks are hardly
user-friendly and involve significant experience. For instance, it is
challenging for novice users to keep the camera trajectory smooth
so not to break the pose estimation of camera tracking approaches.
In addition, the live visualization is often insufficient to communi-
cate scanning goals; for instance, where the operator should go next
in order to obtain data from the regions that have not been scanned.
As a result, the obtained reconstructions are often unsatisfying, and
suffer from incomplete regions and misaligned geometry.

An alternative to human-operated scanning is autonomous scene
scanning and reconstruction. Here, the key advantage is that a robot
can leverage the existing reconstruction for trajectory planning.
This way, a robot can provide high-quality reconstructions, with
high levels of coverage and pose alignment quality. Although the
joint planning of robot movement paths and camera trajectories,
with the overall control of 3D reconstruction quality is a highly
challenging problem, there have been significant progress in the
recent years in the graphics and robotics communities [Charrow
et al. 2015; Liu et al. 2018; Song et al. 2015; Xu et al. 2017].

Despite the promising results of these works, the major drawback
is that they are inherently designed to operate only a single robot
at a time. This greatly limits the scanning efficiency for large in-
door environments. In this work, we address this shortcoming by
introducing a collaborative scanning approach that allows multiple
robots to jointly reconstruct a scene via combining and sharing
their scanning resources. While multi-robot scanning has incredible
potential for fast scanning, its problem statement is significantly
different from the one in a single robot scenario. In this setting, we
need a joint path planning for multiple robots to allow them to effi-
ciently coordinate their scanning effort in the unknown scene, such
that the collective scanning coverage and reconstruction quality is
maximized, while the overall scanning effort is minimized.

Our key idea is to reduce multi-robot collaborative scanning to a
dynamic task assignment problem. Given the partial scene scanned
so far, we extract a set of task views looking into the regions which
are either unknown or uncertain thereby needing more scan. These
task views are assigned to the multiple robots so that the traveling
cost and scanning effort of all robots is minimized. We formulate
this objective based on Optimal Mass Transport (OMT), which is
a classic approach to resource distribution problems [Rachev and
Rüschendorf 1998]. We then compute for each robot an optimal
traverse path over its assigned tasks by solving a traveling salesman
problem (TSP), where each task view is visited exactly once. Finally,
we transform the TSP path into a smooth robot movement path, and
compute a camera trajectory along the movement path. Our method

alternates between path planning and scene geometry update, until
the entire scene is scanned and reconstructed.

We develop a multi-robot scanning system, where the robots can ef-
ficiently coordinate with each other, evenly distribute their scanning
efforts, and quickly achieve a complete and quality 3D reconstruc-
tion of an environment. Our system is tested in real-world scanning
of six indoor scenes. For quantitative evaluation, we run our method
on synthetic scenes with known ground-truth. We propose a few
evaluation metrics and carefully analyze our algorithm on a bench-
mark dataset. In our results, we show that our method achieves
significantly higher reconstruction quality and scanning efficiency
than the state-of-the-arts. In addition, we show that the algorithm
is extremely robust with respect to the initial robot positions and
the number of robots, which facilitate explorative scanning with no
prior knowledge. To sum up, the contributions of this work are:

• Formulation: Optimal Mass Transport formulation tailored for
multi-robot scanning of unknown indoor environments.

• Optimization: Efficient solution to multi-robot scan planning
based on a divide-and-conquer scheme that interleaves task
assignment and path optimization.

• Metrics and benchmark: Metrics for quantitatively evaluating
both reconstruction quality and scanning efficiency, as well as a
benchmark for this task, which will be made publicly available.

• System: End-to-end scanning system for collaborative autonomous
scanning, which will be released on top of the ROS [2014].

2 RELATED WORK

RGB-D reconstruction.With the introduction of commodity depth
cameras, we have seen significant advances in offline and online
RGB-D reconstruction. KinectFusion [Izadi et al. 2011; Newcombe
et al. 2011] was one of the first to realize a real-time volumetric
fusion framework of Curless and Levoy [1996]. In order to han-
dle larger environments, spatial hierarchies [Chen et al. 2013], and
hashing schemes [Kahler et al. 2015; Nießner et al. 2013] have been
proposed. At scale, these methods also required robust, global pose
optimizations which are common in offline approaches [Choi et al.
2015]; however, fast GPU optimization techniques [Dai et al. 2017]
or online re-localization methods [Whelan et al. 2015] allow for real-
time global pose alignment. Our work extends this line of research
to achieve real-time autonomous scanning by multiple robots.

Autonomous reconstruction with robots. Recent years have
witnessed fast development on autonomous scanning for scene
reconstruction with robots. Different from the traditional research
on robot mapping, the main focus of these works is on the final dense
surface reconstruction quality, rather than only creating a sparse
map. The early methods started to look at single objects [Krainin
et al. 2011; Kriegel et al. 2012; Wu et al. 2014], which was then
subsequently expanded to environments [Charrow et al. 2015; Xu
et al. 2017]. In this work, we go one step further by introducing
a real-time approach to collaborative reconstruction of unknown
indoor scenes with multiple robots.
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Next best view (NBV) planning. View selection and camera tra-
jectory optimization are the core problems for robot-operated au-
tonomous scanning [Chen et al. 2011]. Due to the explorative nature
of auto-scanning, NBV selection is typically solved in a greedy man-
ner. Many algorithms have been developed for active scanning of sin-
gle objects [Krainin et al. 2011; Wu et al. 2014] and scenes [Fan et al.
2016; Low and Lastra 2006]. Recently, an object-centric approach
has been proposed for view planning in active scene scanning [Liu
et al. 2018]. Reinforcement learning has recently shown promising
results on robot navigation (e.g., [Gupta et al. 2017]), but is still
intractable for online, explorative scanning of large environments.

Multi-robot coordination and collaborative mapping. There
is a large body of literature on multi-robot coordination and col-
laborative mapping [Atanasov et al. 2015; Thrun et al. 2005; Yan
et al. 2013]. Of particular relevance to our work is multi-robot si-
multaneous localization and mapping (SLAM) [Forster et al. 2013;
Mohanarajah et al. 2015; Schmuck and Chli 2017], and more closely
multi-robot scene exploration and coverage [Bhattacharya et al.
2014; Faigl et al. 2012; Visser et al. 2013]. In this problem, a team of
robots is driven to build joint maps of an environment, where the
core problem is inter-robot co-localization and map merging. These
works, however, mostly produce sparse map of the scene, rather
than dense, high-quality reconstruction. The latter problem poses
special challenges such as quality-driven view planning for multiple
robots, which goes beyond the frontier-based exploration studied
in those previous works.

Optimal Mass Transport. The optimal task assignment problem
with capacity constraints has been extensively studied in engineer-
ing and economics for resource distribution [Haker et al. 2004;
Rachev and Rüschendorf 1998]. It has also been employed to solve
optimal coverage problems in sensor networks and robotics [Arslan
and Koditschek 2016; Cortés 2010; Patel et al. 2014]. In our work, we
adapt the optimal mass transport formulation for autonomous scan-
ning with quality requirements, which leads to a new and interesting
problem statement. For example, the view-oriented distribution of
scanning effort is different from the location-based coverage set-
ting in the traditional formulation. Moreover, our work considers a
dynamic scanning task assignment problem with dynamically chang-
ing boundary conditions due to the progressively acquired scene
geometry, which also leads to a novel problem setting.

