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Stylized Rendering of 3D Scanned Real World Environments

Hui Xu Baoquan Chen

University of Minnesota at Twin Cities∗

Figure 1: Stylized rendering of 3D scanned real world environments using representative sketchy styles for feature illustration (from left to
right: stippling (point sprites), textured strokes + stippling, and textured strokes + hatching (short line segments)).

Abstract

This paper presents an interactive non-photorealistic rendering
(NPR) system that stylizes and renders outdoor scenes captured by
3D laser scanning. In order to deal with the large size, complexity
and inherent incompleteness of data obtained from outdoor scans,
our system represents outdoor scenes using points instead of tra-
ditional polygons. Algorithms are then developed to extract, styl-
ize and render features from this point representation. In addition
to conveying various NPR styles, our system also promises con-
sistency in animation by maintaining stroke coherence and density.
We achieve NPR of large data at interactive rates by designing novel
data structures and algorithms as well as leveraging new features of
commodity graphics hardware.

CR Categories: I.3.3 [COMPUTER GRAPHICS]: Picture/Image
Generation—Digitizing and scanning

Keywords: non-photorealistic rendering, multi-resolution, point-
based rendering, interactive 3D graphics, 3D scanning

1 Motivation and Introduction

Recently, researchers have shown increasing interest in captur-
ing and processing real-world 3D objects and scenes. Most of
the current scanning systems, driven by applications in entertain-
ment, telepresence and documentation of historical sites and ob-
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jects, strive to enhance the realism of graphic representations and
offer the ultimate realistic virtual experience [McAllister et al.
1999; Levoy et al. 2000; Bernardini and Rushmeier 2002]. In this
paper we present a system that instead strives to generate stylized
rendering of scanned real world scenes, especially large outdoor
environments.

Our main motivation for this work is the facilitation of architec-
tural design. A good architectural design idea should respond to
its urban or natural environment. Visualizing the site digitally in
its 3D form allows designers to conceptualize and evaluate new de-
signs against their backdrops throughout the entire design process.
In the early stages of conceptual design, architects often desire 3D
visualization of sites with a controlled degree of abstraction and im-
precision which spurs on new design ideas in the context of the site.
NPR is an effective mechanism to achieve this goal. Furthermore,
for the general purpose of depicting 3D scanned environments, styl-
ized rendering helps visualize or hide the inherent uncertainty in the
data, making it less distracting. Such uncertainty is caused by hard-
ware limitations and constraints in outdoor scanning. Rendering
an environment in non-photorealistic styles automatically conveys
a sense of imprecision, therefore lessening the perceived impact of
unwanted artifacts.

Most of the existing scanning systems generate polygon meshes out
of scanned point clouds. However, this approach has several short-
comings when applied to outdoor scanning data. The main issues
concern the size and quality of such generated polygon meshes,
which greatly affect the quality and speed of rendering. First, un-
wanted artifacts like non-existing facets and jagged object bound-
aries may be produced by existing polygon construction algorithms
due to the excessiveness, ambiguity and fragmented nature of the
point clouds that represent outdoor environment scans [McAllister
et al. 1999]. Second, an excessive number of polygons may be gen-
erated due to the large size of outdoor environments. Third, such
algorithms used by previous scanning systems are irrelevant or inef-
fective to our problem domain because these systems rely on an ac-
curate and complete input, whereas our system deals with outdoor
scans of significant uncertainty and incompleteness. To overcome
these limitations, we have built point-based representations in our
system and developed an array of algorithms to effectively stylize
and efficiently render them.

Our system offers a set of tools that can generate various degrees
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and styles of abstraction. Visual attributes can be changed through
interactive operations. Overall, our system offers four main fea-
tures:

1. Effective feature extraction: Features for NPR illustrations are
efficiently and effectively extracted from the large and uncer-
tain data sets of outdoor scans.

2. Flexibility in stylization and rendering: Various NPR styles
are supported and can be easily changed during navigation.

3. Coherent animation: Smooth animation and a consistent NPR
quality (e.g., stroke coherence and stroke density consistency)
are provided during navigation.

4. Interactive navigation: Easy navigation through scenes of
millions of primitives on a regular PC using commodity
graphics hardware is made possible.

The rest of the paper is organized as follows. We first discuss prior
work (Section 2) in this area, and then briefly describe our data
acquisition and processing pipeline (Section 3). After giving an
overview of our NPR system (Section 4), we introduce two main
operations involved, namely feature point extraction (Section 5) and
illustration (Section 6). We discuss some implementation details,
especially regarding hardware implementation (Section 7), present
our results (Section 8), and conclude with a discussion and plans
for future work (Section 9).

2 Prior Work

3D Scanning and Processing:

To process scanned data, most existing systems reconstruct polygon
meshes from scanned sample points, extract corresponding texture
maps out of camera-taken images, and then render textured poly-
gons on conventional graphics hardware to achieve photorealism
[Bernardini and Rushmeier 2002; Levoy et al. 2000]. The justi-
fication for constructing polygons has been the rendering support
offered by available graphics hardware. However, this often results
in an excessive number of polygons. The high resolution neces-
sary for scanning large environments leads to a high polygon-per-
pixel ratio during the rendering of novel views. Furthermore, fitting
meshes into points, especially those of natural phenomena, may
create unwanted artifacts by producing non-existing structures or
jagged boundaries between objects [McAllister et al. 1999].

Point-Based Rendering:

Using points as alternative modelling primitives has been explored
for over a decade and has recently received increasing attention.
Points have been shown to be advantageous over polygons when
representing highly detailed features [Grossman and Dally 1998;
Pfister et al. 2000; Rusinkiewicz and Levoy 2000]. Thus as modern
graphics hardware provides more support for the rendering of point
primitives, point-based rendering will undoubtedly continue to gain
popularity. Besides the efficiency points provide for rendering, they
are also more flexible primitives for visualizing and modelling large
scanned environments, especially for stylized rendering.

Non-Photorealistic Rendering (NPR):

Non-Photorealistic rendering has become an important branch of
computer graphics in recent years. Most NPR techniques attempt
to create images or virtual worlds visually comparable to render-
ings produced by artists. Many artwork styles have been explored
in the NPR literature, such as pen and ink [Salisbury et al. 1997;
Winkenbach and Salesin 1994], painting [Meier 1996], informal

sketching [Raskar and Cohen 1999], and charcoal drawing [Cor-
nish et al. 2001]. Cornish et al. summarize several commonalities
in NPR techniques for generating some highly varied artistic effects
[Cornish et al. 2001]. The first common feature is selecting and
placing strokes, ranging from dabs with a paintbrush and streaks of
charcoal to lines drawn with a pen or pencil. These strokes are usu-
ally placed with some randomness to imitate the nonuniformity in
the drawing styles of human artists, but this randomness can cause
flickering during animation due to the lack of consistency. Meier
[Meier 1996] solved this problem by associating strokes with parti-
cles defined on the surface of objects. Since the strokes are associ-
ated with actual locations in space, they move smoothly across the
screen in a consistent manner as the view point shifts. Many NPR
systems have since incorporated this idea. The second common fea-
ture is defining the orientation of strokes, which can be defined by
either a user-specified vector field [Salisbury et al. 1997], or normal
and curvature information from a 3D model [Saito and Takahashi
1990; Meier 1996; Kalnins et al. 2003]. The third common fea-
ture is controlling the screen-space density of strokes [Raskar and
Cohen 1999]. Too many or too few strokes can create a cluttered
effect or fail to convey the underlying shape respectively. In styles
such as pen-and-ink, stroke density also controls tone [Praun et al.
2001; Salisbury et al. 1997; Winkenbach and Salesin 1994]. Sim-
ply associating strokes with screen-space increases particle density
as objects recede into the distance. An adaptive way of changing
the density of the particles according to object distance is desirable.

3 Data Acquisition and Processing

We acquire real world environments through laser scanning. Here
we only provide a brief introduction to our scanning and modelling
system as most of the operations are conventional. Details about
some issues are explained in later sections of the paper together
with other operations. Our pipeline of the data acquisition and pro-
cessing system mainly includes acquisition, registration, segmenta-
tion, geometry estimation, and model construction.

• Acquisition - Our scanning device is the Riegl Inc’s LMS-
Z360 3D imaging sensor, which can measure a distance
up to 200m with 12mm precision. A full panoramic scan
(360o×90o) at 3000×792 resolution takes about four min-
utes and data in the form of range, intensity, and color images
is simultaneously obtained as demonstrated in color plate Fig-
ure 8.