3 METHOD

3.1 Problem statement and method overview

Given an indoor scene whose map is unknown a priori, we drive R
robots, {Rr }r=1, ...,R , to collaboratively explore and map the scene
such that the scanning coverage and reconstruction quality is maxi-
mized while the scanning effort is minimized.

Since the map of the scene is unknown a priori, it is impossible to
plan for the entire scanning process. A natural approach is “scan-
and-plan” where the system alternates between robot scanning and
path planning. The planning is based on the information gained
by the scanning completed so far. Therefore, we need a temporal

Joint RGBD 
reconstruction

OMT-based
task assignment

(Sec. 3.2-3.4)

Per-robot
TSP path planning

(Sec. 3.5)

Per-robot scanning 
trajectory opt.

(Sec. 3.5)

Multi-robot 
scanning

Planning interval timed up or replanning triggered (Sec. 4)

Scanning not terminated (Sec. 4)

Fig. 2. An overview of our planning pipeline. In each planning interval, our
method performs task view extraction (Sec. 3.2), OMT-based task assign-
ment (Sec. 3.3 and 3.4), and per-robot path planning and camera trajectory
optimization (Sec. 3.5). The cause of replanning and the termination criteria
are elaborated in Sec. 4.

discretization and conduct planning for consecutive time intervals,
which we refer to as planning intervals. The duration of each plan-
ning interval is also known as the planning horizon [Thrun et al.
2005] in the robotics field.

In what follows, we elaborate our problem setting by introducing
the spatial/temporal discretization and the task definition of robot
scanning and then provide an overview of our solution.

Spatial discretization.Our method works with indoor scenes with
walls and furniture but not staircases (assuming planar ground). Dur-
ing explorative scanning, the scene is represented as a 3D volume
of occupancy grid, based on OctoMap [Hornung et al. 2013]. To sim-
plify the planning, the occupancy grid is projected to the floor plane
forming a flat layout of obstacles. Under the assumptions of a planar
world, each robot Rr is parameterized by a state (xr ,yr ,θr ) ∈ SE(2)
(see Figure 3(a)), where (xr ,yr ) ∈ R2 is the robot position in the 2D
plane while θ ∈ [0, 2π ) is camera orientation, which is independent
from the robot’s direction of motion because the camera is mounted
on the robot with a yaw degree of freedom.

Temporal discretization. The robot planning is conducted at con-
secutive planning intervals, {Ti }i=0, ...,+∞. Specifically, at the be-
ginning of each planning interval, we compute the scanning tasks
and plan the motions for all robots for the time interval. During this
time interval, the robots move and scan to accomplish the current
tasks before entering the next planning interval. This process re-
peats until no more scanning task exists. Note that in this scheme
the planning for each interval is based only on the scanned scene
at the beginning of the interval and no update is performed for
the planning during the execution of a plan. The duration of each
planning interval is determined dynamically (see Sec. 4).

Task definition and planning goal. For each planning interval,
we compute the scanning tasks based on scene geometry scanned
so far. Intuitively, given the current scene geometry, scanning task
can be defined as the scene regions that require more scans due
to incomplete or low-quality coverage. To facilitate scan coverage,
however, we convert region-based scanning tasks to view-oriented
tasks. In particular, we sample a set of scanning views pointing to
the task regions, which we name task views. In a planar world, a
task view can be represented as Tk = (xk ,yk ,θk ) ∈ SE(2). For each
scanning interval, the set of all scanning tasks is represented by
{Tk }k=1, ...,K . Thus, our goal for the current planning interval is to
drive the multiple robots to visit and take all task views in the most
efficient way possible.
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Fig. 3. (a): Discretization of 3D parametric view space (x, y, θ ), with a
spatial resolution of 10cm and angular resolution of 5◦. (b): An illustration
of scanning distance dobs(v) and scanning angle α (v) of a view v . The view
is taken at the 3D position of (xv , yv , hs ) with hs being the sensor height.
n is the normal at the hitting point on the obstable surface. (c): Function
ψ (v) defined over scanning distance dobs(v).

Multi-robot planning. To plan the scanning for multiple robots,
we first construct a weighted task graph, by setting the task views
as nodes and their pair-wise shortest path as edges. The path length
is used as the edge weight. To minimize the scanning effort of all
robots, a natural choice is to formulate the planning as a multiple
traveling salesman problem (mTSP) which determines for each ro-
bot a tour such that the total traveling cost is minimized and that
each task view is visited exactly once by one robot. Since mTSP is
NP-hard [Bektas 2006] and there is no efficient exact solution, we
propose a divide-and-conquer scheme which consists of two steps.
First, we solve a discrete optimal mass transport (OMT) for an opti-
mal assignment of all task views to all robots. Then for each robot,
we solve a vanilla traveling salesman problem (TSP) to determine an
optimal visiting path for all tasks assigned to the robot. Although
the per-robot TSP is still NP-hard, due to the reduced problem size,
the problem can be solved much more efficiently to meet the require-
ment of online planning. We show through experiment that this
OMT-based optimization outperforms the approximate solutions to
mTSP in terms of scanning efficiency.

Figure 2 gives the pipeline of our method. Our method interleaves
scanning task assignment and scanning path planning for consecu-
tive planning intervals. In the following sections, we first introduce
the extraction of task views (Sec. 3.2). We then present the formu-
lation of our planning objective based on optimal mass transport
(Sec. 3.3). Following that, we provide a discretized version of the
objective as well as its solution (Sec. 3.4). Finally, we describe an
algorithm to optimize the per-robot scanning trajectories (Sec. 3.5).

3.2 Scanning Task Extraction

Given the currently scanned scene geometry, we extract a set of
scanning task views to be covered by the multiple robots. The task
extraction take both coverage completeness and scanning quality
into account. The former drives the robots to scan the unknown or
uncertain regions. The latter is related to the limited resolution of
a 3D scanner. For a 3D scanner, good scanning quality is obtained
within a fixed range of scanning distance and scanning angle (be-
tween view direction and surface anti-normal). Regions scanned
beyond these ranges will not receive a quality scanning coverage.
For example, the valid range of scanning distance for a Kinect sensor
is between 50cm and 3m. The best scanning angle is usually 0◦ and
the quality decreases as the angle increases.

1 2 3 4

Fig. 4. Visualization of 2D uncertainty maps (red is high uncertainty and
blue is low) with increasing scans.

𝜃 = 150° 𝜃 = 210° 𝜃 = 270°𝜃 = 180°𝑥

𝑦

target

𝜃

Fig. 5. Visualization of 2D validness maps (red is high validness and blue is
low) for different turning angles (θ = 150◦, 180◦, 210◦ and 270◦) against a
target obstacle (the red circle in the map to the left). The best scanning view
against the target is obtained at the green dot with a turning angle of 210◦.

To facilitate the extraction of scanning task views, we compute two
auxiliary maps in accordance to the two requirements above, an
uncertainty map defined in the 3D occupancy volume and a validness
map defined on the parametric space of camera view, i.e., SE(2).

Uncertainty map. Given the current occupancy volume, we mea-
sure the scanning uncertainty of each voxel as follows. First, an
unknown voxel is assigned with a very high uncertainty. For a
known voxel, there are two cases. If the known voxel is empty (un-
occupied), its uncertainty is zero. Otherwise, the voxel represents
the surface of an obstacle or object and we compute its uncertainty
based on its mapping uncertainty in depth fusion. In particular,
it is defined as the weights in the truncated signed distance field
(TSDF) [Curless and Levoy 1996]. TSDF weight is a simple and ef-
fective measure of scanning quality accounting for both scanning
distance and angle. Figure 4 visualizes the uncertainty maps as the
three-robot scanning proceeds.