• Registration- Multiple scans are needed to build up a uni-
fied representation of a complex environment. A pair of scans
are registered in an interactive way as follows. First, a user
identifies some common points existing in both scans. Then,
a matrix that transforms one scan into the other is computed
based on these common points by the least-squares method
[Arun et al. 1987]. Finally, this transformation matrix is used
as the initial guess for the iterative closest point (ICP) method
to refine the alignment [Besl and McKay 1992]. Pair wise
registration is used iteratively to align multiple scans.

• Segmentation- The scanned data is in the form of point sets.
The purpose of segmentation is to divide the point sets into ob-
jects such as buildings, trees, etc. Points in each object can be
further segmented to represent subparts. In this way, an object
hierarchy is established, which can be used for model editing,
efficient view frustum culling, geometry estimation etc. In our
system, segmentation is done for every scan by user-assisted
image processing methods such as edge detection. Specifi-
cally, utilizing different information from the color, intensity
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and range images improves the accuracy and efficiency of seg-
mentation.

• Geometry estimation- Geometric information regarding each
point is necessary for operations such as visibility detection,
back-face culling, and stroke placement for NPR etc. Each
pixel scanned represents a 3D point with a certain size. This
size can be estimated based on the range value and the pixel
azimuth/altitude angle. We discuss some other geometry esti-
mation aspects like approximating normals in Section 5.

• Model construction- Different from most existing scanning
systems, we build point-based models as the final environ-
ment representation. These hierarchical, unified and non-
redundant point-based models are constructed based on the
aforementioned procedures of registration, segmentation and
geometry estimation.

In summary, our system scans real world environments, merges data
obtained from multiple scanning spots, and builds point-based rep-
resentations with geometric information estimated at every point.

4 System Overview

Similar to most existing NPR systems, our system includes two
main steps: feature pointextractionand illustration. We start our
process by calculating a “feature degree” for each point based on
some criteria, such as data accuracy and/or geometric properties
etc. Then, we choose a threshold to obtain a subset of points that
are of high feature degree, termed feature points. Thus, feature de-
gree characterizes the probability of a point to be demonstrated as
a feature point. Further operations such as detecting directions to
place strokes are conducted on the feature points if necessary. Once
the features are extracted, we employ strokes of different styles to
illustrate them. The fact that the points are grouped into objects
is used to facilitate rendering efficiency and quality. For exam-
ple, we implement efficient view frustum culling by testing if the
bounding box of an object is in the current view. We estimate an
object’s screen projection area and render a suitable number of fea-
ture points in order to ensure consistent screen space density. We
design and employ a special data structure called a continuous res-
olution queue to further maintain coherence in animation. Finally,
we develop strategies to leverage modern graphics hardware and
achieve interactive rendering rates of environments with millions
of points.

5 Feature Point Extraction

Feature points are a subset of our point model. The feature points
in our system resemble particles in [Meier 1996] for indicating the
locations of strokes on an object. The general features we wish
to illustrate include object boundaries, sharp corners and high fre-
quency areas. Our observation suggests that such features largely
exist in the area where the error in normal estimation varies sig-
nificantly. For example, the estimated normals of leaves are some-
what random, hence the estimation error changes largely. They are
among the features we are likely to illustrate. On the other hand,
when estimating the normals of points on a smooth area (e.g., a
curved or flat surface etc), the estimation error remains relatively
constant. They are the parts we are unlikely to emphasize in the
rendering. According to this observation, we define afeature de-
greefor every point in our model based on the variation of the nor-
mal estimation error. This feature degree represents the likelihood
of a point to be selected as a feature point. Although this method is

A Point Set

Feature Points

Non-feature Points

Other Points

Non-directional Points

Dithering Points

Directional Points

Figure 2: Classification of points (points in the shaded rectangles
are used in NPR).

somewhat empirical, our experiments show that it is very effective
for feature extraction when combined with other properties such as
point color and intensity.

In this section, we first provide the details of point normal esti-
mation. Then, we use the variation of the estimation error to de-
fine the feature degree of each point. Next, we extract feature
points based on these feature degrees. Finally, we further classify
the feature points. Figure 2 shows the overall classification of our
point model. Points in the shaded rectangles are used to stylize the
scanned scene.

5.1 Normal Estimation

For a pointP0 in our model, we first find the points adjacent to it.
Then we calculate the least-squares fitting plane for these points
including P0, and we use the normal of the plane to represent the
normal of the point.

The adjacent points can be located efficiently by taking advantage
of the fact that input scans are stored as 2D images as shown in color
plate Figure 8. With the registration information, we can project
P0 onto every scan and find its neighborhood. The union of these
neighborhoods from all scans contains the candidates of the adja-
cent points ofP0. Then, segmentation information and the distance
threshold are used to exclude candidate points belonging to objects
or surfaces different from that ofP0.