Validness map. To ensure the extracted task views are within
the valid scanning range against the obstacles in the scene, we
define a validness map in the space of camera views. Since the
camera view point v is defined in the 3D parametric space, i.e.,
(xv ,yv ,θv ) ∈ SE(2), the validness map is a 3D volumetric field
(Figure 3(a)). The validness of a view point is 1 (the maximum value)
if the view is within the valid distance range and has a 0◦ scanning
angle against the nearest obstacle that is visible to the view point.
The value decreases as the scanning distance deviates from the valid
range or the angle from 0◦. If a view points to an unknown voxel, we
set its validness to 1, to encourage the robot to explore the unknown.

In practice, we discretize the parametric view space where the 2D
position simply takes the 2D (floor) projection of the 3D occupancy
grid and the turning angle is discretized at 5◦ intervals. Therefore,
the validness map is defined in aM ×N × 72 volume, withM and N
being the horizontal resolution of the 3D occupancy grid. For each
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(a) (b)
Fig. 6. Illustration of task view selection. (a): For the voxel in the head of
priority queue, we select the best view, v∗, from which the voxel is visible
and whose validness value is the highest. (b): Once v∗ is selected, it is
marked as a task view. The entries for all voxels covered by the view cone
(FOV) of v∗, as well as the head, are removed from the priority queue.

cell v in this volume, (xv ,yv ,θv ), we first find its closest obstacle
visible along the view direction. This is achieved by casting a ray
from the 3D point (xv ,yv ,hs ) along the direction of θv , where hs
is the height of the scanner mounted on the robot, and find the
first intersection with an obstacle voxel in the 3D occupancy grid
(Figure 3(b)). This can be performed efficiently in the 3D volume
using the fast 3D DDA algorithm. If the ray does not intersect an
obstacle voxel, we set the validness ρ(v) = 1. Otherwise, its validness
is computed as ρ(v) = φ(v)ψ (v), where φ(v) = e−α (v)

2/σ 2
measures

the deviation of the scanning angle α(v) from 0◦, with σ = 0.6.
The functionψ (v) measures the scanning distance deviation with
respect to the valid scanning range of the sensor [dmin,dmax]; see
Figure 3(c) for its definition. In the figure, dobs(v) is the distance
from the position of view v to the closest visible obstacle. dinf is
set to 6m. To speed up runtime, we compute the validness value
only for the view points located within known, empty regions. In
Figure 5, we visualize the validness maps for a given position of
target obstacle in four different turning angles.

Task view extraction. To extract task views, we first sort all voxels
in the uncertainty map into a priority queue based on their uncer-
tainty values. For efficiency reasons, we consider only those frontier
voxels that lie in the interface between empty and unknown voxels.
Starting from the head voxel in the priority queue, we select the
best scanning view for it. To do this, we scan the validness map and
extract all cells whose view ray passes through the voxel, meaning
that the voxel is visible to that view, and whose location is not too
close to an obstacle (distance to any obstacle voxel is larger than
1.5 times the radius of robot), to avoid collision. If such views exist,
we select the one with the highest validness value as the best view
for the voxel. This view is stored as a task view. Once a view is
selected, all voxels which are within the field of view of the sensor
placed at that view are removed from the priority queue. The head
voxel is also removed from the priority queue. See Figure 6 for an
illustration. The above process repeats until a prescribed maximum
number κR task views are selected. κ is a scaling factor whose im-
pact and choice will be elaborated in Section 5.4. Finally, we score
the importance of each task view based on the reduction of mapping
uncertainty using the method in [Krainin et al. 2011]. Please refer
to Appendix (in the supplemental material) for details.

(a) (b) (c) (d)
Fig. 7. Definition of OMT cost. The blue dot represents a robot and the
black dots are task views assigned to the robot. The lines indicate distance
cost. Since an efficient scanning path is a one-pass traverse of all tasks,
TSP-based distance cost (b) is more natural than the distance summation in
(a), while the former is costly to compute. We instead measure the distance
from the robot to the centroid (the green dot in c) of all task points as the
distance cost. The compactness cost is defined as the sum of task-to-centroid
distances. In (d), the green cluster is more compact than the red one.

3.3 Planning Objective Formulation

Having computed a set of task views, our next step is to assign
the robots to take the tasks so that the moving effort of all robots
is minimized. We formulate this task assignment problem as an
Optimal Mass Transport (OMT) problem. Given two distributions,
an optimal transport plan transforms a source distribution into a
target distribution, where optimality is defined according to a given
metric. In our setting, the source is the spatial distribution of robots
within the environments:

µsource =
R∑
r=1

δ (Rr ) (1)

where δ (·) is the Dirac function. The target distribution describes
the spatial distribution of the scanning tasks within the scene:

µtarget =
K∑
k=1

δ (Tk ) (2)

Multi-robot task assignment objective. The optimal scan plan-
ning problem that assigns robots to scanning tasks can then be
formulated as finding a mapping T that minimizes the following
objective:

argmin
T

∫
x ∈SE(2)

γ (x ,T(x)) dµsource (3)

where γ (a,b) measures the cost if a is mapped to b, and T(x) ∼
µtarget is the image of x ∼ µsource. The optimal mass transport is
the minimum of the cost of T. The discretization of the objective
with the cost definition will be discussed in the next section.

3.4 Discretization of Planning Objective

In this section, we propose a discretized planning objective through
defining the cost of the OMT map T and provide a solution to the
optimization. We mainly consider the following two aspects.

Movement cost. Optimally, the movement cost should be defined
as a one-pass traversing distance visiting all the tasks. This requires
solving a TSP which would make the optimization computationally
intractable. Therefore, we opt for an approximate cost which is the
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(c)

(b)

(a)

Fig. 8. (a): Given the currently scanned scene (shape in gray), a set of task
views (black camera icon) are extracted. (b): By solving OMT, the tasks are
assigned to the four robots (see color correspondence). For each robot, the
visiting order of the tasks is determined by solving a local TSP. (c): The
traversing paths are smoothed to obtain the final movement paths.

shortest distance from the robot to the centroid of the set of assigned
tasks. See Figure 7(c) for illustration.

Robot capacity. Due to the fixed moving speed of a robot, each
robot has a limited scanning capacity defined as the maximum
number of tasks it can accomplish during a planning interval. The
time required for finishing one task depends not only on robot
moving speed but also on the distance of the task; the latter is
related to both room size and robot count. Therefore, an accurate
estimation of robot capacity is difficult. In our work, we set the
capacity of a robot Rr asCr = K total

R ·
vr
vmax

, where K total is the total
number of tasks, vr the moving speed of the robot and vmax the
maximum speed of all robots. In the case where all robots move
equally fast, it leads to a load-balancing assignment of tasks.