We denote the adjacent points ofP0 by P1,P2, · · · ,Pn. We construct
a 3×3 positive semi-definite matrix

M =
n

∑
i=0

(Pi − P̄)(Pi − P̄)T, (1)

whereP̄ = 1
n+1 ∑n

i=0Pi is the centroid of all the points. The eigen-
vectorv corresponding to the smallest eigenvalue of matrixM is the
desired direction [Hoppe et al. 1992]. The smallest eigenvalue also
indicates the least-squares error of fitting the plane. Notice that the
normal can be decided by either+v or−v. Here we pick up the one
pointing towards the corresponding scanner position to obtain the
consistently oriented normals.

5.2 Feature Point Generation

For every point, we calculate a value (the feature degree) between
0.0 and 1.0 to indicate its likelihood of being a feature point.

A criterion used to define this value is based on the variation of
the normal estimation error. As discussed earlier in this section,
an increase in the variation in the normal estimation error across
points in a certain area increases their likelihood of being feature
points. To measure the variation of error, we generate 2D “error
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Figure 3: Feature extraction of the panoramic scan shown in color
plate Figure 8. From top to bottom: image encoded by the feature
degree, the feature points, and dithering points.

maps” of the points based on their 2D coordinates in the original
scans. Then we process them using an edge detection filter. The
results are scaled from 0.0 to 1.0 and could be defined directly as
the feature degrees.

The feature degree defined as above is only based on the geometric
information of the points. However, this is not sufficient to describe
other features related to the color or intensity of the points. For
example, the above process does not detect a boundary between two
areas with different colors on a flat surface. Therefore, to extract
features more effectively, we take into account the color or intensity.
We do this by applying the edge detection filter on the color or
intensity image to obtain a gray scale map (black is 0.0 and white
is 1.0), and then linearly combine it with the feature value obtained
from the error map. We use the values in the final combined image
as feature degrees. In this way, features related to both the geometry
and the color can be described. The gray scale image at the top in
Figure 3 shows an example of the encoded feature degrees, where
brighter color indicates higher feature degree.

Once the feature degree for each point is decided, we pick a thresh-
old between 0.0 and 1.0 to extract the feature points. If the feature
degree of a point is greater than the threshold, then it is a feature
point, otherwise it is a non-feature point.

Although we emphasize feature points, non-feature points are also
important to maintain shading patterns. Since rendering too many
non-feature points would interfere with the NPR effect, we select as
few of them as necessary to approximate the shading tones. To do
this, we apply a dithering method on the set of non-feature points
to extract a subset called dithering points. It is worth noticing that a
direct dithering method would generate dithering points of uniform
distribution in the 2D space, but non-uniform distribution in 3D
space. Therefore, we combine information from the range image
to solve this problem. We apply denser dithering patterns to pixels
with higher range values, and sparser dithering patterns to those
with smaller range values. A strategy to simplify this procedure is
that we first blend the color image with the range image by treating
the range value as a scalar or weight to adjust the RGB value of
the pixel on the color image. We then apply the standard dither

algorithm on the blended image. In this way, the range value of the
non-feature point is automatically considered.

The two bottom images in Figure 3 show examples of the extracted
feature points (middle) and the dithering points (bottom) respec-
tively.

5.3 Feature Point Classification

Not all the feature points belong to meaningful edges that we intend
to illustrate using directional strokes. For example, even though
points representing wavering leaves of a tree are likely to be de-
tected as feature points, they unlikely demonstrate consistent direc-
tions among multiple scans. Therefore, we wish to deemphasize
their orientations. On the other hand, for feature points represent-
ing tree trunks and building edges which do demonstrate consistent
orientation, we must compute their on-screen directions to orient
the strokes to form continuous edges on object boundaries. Be-
cause of this, we further classify feature points and computer their
orientations if necessary.

The method to address this issue is as follows. As discussed in
Section 5.1, for a given feature pointP0, we can efficiently locate
its adjacent feature pointsP1,P2, · · · ,Pn. We then fit a 3D line to
{Pi , i = 0,1, · · · ,n} using the least-squares method. The errors are
measured orthogonal to the proposed line. This line indicates the
potential direction to place the stroke, while the least-squares error
indicates the likelihood of its placement.