Discretized objective. To meet the requirements above, we dis-
cretize Eq. (3) in the following objective function:

min
T

R∑
r=1

∑
Tk ∈Ωr

γ (Tk ,ωr )︸                  ︷︷                  ︸
compactness

+

R∑
r=1

γ (Rr ,ωr )︸          ︷︷          ︸
distance

+

R∑
r=1

(|Ωr | −Cr )
2

︸              ︷︷              ︸
capacity

(4)

where Ωr is the set of assigned tasks for Rr .ωr is the centroid of Ωr .
γ (·, ·) is the shortest distance constrained on the currently scanned
scene geometry. The first term measures the compactness of the
tasks assigned to one robot by the sum of inter-task distances (Fig-
ure 7(c)). This is similar to the compactness term defined in power
diagrams [Aurenhammer 1987]. Minimizing this term ensures that
the tasks assigned to one robot are not spatially scattered. The dis-
tance term minimizes the moving cost of robot in finishing its tasks.
The capacity term tries to match the number of task assigned to a

(a) (b) (c) (d)
Fig. 9. Multi-robot paths planned for different planning intervals, during
the progressive scanning process of a real-world scene from (a) to (c). The
explored / known regions are shaded in grey color. (d) shows the final
reconstruction in top view.

robot to its capacity. The optimization can be solved very efficiently
using the Lloyd’s algorithm [Du et al. 2006] (see Section 4 for more
details). Figure 8(b) shows an example of task assignment for four
robots. In Figure 9, we demonstrate the progressive planning and
scanning process on a real scene by three robots.

3.5 TSP-based Path Planning

The OMT-based planning partitions the scanning tasks into groups
so that each robot can focus on its own set of tasks. In the next step,
we compute an optimal traverse path for each robot based on its
assigned tasks. This can be reduced to a TSP problem, where each
task is visited by the robot exactly once, resulting in a connected TSP
path. To maximize scanning quality, we optimize the TSP path into
a smooth movement path (Figure 8(c)), and compute a continuous
camera trajectory along the movement path.

TSP path. To compute a TSP path for a robot Rr , we build a
weighted graph where the nodes are the positions of a task Tt
or the robot Rr while directed edges connect every two nodes with
the shortest path between them. Our problem is slightly different
from the original TSP, since the robot does not need to return to its
starting point. To that end, we solve a modified version of TSP:

1 Set the robot position as the starting node and the farthest
task to the robot as the ending one;

2 Remove all outgoing edges from the ending node except the
one that directs to the starting node;

3 Solve TSP over the current graph;
4 Remove the path from the ending node to the starting node;

To solve the TSP at interactive rates, we adopt the approximate
algorithm proposed in [Christofides 1976].

Path optimization. We optimize the TSP path to meet the follow-
ing requirements: First, the movement path of any robot should be
as smooth as possible. Smooth paths not only benefit robot control
but facilitate frame-to-frame registration for both robot tracking
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and scene reconstruction. Second, since the camera orientation is in-
dependent on robot rotation in our setting, we also need to optimize
the camera pose to achieve a smooth scan.

To optimize the movement path for robot Rr , we first uniformly
sample a sequence of points along the path. Let Pr = (p1, . . . ,pN )

denote the ordered list of points encompassing both the sampled
points and the set of task view points assigned to Rr . Tr is set of
indices of the task points in Pr . The following energy is minimized:

argmin
Pr

N−1∑
i=1

2
η(pi ) + η(pi+1)

∥pi − pi+1∥
2 + λ

∑
t ∈Tr

∥pt − p0t ∥
2, (5)

where η is the outside distance function computed for the 2D pro-
jection of the currently scanned scene. The function value is 0 for
points inside the scene surface. p0t is the original position of pt .
The first term is devised to smooth the path curve while keeping
the curve away from scene obstacles. The second term regularizes
the optimization by fixing the task view points. We set λ = 10 in
throughout all our experiments.

After obtaining a smooth motion path, we achieve a smooth camera
view transition along the path through view interpolation based on
cubic Hermite splines, similar to [Xu et al. 2017].

4 IMPLEMENTATION

We use Turtlebots as our robots, each of which is equipped with
an Asus Xtion, as well as an RPLIDAR A2M8 360◦ LiDAR scanner
(see Figure 1(a)). The Xtion captures RGBD data for online RGBD
reconstruction. The LiDAR scanner is used for robot tracking, based
on the Google’s Cartographer [Hess et al. 2016] which provides
robust and real-time LiDAR-based SLAM. The two sensors are cal-
ibrated. Each robot carries an on-board laptop (Intel(R) Core(TM)
I5-8250U CPU (1.60GHz×8), 8GB RAM) used for running LiDAR-
based SLAM Cartographer. The RGBD data from the Xtion and
the camera poses (robot locations) from Cartographer are both
transmitted to a control machine (Intel(R) Core(TM) I7-6700K CPU
(4.0GHz×4), 16GB RAM, GTX1080 GPU) that executes the online
scene reconstruction and path planning. The GPU is used only
for online scene reconstruction. The communication channel is a
54Mbps Wifi connection.

The robots are co-located at the initialization stage. To calibrate
their relative poses before scanning, each robot takes a 360◦ scan
and a joint localization is performed based on the AMCL [2013], an
adaptive Monte Carlo localization algorithm implemented in ROS.
No more communication or calibration between robots is needed
during scanning. Based on the collected scans, the control machine
runs online occupancy map updating with OctoMap [Hornung et al.
2013], online reconstruction using VoxelHashing [Nießner et al.
2013], as well as our online path planning algorithm. Based on the
planned paths, it sends out the movement command and camera
poses to the individual robots. Obstacle avoidance can be achieved
inherently by our method when computing the shortest distances
and optimizing the final paths.

(a)

3 robots, w/o refine

(b)

3 robots, w/ refine

(c)

6 robots, w/ refine

Fig. 10. Demonstrating the effect of compactness-based clustering refine-
ment in task assignment via simulating multi-robot scanning in synthetic
scenes with (b and c) and without (a) refinement. Three robots are used in
(a) and (b) and six used in (c). The start positions for all robots are around
the right side of the scene. Note how our method with clustering refinement
dispatches the robots more reasonably with smoother planned paths.

Parameter setting. The moving speed of our robots is 0.3m/s. The
spatial resolution of occupancy grid is 10cm in all dimensions and
the angular resolution for the discretization of view space is 5◦. The
total number of task views in each planning interval is κR (R is the
robot count), with κ = 6. The planning horizon for each planning
interval is 15s. After planning, the robots execute the motions until
15s are elapsed, or any one of the robots has finished its tasks,
whichever happens first. More planning details are discussed below.

Optimization and planning details. Our basic solution to the
optimization in Equation (4) is to iteratively alternate between K-
means clustering and a relaxation for constraint satisfaction [Balzer
et al. 2009]. K-means requires a prescribed number (K) of clusters.
To find the K automatically, we start with each robot position as
a clustering seed, thereby setting K = R initially. During the opti-
mization, the K-means clustering optimizes the compactness and
distance terms. The relaxation step further optimizes the compact-
ness and satisfies the capacity constraint. Specifically, we check the
compactness and capacity of each cluster. For any cluster, if there is
a task which is too far away from the cluster center (the shortest
distance is larger than a threshold δ = 1m; see Section 5.4), we
remove it from the cluster and set it as a new clustering seed for
the next iteration, thus increasing the K . Similarly, if some cluster
breaks the capacity constraint, we again isolate its most off-center
task to form a new clustering seed. In the next iteration, a refined
clustering will emerge, which better optimizes the terms in (4) with
a more proper K . The optimization usually takes 3 ~ 8 iterations to
converge. When the optimization converges, those clusters which
were seeded by a robot location are assigned to the corresponding
robot, while the other clusters are left unassigned.