Let P̄= 1
n+1 ∑n

i=0Pi be the centroid of the points. The least-squares
fitting line can be calculated by constructing a 3×3 matrix

M′ = σ I −
n

∑
i=0

(Pi − P̄)(Pi − P̄)T, (2)

whereσ = ∑n
i=0 (Pi − P̄)T(Pi − P̄) is a scalar. Similar to the plane

fit, the desired line direction is the eigenvector corresponding to the
smallest eigenvalue (in absolute value) of matrixM′, which also
indicates the error of fitting this line.

Thresholds are then set to classify feature points based on the error
of fitting the stroke directions. In this paper, we use one threshold
to classify them into two categories: directional feature points and
non-directional feature points.

6 Feature Point Illustration

Various NPR styles are achieved by illustrating feature points using
different graphics primitives. The directional points are emphasized
as long textured strokes while non-directional and dithering points
are generally illustrated as short line segments of a constant direc-
tion or even points (point sprites). In our system, dithering points
are rendered in the same way as non-directional points. Therefore,
we only discuss the illustration of feature points (i.e., directional
points and non-directional points).

We first present our NPR pipeline. We then introduce the graphics
primitives used in this paper to illustrate feature points. Finally, we
demonstrate the strategies used to ensure coherent animation and
consistent stroke density.

4



To appear in NPAR 2004

(a) (b) (c) (d)

Figure 4: Alpha textures: (a) point sprite; (b)-(d) stroke examples.

6.1 General Rendering Pipeline

Our system employs programmable graphics hardware and con-
ducts a two-pass rendering pipeline to achieve interactive rendering
rates. The reason for using two passes is to ensure correct visibility
and alpha blending. The first pass generates a depth buffer and the
second pass renders the points into the frame buffer.

In the first pass, a depth buffer called visibility mask is generated
by rendering all of the points in the scene as opaque disks (a.k.a.
visibility splatting [Pfister et al. 2000]). In this technique, as adja-
cent points are required to partially overlap with each other to avoid
holes, the on-screen projection size of a point needs to be calculated
with some degree of precision. The 3D point size estimated in sec-
tion 3 is used for this purpose. Based on the size of this point, its
distance from the viewpoint, the field of view, and the screen reso-
lution, we decide the radius of its on-screen projection. Since the
projection size is view-dependent and needs to be recomputed for
every frame, we implement this calculation in vertex shaders.

In the second pass, we render only those points that we wish to il-
lustrate. The depth buffer is initialized using the visibility mask,
and its updating is disabled. In this way, correct visibility can be
guaranteed even though only a subset of the points are rendered.
At the same time, since the feature points are demonstrated by tex-
tured strokes, alpha blending is enabled to lessen artifacts. How-
ever, only points passing through depth testing are blended with the
frame buffer during rasterization. Thus, one implementation issue
is to prevent discarding of a point on the visible surface. To ensure
that, a small offset value is added to every depth value in the depth
buffer. This is efficiently implemented by offsetting every point
along the viewing ray by a small distance in vertex shaders during
the first pass [Ren et al. 2002].

Numerous strategies have been proposed to improve the rendering
efficiency and quality. We perform view frustum culling using the
pre-calculated bounding boxes of objects. To guarantee coherent
NPR animation while maintaining consistent tones in our system,
we have designed a new point-based multi-resolution method to
build a “continuous resolution queue”. Continuous levels of detail
can be selected from this model. In other words, points areprogres-
sivelyadded or removed when changing between levels. The model
is also designed in a way so that it can be efficiently implemented
in hardware.

6.2 Feature Point Stylization

In the second pass, feature points can be stylized using different
primitives. In this paper, three primitives are used: point sprites,
line segments, and textured strokes.

With hardware support, using point sprites is a very efficient way
to render points of variable size and with an applied texture map.
To avoid disk-like points, we approximate screen space splatting.
We apply a pre-computed splatting filter kernel to the point sprites.
Figure 4(a) illustrates a Gaussian splatting filter. Point sprites are
usually applied on non-directional points, but they could also be

used for directional points when they are to be softened intention-
ally.

Rendering feature points as line segments is essential for simulating
sketching styles in NPR. For directional points, the line segments
are drawn along their stroke directions calculated in Section 5.3.
For non-directional points, shorter line segments are drawn along a
pre-defined constant screen direction.