Figure 10 demonstrates the effect of compactness-based clustering
refinement with simulated multi-robot scanning in a synthetic scene.
Without clustering refinement, the robots tend to move back and
forth due to the frequent switching between spatially scattered
tasks. With clustering refinement, the robots are dispatched more
reasonably and the scanning paths look much smoother.

Energy consumption vs. time cost. In our main implementation,
after the optimization converges, those clusters formed by non-
robot seeds are not assigned to any robot. When there are very few
tasks left, some robot-seeded clusters may not contain any task.
This means that not every robot has to be assigned with tasks. Such
planning strategy tends to minimize the total energy consumption.
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See the example demonstrated in Figure 13(top) where some robots
are out of work due to the limited amount of tasks available. Another
option is to make sure every robot is assigned with tasks. To achieve
that, one can simply perform a K-means withK = R at all times, thus
removing the need of clustering refinement. This strategy leads to
a more balanced workload and less scanning time, but incurs much
higher overall energy consumption. In the supplemental material,
we provide a quantitative comparison of the two strategies.

Termination criteria. Our system terminates when there is no
more task view with an importance score (information gain or the
reduction of mapping uncertainty [Krainin et al. 2011]) higher than
1.5 that are accessible to the robots.

Complexity. For each planning interval, the extraction of task
views and the computation of OMT scale as O(κR), which requires
roughly 0.5s and 0.6s, respectively, for R = 10 and κ = 6. The time
is averaged across all scenes. The update of the occupancy map in
OctoMap takes 2s. The estimation of approximate TSP paths scales
as O(K3

r ) per robot (Kr is per-robot task count), which adds an
additional 50 ~ 200ms (again averaged across all scenes). The compu-
tations of TSP paths for all robots can be parallelized. In summary,
the duration of each planning is about 3 seconds. Such latency can
be easily hidden in the switching between two consecutive planning
intervals, through setting some overlap between them.

5 RESULTS AND EVALUATION

We evaluate our method by simulating our scanning procedure on a
collection of synthetic 3D scene models (Sec. 5.1), and quantitatively
measuring and comparing the scanning performance (Sec. 5.3-5.6)
based on a series of evaluation metrics (Sec. 5.2). This evaluation
benchmark (dataset+metrics) will be released to enable the evaluation
of autonomous dense reconstruction in future works. Finally, we
demonstrate abundant visual results on both synthetic and real-
world scanning as a qualitative evaluation (Sec. 5.7).

5.1 Synthetic scanning for quantitative evaluation

Benchmark dataset.We construct a benchmark of synthetic scan-
ning for quantitative evaluation of multi-robot collaborative scan-
ning. The benchmark dataset contains 80 scenes selected from the
SUNCG [Song et al. 2017] and Matterport3D [Chang et al. 2017]
datasets; please see Figure 18 for a few representative benchmark
scenes and refer to the supplemental material for an overview of
the benchmark dataset. Some preprocessing on the original scene
models, such as making the ground perfectly planar and adjacent
rooms strictly connected, was conducted to make them usable for
simulation. Two representative benchmark scenes, SunCG#1 and
Matterport3D#1 (see Figure 17), will frequently be used as the test
scenes in most of the quantitative plots in this section. We design
a series of evaluation metrics for quantifying both reconstruction
quality and scanning efficiency in Section 5.2. Next, we describe our
synthetic scanning framework built on top of ROS.

Synthetic scanning framework. Given an input 3D scene model
represented by a 3D triangular mesh, we employ the Gazebo [Koenig

and Howard 2004] framework running on ROS to produce at frame
t a set of depth maps Dr

t , one for each of the r = 1 . . .R robots, as
well as the camera view matrices T r

t . The framework allows us to
control the trajectory of the robot by specifying the instantaneous
(linear, and angular) velocity of the robot, and simulates any delay
due to motion, change of trajectory, or scanning. While Gazebo
typically runs at 20Hz, OctoMap is only able to fuse at 1Hz. Hence,
we trigger a fusion operation when the robot has moved more
than a given distance (20cm in our experiments), or rotated more
than a given angle (60◦). Once a mesh is loaded in the system, the
robots are placed by specifying their six DoFs. To emulate a real
system, the robots positions are initialized close to each other, so
that there is sufficient overlap in their reconstructed areas – this
enables the fusion of reconstructed geometry across different robots.
In synthetic scanning, we assume the locations of robots are known
throughout the simulation, therefore neither initial joint localization
nor online SLAM is needed.

5.2 Evaluation metrics

We design a series of evaluation metrics to quantitatively evaluate
both reconstruction quality and scanning efficiency.

Reconstruction quality. Given our reconstruction S, and the cor-
responding ground truth G, both of which are represented by trian-
gular mesh, the two can be considered geometrically identical if an
only if their (symmetric) Hausdorff distance φS↔G is zero [Cignoni
et al. 1998]:

φS↔G = max(φS→G ,φG→S), (6)

φS→G = max
s∈S

[
min
g∈G

ϕ(s, g)
]
, (7)

φG→S = max
g∈G

[
min
s∈S

ϕ(s, g)
]
. (8)

We can perform a few simple manipulations to the expression above
to obtain two different metrics, one accounting for reconstruction
accuracy, the other for reconstruction completeness. First of all, fol-
lowing [Tkach et al. 2016], we replace the max in (7) and (8) with
integrals over the corresponding surfaces, and in turn, with a slight
abuse of notation, replace these integrals with (area weighted) sums
over the vertices s∈S and g∈G. Then, for φS→G we select ϕ to be
the ℓ2 Euclidean norm (i.e. a-la Robust ICP), while for φG→S we
select ϕ to be the ℓ02 norm (i.e. a-la RANSAC), with ℓp2 being ∥x ∥

p
2 :

φS→G =
1∑
A(s)

∑
s∈S

A(s)min
g∈G

∥s − g∥2, (RMS error) (9)

φG→S =
100∑
A(g)

∑
g∈G

A(g)min
s∈S

∥s − g∥02 , (Completeness %)

(10)

where A(·) measures the area of a vertex. Note that ℓ02 counts the
number (L0 norm) of correspondences with small residual, analo-
gous to counting inliers in RANSAC. Specifically, ∥x∥02 differentiates
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(a): Completeness on SunCG#1 (b): RMS error on SunCG#1 (c): Total energy on SunCG#1 (d): Load balance on SunCG#1

(e): Completeness on Matterport3D#1 (f): RMS error on Matterport3D#1 (g): Total energy on Matterport3D#1 (h): Load balance on Matterport3D#1

Fig. 11. Ablation studies on two synthetic test scenes SunCG#1 (top row) and Matterport3D#1 (bottom row).

Reconstruction quality Scanning efficiency
Completeness RMS error Total energy Load balance

NoTV 81.83% 0.0576 0.934 0.105
NoTSP 82.69% 0.0574 0.673 0.121
NoLloyd 82.12% 0.0573 0.721 0.171
NoRefine 81.61% 0.0573 0.649 0.146
NoPO 81.90% 0.0572 0.686 0.115
Full 83.62% 0.0560 0.525 0.105

Table 1. Comparing reconstruction quality (completeness and RMS error)
and scanning efficiency (total energy is normalized with scene area) between
our full method and four baselines over the 80 benchmark scenes.

between inliers and outliers via the parameter ε :

∥x∥02 =

{
0 if ∥x∥2 < ε
1 otherwise

(11)

Our accuracy metric (9) is similar to the MSE (mean square error)
metric with SE(3) alignment. The difference lies in the use of a
robust L1 kernel to down-weight potential outliers (common in raw
acquired data) via the use of M-estimators [Bouaziz et al. 2013].
We employ the robust L1 norm since the effect of outliers can be
mitigated by the fusion-based reconstruction [Nießner et al. 2013].