Different stroke styles are pre-designed and applied to feature
points as textures. Figure 4 (b)-(d) show some examples of tex-
tured strokes. Similar to line segments, the textured strokes are
oriented along their stroke direction for directional points. For non-
directional points, the textured strokes are oriented along a pre-
defined constant screen direction. The combination of these primi-
tives leads to various artistic styles. We present our results in Sec-
tion 8.

6.3 Continuous Resolution Queue

When an object is rendered during navigation, the screen density
of feature points of the object can change dramatically with their
distance from the viewpoint. This leads to different tones. Too
many strokes will create a darker drawing with a completely dif-
ferent look [Salisbury et al. 1997]. Since we wish to maintain a
consistent density of strokes, the number of rendered feature points
has to be dynamically changed during navigation.

We build a multi-resolution representation of the model to solve
this problem. In this approach, a level is dynamically selected de-
pending on the screen projection size of an object (the bounding
box of the object is pre-computed and used to estimate this screen
size). One other issue that needs to be addressed is maintenance
of coherence in animation. A further strategy is needed to ensure
that the set of points is incrementally updated from one level to an-
other. To guarantee this, representations at lower levels (with higher
resolution) should include points in representations at higher levels
(with lower resolution), so that when the level changes, only a sub-
set of points are either added (when moving to a lower level) or
removed (when moving to a higher level). However, this may still
cause noticeable flickering as a group of points are suddenly added
or removed if only a discrete set of levels is pre-generated. To solve
this problem, we adopt acontinuouslevel of detail structure, where
only onepoint is either added or removed when changing from one
level to its immediate adjacent level.

To construct this hierarchy, we employ a point randomization ap-
proach in which the point samples of an object are randomly se-
lected and stored in a linear buffer during a pre-processing stage. In
this way, from the first point to the end of the buffer, a continuous
level of detail is naturally defined: when more points are added in,
more details are added, until the whole set of points is used. This
point model is termedcontinuous resolution queue. During render-
ing, the on-screen projection area of an object is estimated. Then
a corresponding number of points,alwaysstarting from the begin-
ning of the buffer, are selected. This approach shares some features
of the Randomized Z-buffer [Wand et al. 2001]. The difference is
that here the initial random distribution of points is pre-generated
to ensure a progressive updating of points.

We design this scheme to illustrate feature points in the second
rendering pass, but it can also be used in the first rendering pass.
However, straightforwardly applying this approach to generate the
visibility mask may cause holes, resulting in incorrect visibility as
an overlap between a set of randomly selected points on the screen
space is not guaranteed. Our solution to this issue is to uniformly
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Figure 5: Quad texture coordinates definition.

increase the point size based on the current level of detail. Al-
though theoretically it does not eliminate the problem, our exper-
iments show that holes rarely appear and the rendering speed can
be largely increased. Another justification for this approach is that
in non-photorealistic rendering, a small error in visibility is not as
noticeable as in photorealistic rendering. Therefore, we use the ran-
domized approach in both passes.

7 Implementation Details

When rendering millions of primitives at interactive rates, it is not
practical to exchange data between the main memory and the video
card at every frame. Therefore, the aim of designing our rendering
algorithms is to ensure that the data reside in the video memory.
Thus, the dynamic calculation and modification of view-dependent
information is done only in programmable shaders. The role of the
CPU is restricted to choosing the primitives to be rendered.

In this section, we first present some details of rendering point
sprites, line segments and textured strokes. We then discuss im-
plementation of the continuous resolution queue.

7.1 Point Sprites

Point sprites are used for all points in the first rendering pass to
generate the visibility mask as well as for the feature points in the
second pass. There are two differences between these passes. First,
as it is not necessary to enable alpha blending for generating the vis-
ibility mask, all points are rendered as opaque disks in the first pass.
Secondly, the projection size of each point is precisely calculated in
the vertex shaders in the first pass to ensure hole-free surfaces. In
the second pass we only use a predefined constant screen size for
the feature points. A uniform visual effect and improved rendering
efficiency are simultaneously achieved in this manner.

7.2 Line Segments

Line segments are rendered using the primitive type
D3DPT LINELIST in DirectX (or GL LINES in OpenGL).
Therefore, for every feature point, two vertices are sent to the
graphics hardware. First, both vertices are initialized to the same
value by copying the geometry information directly from the
feature point. Next, their 1D texture coordinates are assigned to be
1 and -1 respectively to distinguish them in vertex shaders. The
vertex shader program for a line segment offsets these two vertices
in opposite directions along a line direction. For a directional point,

this line direction is determined by projecting its stroke direction
on the screen. For a non-directional point, the line direction is a
pre-assigned constant screen direction.