As the synthetic depth maps D are noise free. To properly evaluate
accuracy (9), we first add synthetic noise to the depth maps based
on the noise model proposed in [Handa et al. 2014]. We then discard
depth values in {Dr

t } outside the 0.2m ~ 3m range, as we know the
error in this range is at acceptable levels [Fanello et al. 2016, Fig. 4].
This way, the metrics in (9) and (10) become sufficient to evaluate
the overall reconstruction quality. In our experiments, we select
ε = 15cm, which is three times the standard deviation of depth noise
for objects scanned in the range of 0.2m ~ 3m.

Scanning efficiency. To measure scanning efficiency, we design
three metrics covering different aspects:

Scanning redundancy measured by the total number of frames
scanned by all robots. Redundancy leads to increased total num-
ber of frames, which can be caused either by too few or too
many robots (see Figure 13). When there are too few robots, a
robot could retrace its steps frequently (e.g. entering and then
exiting a tunnel with a dead end). We refer to this kind of redun-
dancy as intra-robot redundancy. On the other hand, too many
robots would, inevitably, cause inter-robot redundancy.

Total energy consumption measured by the total movement
distance of all robots.

Load balance measured by the coefficient of variation (COV) of
movement distance over all robots. COV, defined as the ratio
of the standard deviation to the mean, is a standard metric for
quantifying load balance [Huang et al. 2005]. The lower the
COV is, the more balanced the task assignment is.

Running time of the system for finishing the scanning.

5.3 Ablation studies

To justify the design choices of the various components in our
algorithm, we compare our full method (Full) against the following
baseline variants, over the evaluation metrics proposed above:

No task view (NoTV) Robot tasks are defined as sample points
of frontiers, as is done in previous works [Faigl et al. 2012; Visser
et al. 2013], instead of task views used in our method.

No TSP (NoTSP) After OMT-based task assignment, instead of
following a TSP path, each robot finishes its own tasks in a
greedy manner, i.e., always choosing the closest task.

No Lloyd (NoLloyd) Instead of optimizing (4) based on Lloyd’s al-
gorithm, we employ the Centroidal Power Diagrams (CPD) [Xin
et al. 2016], a standard solution to OMT problems.

No clustering refinement (NoRefine) During the optimization,
no clustering refinement is performed.

No path optimization (NoPO) The optimization of both move-
ment paths and camera trajectories (Sec. 3.5) is disabled.
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(d) (e) (f)

(a) (b) (c)

Fig. 12. Studies on two key parameters κ (top) and δ (bottom), through
synthetic scanning of SunCG#1. For κ , running time (in second) is plotted
for both the baseline NoRefine (a) and our full method (b).

Aggregated performance statistics. To avoid bias in our evalua-
tions, in our quantitative plots we report aggregated statistics over
random initialization of robot placements in the scene (see Figure 17
for scanning paths corresponding to five random initializations of
our OMT planning algorithm on SunCG#1 and Matterport3D#1).
We execute each algorithm 10 times, and at each time step (counted
by number of scanning frames) and for each number of robots, we
compute mean and standard deviation of the metrics over the obser-
vations. We visualize the mean as a solid line, and the corresponding
standard deviation as a transparent overlay of the same color.

Results on reconstruction quality. The left two columns of Fig-
ure 11 show the plots of reconstruction quality (completeness and
accuracy) over increasing number of scanning frames, when 10
robots are used for synthetic scanning of SunCG#1 (top row) and
Matterport3D#1 (bottom row). The plots in (a) and (e) show that
our full method achieves consistently the fastest increase of scan
completeness compared to all baselines. The final completeness of
all methods are nearly the same, except NoTV, which verifies the
importance of task view extraction. Notice that none of the methods
gets 100% completeness because the fixed height of scanners (with
only the yaw DoF) limits the range of scan coverage. The plots in
(b) and (f) demonstrate that our full method obtains the lowest re-
construction error due to the reasonably planned movement paths
and carefully optimized camera trajectories for all robots. Note that
the increase-decrease patterns of the accuracy curves depend on
the scene layout and the initialization of robots.

Results on scanning efficiency. The right two columns of Fig-
ure 11 are the plots of scanning efficiency (total energy consump-
tion and load balance) over different numbers of robots. The results
again justify the design choices of our algorithm. Note that all the
methods attain similar load balance since they all utilize OMT-based
task assignment. The contrast of load balance is more significant in
the comparison against non-OMT-based approaches in Section 5.6.

Table 1 reports the results of reconstruction quality and scanning ef-
ficiency averaged over all the 80 scenes from our benchmark dataset.

4 robots 6 robots 10 robots8 robots

Scanning redundancy Total energy consumption Load balance

4 robots 6 robots 10 robots8 robots

Scanning redundancy Total energy consumption Load balance

Fig. 13. Study on the number of robots with two hand-crafted scenes. For
each scene, we show the robot scanning paths (starting points are depicted
with circles and terminal points with solid dots) for different number of
robots, all obtained by our algorithm. We also plot scanning redundancy,
total energy consumption and load balance over increasing number of robots.
The optimal numbers of robots for both cases are highlighted in red color.

For all methods, reconstruction quality is measured at the end of
the scanning, while scanning efficiency is reported for 10 running
robots. To make the total energy consumption metric comparable
to different scenes, we normalize it via dividing by scene area.

5.4 Studies on key parameters

We studied the effect of two key parameters through experiments,
which helped us find the best parameter settings for our algorithm.
Once the settings are found, they are fixed throughout the experi-
ments, including both synthetic and real-world tests.

Scaling factor κ. This parameter controls the maximum number
of task views (κR) extracted in Section 3.2. To study the effect of
this parameter, we run synthetic scanning on SunCG#1 with fixed
initialization. We first show in Figure 12(a) the system running
time over varying values of κ, under the optimization setting of no
clustering refinement (NoRefine). The plots show that too small κ
leads to frequent and local planning. In particular, when κ = 1, our
algorithm degenerates to a greedy planning. In general, larger κ
results in more global planning thus more efficient scanning. When
κ grows further, however, the scanning efficiency degrades since a
large number of tasks, which are likely spatially scattered, would
make the OMT optimization highly non-convex thus hard to reach
a good local optimal. When clustering refinement is added in our
algorithm (Figure 12(b)), increasing κ does not result in efficiency
degradation because the refinement ensures that the tasks assigned
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(a): Completeness on SunCG#1 (b): RMS error on SunCG#1 (c): Total energy on SunCG#1 (d): Load balance on SunCG#1

(e): Completeness on Matterport3D#1 (f): RMS error on Matterport3D#1 (g): Total energy on Matterport3D#1 (h): Load balance on Matterport3D#1

Fig. 14. Comparisons on two synthetic test scenes SunCG#1 (top row) and Matterport3D#1 (bottom row).

Reconstruction quality Scanning efficiency
Completeness RMS error Total energy Load balance

GRD 82.48% 0.0572 1.293 0.040
SEG 80.23% 0.0571 0.924 0.519
mTSP 81.66% 0.0573 0.876 0.136
AmTSP 81.65% 0.0571 1.165 0.130
Ours 83.62% 0.0566 0.525 0.105

Table 2. Comparing reconstruction quality and scanning efficiency between
our method and five alternatives over the 80 benchmark scenes.

to each robot always form a compact cluster, thus greatly benefiting
the OMT optimization. Meanwhile, satisfying the compactness con-
straint would lead to many spatially scattered tasks left unassigned.
This can be observed in Figure 12(c), where the number of tasks
assigned levels out as κ increases.

In conclusion, by adopting clustering refinement in the OMT opti-
mization, κ can be set to an arbitrarily large number, gaining a more
global planning without sacrificing optimality. Note, however, large
κ causes many task views, which incurs higher computational cost
in the optimization. We choose κ = 6 in all our experiments.

Distance threshold δ . This parameter is used to assess the com-
pactness of a task cluster during clustering refinement (Section 4).
The plots in Figure 12(d) and (e) show that the best scanning effi-
ciency and load balance are both achieved when δ ≈ 1m. A too small
δ leads to overly fine-grained clusters, which makes the planning
less global, while a too large δ virtually invalidates the cluster refine-
ment. The latter is also reflected in the plots of objective function (4)
in Figure 12(f), where the energy values become stable as δ growing.
The choice of δ is insensitive to the number of robots.

5.5 Study on number of robots

To have a clear understanding on how the number of robots relates
to scanning redundancy, we run our method for synthetic scanning
of two simple, hand-crafted scenes including a narrow cross and an
empty square (see Figure 13). In each scene, a group of robots starts

around the center of the scene and performs collaborated scanning
guided by our OMT-based planning. We show the robot scanning
paths and plot scanning redundancy, total energy consumption and
the load balance over varying number of robots.

For the narrow cross scene, four robot exhibits the lowest redun-
dancy and the best load balance (0.1). This is because each of the
four robots takes charge of a branch of the cross, with a balanced
task assignment and without any return trip. With more robots
deployed, the extra robots do not receive any task but stay still, ac-
cording to our planning algorithm. This incurs imbalanced task load
(up to 1.2) but at the same time saves the total energy consumption.

In the empty square, the lowest redundancy and energy cost are
achieved with around 8 ~ 9 robots, where the robots are distributed
roughly towards the four sides and the four corners. The load bal-
ance is consistently good (0.01 ~ 0.1) for varying numbers of robots.
This is because all robots can be dispatched to scan into different
directions in such a spacious scene as the empty square.

In general, however, the choice of a proper number of robots depends
on the specific scene layout, which is practically intractable when
the scene is unknown a priori. Our algorithm, however, can reduce
the scanning redundancy and save energy consumption for the
whole system as much as possible with a reasonable task assignment.

5.6 Comparisons

We compare our method to five alternatives, sorted roughly in in-
creasing algorithmic sophistication. The second (SEG) and the fourth
(AmTSP) methods represent the state-of-the-arts for multi-robot
collaborative mapping. In order to gauge the upper limit of the per-
formance of our method, we design an “upper-bound” variant of
our method, where the scene is assumed to be known a priori.

Greedy (GRD) We first assign tasks to robots in a greedy manner
alike [Visser et al. 2013]; then for each robot, we choose the
closest among all tasks assigned to it as the active target.
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GRD AmTSP

SEG Ours

Fig. 15. We compare our method with three alternatives (GRD, AmTSP
and SEG) in terms of their diminishing return as the number of robots is
increased on the SunCG#1 scene. Notice how for our OMT algorithm the
curves are approaching the top-left part of the graphs the fastest.

Segmentation-based (SEG) In each planning interval, a Voronoi
segmentation is performed over the current frontiers; each robot
then takes the closest segmented region and scans the frontiers
within it in a greedy manner [Bhattacharya et al. 2014].

Multiple TSP (mTSP) In each planning interval, we first esti-
mate task views, then build a weighted task graph with their
pair-wise shortest distances as edge weights, and solve an mTSP
using the genetic algorithm to obtain the movement path for
each robot. All other steps are similar to our method.

Approximate mTSP (AmTSP) In each planning interval, this
method constructs a weighted graph of frontier samples, with
the shortest distance between samples as edge weights, and
solves an mTSP based on interleaving Kmeans clustering and
TSP path estimation [Faigl et al. 2012]. The optimization process
is similar to ours but without clustering refinement. Besides,
their frontier-based objective formulation is completely different
from our view-based one.

Upper bound (UB) An “upper bound” implementation of our
method where the scene is assumed known a priori, so that
all task views can be extracted at the beginning.

Similar to the ablation studies in Figure 11, the plots in Figure 14 are
also obtained by running all algorithms for 10 random initializations
of robot placement to avoid bias. Both mean and standard deviation
of the metrics are visualized in the plots. Table 2 compares recon-
struction quality and scanning efficiency between our method and
five alternatives over the 80 benchmark scenes, similar to Table 1.

Results on reconstruction quality. The left two columns of Fig-
ure 14 evaluate the completeness and accuracy over increasing
number of scanning frames, through running again 10 robots on
the two test scenes. Our algorithm achieves the fastest increasing
rate and highest final completeness, as well as the lowest recon-
struction error, among all the alternatives except the upper-bound
one. The increasing rate of AmTSP is relatively low because the

method assigns all frontiers to the robots in each planning. This
causes the tasks assigned to some robots to be incompact for which
a good TSP path is difficult to find. The reconstruction error of the
SEG and AmTSP methods is relatively high since these methods
are not view-based planning and thus the scanning trajectories are
unaware of valid scanning distance and angle of the sensor.

Results on scanning efficiency. The right two columns of Fig-
ure 14 focus on scanning efficiency, demonstrating that our method
is the most efficient among all methods except for the upper-bound
(UB). Our method achieves lower total energy consumption (c and g)
than UB since the latter involves more task views when the scene is
known a priori (UB achieves higher completeness at the same time).
The incompact task assignment of AmTSP again leads to high total
energy consumption, due to the suboptimal TSP solution. About
the load balance (d and h), the greedy planning (GRD) is the most
balanced of all since all robots are simultaneously dispatched to
the best view tasks causing their movement distances to be almost
the same. The total movement distance, however, is very high. The
planning by SEG is the most unbalanced since the Voronoi-based
segmentation is essentially a distance-based assignment, which may
lead to greater imbalance than task-clustering-based approaches.
See Figure 18 for visual comparisons of path planning.

Congestion and diminishing returns.We also compare the scan-
ning performance of four algorithms (GRD, AmTSP, SEG and ours)
as we increase the number of robots in Figure 15, to see how well
they are able to dispatch many robots. The test is performed on
SunCG#1, for which 5 robot is the saturation point of scanning effi-
ciency. Our method achieves consistently faster scanning coverage
than the alternatives for every number of robots. More importantly,
the performance of our method keeps improving as the number of
robots increasing, even when other methods have already reached
saturation (diminishing return). In particular, the alternative meth-
ods saturate at 7 robot, since the curves for 9 robot become lower
than those for 7. Our method, on the other hand, is able to dispatch
9 robots better and achieves a faster scanning and a higher com-
pleteness. By inspecting the sequences we also noticed that, when
no high-level coordinated strategy for exploration is provided (e.g.
GRD), the interference between different robots can actually be
detrimental to scanning effectiveness.

5.7 Qualitative results

Figure 16 demonstrates an example that higher scanning complete-
ness can be obtained by decreasing the threshold of terminating
information gain (see termination criteria in Section 4). When a
relatively small threshold (1.0 for example) is set, most regions of
the scene were scanned for more than twice by the robots.