7.3 Textured Strokes

Although point sprites allow texture mapping on a point primitive,
the current hardware implementation is relatively limited. Specifi-
cally, the texture orientation is very difficult to control. Therefore,
we adopt a traditional way to apply the textured stroke using a quad.
Similar to the implementation of the line segments, four vertices
with same geometry information and different texture coordinates
are sent to the graphics hardware. The vertex shader program for
textured strokes offsets the four vertices along four different direc-
tions respectively as shown in Figure 5. For a directional point,r1
is the projection of its stroke direction. For a non-directional point,
it is a pre-assigned constant screen direction.r2 is the direction
perpendicular tor1.

7.4 Randomized Vertex Buffer

The vertex buffer supported by commodity graphics cards is ideal
for implementing the continuous resolution queue. For the com-
plete point set and the feature point set of an object, their respective
continuous resolution queues are pre-computed and stored in vertex
buffers. The vertex buffers reside in video memory. To render the
object, the CPU only determines the points to be rendered, which
takes onlyO(1) according to our approach. Let the total number of
points in the object beN and the number of feature points beNf .
First, the bounding volume of the object is projected on the screen,
and the areaM (the number of pixels) covered by the projected vol-
ume is estimated. Then the ratios = M/N (Here we assume the
object is a single side object like a wall or a surface) is used to ap-
proximate the proportion of points necessary. As a result, in the
first pass, only the firstsNpoints in the vertex buffer are processed.
Similarly, in the second pass only the firstsNf feature points in the
feature point vertex buffer are processed.

Our implementation of the continuous resolution queue requires a
reasonable and detailed segmentation of objects. For example, if
a segmented object is too large, it should be further divided into
smaller objects.

8 Results

We have implemented our NPR system using DirectX 9.0 on the
nVidia GeForce FX 5800 graphics card with 128MB video memory.
Our PC has a 2.4GHz Pentium 4 processor, 1GB of main memory
and runs Windows XP. All example images presented in this section
are rendered with 1600×1200 resolution.

Figure 6 demonstrates images rendered from point models con-
structed from different scans and their combinations. In the left
image in this figure, we notice that the incompleteness of data from
only one scan is very obvious when rendered from a novel view.
With the addition of data from more scans from different positions,
we obtain a relatively more complete model as shown in the mid-
dle (two scans) and the right (three scans) images. Although the
model is still incomplete, we were unable to scan for more data be-
cause of the lack of accessible scanning spots. This reveals one of
the inherent difficulties of outdoor scans that a complete data set is
very difficult to acquire. Nevertheless, the point-based NPR shows
great advantage in such situations. It conveys the information while
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Figure 6: Images rendered from point models constructed from one scan (left), two scans (middle), and three scans (right) respectively.
Feature points are combined naturally since they are extracted by taking intoaccount their neighborhoods in 3D space from all scans.

making the incompleteness of data relatively less obvious. The fig-
ure also shows how feature points from various scans are combined
seamlessly. This happens because they are extracted by taking into
account their neighborhoods in 3D space from all scans.

Figure 7 shows different styles implemented in our system. The
styles are generated by combining different primitives presented in
Section 6.2. Figures 7(a)-(c) shows the rendering of feature points.
For different aspects of view, we illustrate them differently. In Fig-
ure 7(a), both directional and non-directional points are rendered as
point sprites. In Figure 7(b), only directional points are rendered
using the textured stroke specified in Figure 4(b), while Figure 7(c)
adds non-directional points rendered as short line segments in a
constant direction. Figure 7(d) shows the visual effect of Figure
7(c) after rendering additional dithering points. Clearly, different
styles cast different impressions of the same environment. Overall,
according to our experience, long directional textured strokes or
line segments likely convey higher confidence features; while short
textured strokes or line segments drawn in constant screen direction
likely convey either uncertain features (for non-directional points)
or simply the tones of surfaces (for dithered points). Our experi-
ments show that using short and constant screen direction strokes
(or line segments) to illustrate dithering points makes flat surfaces
more expressive.

Consistent stroke density is demonstrated by comparing the left and
the middle images in color plate Figure 9. Without using the contin-
uous resolution queue to progressively update the number of points
rendered, the image in color plate Figure 9 (left) is significantly
darker than the image (right) rendered at a closer view to the bridge.
By using the continuous resolution queue, the middle image shows
much more consistent density and less aliasing than the left image.

Finally, we show the rendering efficiency of our system in Table
1. The performance is evaluated when navigating through the left
(Scene A) and the right (Scene B) scenes shown in Figure 1. Scene
A is constructed from three scans and scene B is constructed from
four scans. Three representative frames are reported for each scene.
The frame rate is calculated based on time spent at each frame.
Even though the speed is reported for these specific frames, they
are adequately representative and demonstrate the range of frame
rates that we generally experience. This table shows that our sys-
tem offers interactivity at comfortable rates when exploring large
outdoor environments on commodity graphics hardware. The ta-
ble also demonstrates the effectiveness of performing view frustum
culling and using the continuous resolution queue.

Table 1: Rendering performance.
N: the number of points in the scene;
Nf: the number of feature points and dithering points;
Nc: the number of points processed after view frustum culling;
N1: the number of points actually rendered in the first pass
(N1 < Nc because of the continuous resolution queue);
N2: the number of feature points and dithering actually rendered in
the second pass).

N Nf Nc N1 N2 FPS
854K 725K 419K 33

A 2,878K 1,442K 1,017K 763K 512K 30
1,655K 1,023K 572K 28
1,259K 1,140K 621K 20

B 3,955K 1,305k 1,990K 1,518K 800K 18
3,198K 2,214K 974K 15

9 Conclusions and Future Work

We have presented an NPR system that features stylized render-
ing and interactive navigation of large outdoor environments. To
cope with the complexity, incompleteness, and uncertainty of such
scenes, we have employed point-based approaches. To achieve
common features of non-photorealistic rendering, we have devel-
oped procedures to extract feature points and have illustrated them
using different rendering primitives (or strokes). We have obtained
a variety of artistic effects by combining different styles and differ-
ent features. We have also developed methods to maintain coherent
animation and consistent screen space stroke density during navi-
gation. Finally, we have developed strategies to leverage modern
commodity graphics hardware to achieve rendering at interactive
rates. The results of our experiment show that our system is both
efficient, in terms of interactivity, and effective, in terms of feature
extraction and illustration.

We are developing new methods to generate more artistic styles
based on the current framework. Two of the new styles we are
working on are profile lines and painterly styles. First, we are in-
terested in more simplified abstractions using sparser, longer and
smoother profile lines. Second, we are planning to create painterly
styles and the combination with sketchy styles [Xu et al. 2004].

In our current approach, all the data is loaded into video memory at
once, which limits the data set our system can handle. One way of
addressing this issue is to take a progressive data loading approach.
According to the current navigation direction, we release the video
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memory for objects that are unlikely to appear in the view frus-
tum soon, and load those that will appear. To further improve the
rendering speed, we plan to incorporate efficient occlusion culling
methods like those mentioned in [Klosowski and Silva 2001] in our
rendering framework.

Our current system takes a pure point-based approach. Although
points are considered to be advantageous over polygons for rep-
resenting highly detailed features, polygons are more efficient for
representing simple and regular geometry. In the future, we plan to
adopt a hybrid approach that combines the advantages of both rep-
resentations. Furthermore, for the purpose of facilitating architec-
tural design, our colleagues from the architecture department have
shown great interest of depicting various levels of abstraction for
different objects in the scene. We plan to investigate how a combi-
nation of photorealistic rendering and non-photorealistic rendering
of various styles can be achieved in a single visualization and how
each style can be intuitively specified and controlled.
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(a)

(b)

Figure 7: Rendering the same environment using different styles: (a)point sprites are used for both directional and non-directional points;
(b) only directional points are displayed using long textured strokes;
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(c)

(d)

Figure 7: (Contd) Rendering the same environment using different styles: (c) non-directional points using short line segments with constant
screen direction are added to (b); (d) dithering points using short line segments with constant screen direction are added to (c).
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Stylized Rendering of 3D Scanned Real World Environments
Hui Xu, Baoquan Chen

Figure 8: A single panoramic scan of a corner on the University of Minnesota campus (from top to bottom: color image, intensity image, and
pseudo-color-encoded range image).

Figure 9: Images rendered without (left) vs. with (middle) the continuousresolution queue. The area marked by the small circle in each
image is magnified and shown at the top right corner. A closer view taken during continuous navigation is demonstrated in the right image.
The image generated without using the continuous resolution queue is obviously much darker and has obvious artifacts.
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