Figure 17 shows the scanning paths of our OMT algorithm over
SunCG#1 and Matterport3D#1, with different initializations (start-
ing positions of robots). The scanning paths for different robots are
shown with distinct colors. Note how our method achieves visually
consistent exploration behavior with different initializations, due to
the minimization of scanning redundancy. In contrast, we also show
in the supplemental material the scanning paths obtained by SEG
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threshold=2.0

threshold=1.5

threshold=1.0

Fig. 16. Different scanning completeness due to different thresholds of ter-
minating information gain (see termination criteria in Section 4). Lower
thresholds lead to more complete reconstruction while needing more scan-
ning passes. When threshold is 1.0 (bottom row), for example, the scene
was scanned for 2.5 passes averagely.

and AmTSP, with the corresponding configurations (robot count
and initializations). For these alternative methods, the exploration
patterns are less consistent for different initializations.

Figure 18 shows a gallery of planned paths for synthetic scanning
of five indoor scenes from our benchmark dataset. This figure also
serves as a qualitative comparison of scanning paths planned by
our method and four alternatives (GRD, SEG, mTSP and AmTSP).
Each row of the figure corresponds to one scene and each column
to a specific algorithm. For each scene, all algorithms run with the
same number of robots deployed with the same initialization. The
uniform distribution and smooth spanning of our paths explain
how our method attains higher reconstruction quality and scanning
efficiency. Moreover, our method achieves the same level of com-
pleteness with much smaller total traverse distance. Please refer to
the supplemental material for more visual results.

Figure 1 and Figure 19 shows real-world scanning performed with
our multi-robot scanning system, over six indoor scenes includ-
ing an office (Office), a sitting room (Sitting_room), a classroom
(Classroom), a meeting room (Meeting_room), a dormitory (Dorm),
and a computer lab (Lab). For each scene in Figure 19, we show a
bird-eye view picture of the real scene, the scanning paths planned
and the final reconstruction result by our method. As a compari-
son, we also show the reconstruction results obtained by manual
scanning with a hand-held depth camera. In general, it is difficult
for a human scanner to plan the camera trajectories which are both
globally efficient and locally smooth. In addition, the live visualiza-
tion of online reconstruction (e.g. VoxelHashing) is too local, and is
insufficient to communicate scanning progress on which regions are
scanned and which are not. With our multi-robot scanning system,
more complete and higher quality reconstruction can be achieved
with much less scanning time, due to the reasonably planned smooth

Scene Area #R #I PT IT TT TD
SunCG#1 110 m2 3 16 0.9 sec 22 sec 6 min 48 m
Matterport3D#1 125 m2 6 17 2.2 sec 26 sec 8 min 55 m
Office 60 m2 3 10 0.8 sec 17 sec 3 min 32 m
Sitting_room 85 m2 4 9 1.1 sec 25 sec 4 min 21 m
Classroom 120 m2 5 5 1.2 sec 40 sec 5 min 41 m
Meeting_room 80 m2 3 4 0.8 sec 46 sec 4 min 18 m
Dorm 35 m2 2 4 0.5 sec 40 sec 3 min 17 m
Lab 300 m2 6 40 2.3 sec 6 sec 5 min 156 m

Table 3. Timing and statistics of both synthetic (row 2 and 3) and real scenes
(row 4 ~ 9). For each scene, we report scene area, number of robots (#R),
number of planning intervals (#I), planning time of each planning interval
(PT), duration of each planning interval (IT), as well as total time to finish
the scanning (TT), and total movement distance of all robots (TD).

movement paths and camera trajectories. Please watch the accom-
panying video for live demonstration of the scanning processes.

Timings and statistics. Table 3 reports the timings and statistics
for scanning the two synthetic scenes (SunCG#1 and Matterport3D#1)
and the six real-world scenes (Office, Sitting_room, Classroom,
Meeting_room, Dorm and Lab). All time was measured on the con-
trol machine described in Section 4. The computational time for each
planning (planning time) is roughly proportional to scene complex-
ity (layout of walls and furniture), while the duration of planning
interval is inversely proportional to scene complexity. The latter is
because when the scene has a complex layout, the tasks tend to be
spatially scattered so the task clusters are highly fine-grained which
each requires a shorter time to finish.

6 DISCUSSION AND CONCLUSIONS

We have presented a simple and robust algorithm for multi-robot
collaborative scanning of unknown indoor scenes. The method
attains the following key features. (i) It adopts view-based planning
rather than (frontier) location-based, which is better tailored for
scanning quality control. (ii) It achieves fast planning with a divide-
and-conquer scheme which interleaves task assignment and per-
robot path optimization. (iii) It realizes a flexible scanning setting
where robot motion and camera orientation are independent.

Limitations and failure cases. Our method / system has the fol-
lowing limitations:

• Task view extraction. Our task view extraction is essentially a
greedy solution, which may result in locally optimal views. One
possible mitigation is to consider voxel groups instead of single
voxels during the priority-based selection, which may lead to a
more global solution possibly with raised computational cost.

• Approximate OMT cost. Our distance cost in OMT objective is
defined as the distance from the robot to the centroid of its
tasks. When the tasks are spatially scattered, such a cost will
not be a good measure of robot movement effort. This has been
alleviated by the compactness term in the objective as well as
the clustering refinement strategy.

• View orientation smoothness. The orientation smoothness of task
views are not considered in OMT-based task assignment and
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Fig. 17. Scanning paths planned by our OMT-based algorithm on the SunCG#1 (top) and Matterport3D#1 (bottom) scene, for four and six robots, respectively,
with different initializations. The starting points of robots are depicted with red circles. Notice the exploration behavior of our solution is visually consistent.

TSP-based path optimization, but only in the last step for camera
trajectory optimization.

• Smooth transition between planning intervals. This could have
been realized simply by joining the paths of two consecutive
intervals with a B-spline curve.Whenmany robots are deployed,
however, the duration of planning intervals is short. A better
solution is to stabilize the robot motion when the replanning is
triggered frequently, using techniques from control theory.

• Non-distributed solution. Our current method does not support
a distributed system so a centralized control is required.

• Congestion control. There is no explicit congestion control in
our method. In the supplemental material, we show a failure
case caused by movement congestion.

Future work. First, although the divide-and-conquer scheme leads
to an efficient planning, a more interesting solution would be solv-
ing the OMT task assignment directly in the parametric view space,
thereby skipping the view selection step. Second, we plan to investi-
gate the incorporation of orientation-based constraints in the OMT
formulation. Third, it would be especially interesting to study a
decentralized solution of OMT-based task assignment. Lastly, an
interesting future direction would be incorporating prior knowledge
about scene layout learned offline or online into our OMT-based
planning. Integrating geometry-based and learning-based planning
could exploit their complementary advantages, leading to a more
globally optimal path planning.
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Fig. 18. A visual comparison of path planning for synthetic scene scanning over 5 benchmark scenes (3 SUNCG scenes and 2 Matterport3D scenes). For each
scene (row), our result is compared to those by four alternatives including GRD, SEG, mTSP and AmTSP. The total traverse distance of all robots is given to the
top-right corner of each planning result, for achieving a completeness level of 83%. The final reconstruction results by our method are shown in the last column.
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Fig. 19. A gallery of real-world scene scanning examples. In each row, we show from left to right a bird-eye view picture of the indoor scene, the online
planned multi-robot scanning paths, the reconstruction result obtained by our multi-robot system, and the reconstruction by human scanning. Scanning time
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