
High-Quality Volume Rendering Using Texture Mapping Hardware

Frank Dachille, Kevin Kreeger, Baoquan Chen, Ingmar Bitter and Arie Kaufmany

Center for Visual Computing (CVC)z

and Department of Computer Science
State University of New York at Stony Brook

Stony Brook, NY 11794-4400, USA

Abstract

We present a method for volume rendering of regular grids
which takes advantage of 3D texture mapping hardware cur-
rently available on graphics workstations. Our method pro-
duces accurate shading for arbitrary and dynamically chang-
ing directional lights, viewing parameters, and transfer func-
tions. This is achieved by hardware interpolating the data
values and gradients before software classi�cation and shad-
ing. The method works equally well for parallel and perspec-
tive projections. We present two approaches for our method:
one which takes advantage of software ray casting optimiza-
tions and another which takes advantage of hardware blend-
ing acceleration.

CR Categories: I.3.1 [Computer Graphics]: Hardware
Architecture; I.3.3 [Computer Graphics]: Picture/Image
Generation; I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism|Color, shading, shadowing, and tex-
ture

Keywords: volume rendering, shading, ray casting, tex-
ture mapping, solid texture, hardware acceleration, parallel
rendering

1 Introduction

Volumetric data is pervasive in many areas such as medi-
cal diagnosis, geophysical analysis, and computational 
uid
dynamics. Visualization by interactive, high-quality vol-
ume rendering enhances the usefulness of this data. To
date, many volume rendering methods have been proposed
on general and special purpose hardware, but most fail to
achieve reasonable cost-performance ratios. We propose a
high-quality volume rendering method suitable for imple-
mentation on machines with 3D texture mapping hardware.
Akeley [1] �rst mentioned the possibility of accelerating

volume rendering using of 3D texture mapping hardware,
speci�cally on the SGI Reality Engine. The method is to

yfdachillejkkreegerjbaoquanjingmarjarig@cs.sunysb.edu
zhttp://www.cvc.sunysb.edu

store the volume as a solid texture on the graphics hardware,
then to sample the texture using planes parallel to the image
plane and composite them into the frame bu�er using the
blending hardware. This approach considers only ambient
light and quickly produces unshaded images. The images
could be improved by volumetric shading, which implements
a full lighting equation for each volume sample.

Cabral et al. [3] rendered 512�512�64 volumes into a
512�512 window (presumably with 64 sampling planes) in
0.1 seconds on a four Raster Manager SGI RealityEngine
Onyx with one 150MHz CPU. Cullip and Neumann [4]
also produced 512�512 images on the SGI RealityEngine
(again presumably 64 sampling planes since the volume is
128�128�64) in 0.1 seconds. All of these approaches keep
time-critical computations inside the graphics pipeline at the
expense of volumetric shading and image quality.

Van Gelder and Kim [6] proposed a method by which
volumetric shading could be incorporated at the expense of
interactivity. Their shaded renderings of 256�256�113 vol-
umes into 6002 images with 1000 samples along each ray took
13.4 seconds. Their method is slower than Cullip and Neu-
mann's and Cabral et al.'s because they must re-shade the
volume and reload the texture map for every frame because
the colors in the texture memory are view dependant.

Cullip and Neumann also described a method utilizing
the PixelFlow machine which pre-computes the x, y and z
gradient components and uses the texture mapping to inter-
polate the density data and the three gradient components.
(The latter is implemented partially in hardware and par-
tially in software on the 1282 SIMD pixel processors [5].)
All four of these values are used to compute Phong shaded
samples which are composited in the frame bu�er. They pre-
dicted that 2563 volume could be rendered at over 10Hz into
a 640x512 image with 400 sample planes. Although this is
the �rst proposed solution to implement full Phong lighting
functionality, it has never been realized (as far as we know)
because it would require 43 processor cards, a number which
can not easily �t into a standard workstation chassis [4].

Sommer et al. [13] described a method to render 1283

volumes at 4002 resolution with 128 samples per ray in 2.71
seconds. They employ a full lighting equation by computing
a smooth gradient from a second copy of the volume stored
in main memory. Therefore, they do not have to reload the
texture maps when viewing parameters change. However,
this rendering rate is for isosurface extraction; if translucent
projections are required, it takes 33.2 seconds for the same
rendering. They were the �rst to propose to resample the
texture volume in planes parallel to a row of image pixels so
that a whole ray was in main memory at one time. They
mention the potential to also interpolate gradients with the
hardware.

All of these texture map based methods either non-



(a) (c)(b)

Main Memory
and CPU

Frame Buffer Frame Buffer

Data, Gradients

texture memory

Classification,
map to colors

Data, Gradients

texture memory

Classification,
map to colors

Frame Buffer

Data, Gradients

texture memory

Classification,
map to colors

3-4 parameter
software texture LUT

3-4 parameter
hardware texture LUT

3-4 parameter
software texture LUT

Figure 1: Three architectures for texture map based volume rendering: (a) Our architecture, (b) Traditional architecture of
Van Gelder and Kim, and (c) Ideal architecture of Van Gelder and Kim. The thick lines are the operations which must be
performed for every frame.

interactively recompute direction-dependent shading each
time any of the viewing parameters change, compute only
direction-independent shading, or compute no shading at
all. Our method shades every visible sample with view-
dependent lighting at interactive rates.
We do not adapt the ray casting algorithm to �t within

the existing graphics pipeline, which would compromise the
image quality. Instead, we only utilize the hardware where
it provides run time advantages, but maintain the integrity
of the ray casting algorithm. For the portions of the volume
rendering pipeline which can not be performed in graphics
hardware (speci�cally shading) we use the CPU.
In volume rendering by ray casting, data values and gra-

dients are estimated at evenly spaced intervals along rays
emanating from pixels of the �nal image plane. Resam-
pling these data values and gradients is often the most time
consuming task in software implementations. The texture
mapping hardware on high-end graphics workstations is de-
signed to perform resampling of solid textures with very high
throughput. We leverage this capability to implement high
throughput density and gradient resampling.
Shading is the missing key in conventional texture map

based volume rendering. This is one of the reasons that pure
graphics hardware methods su�er from lower image qual-
ity than software implementations of ray-casting. For high-
quality images, our method implements full Phong shading
using the estimated surface normal (gradient) of the density.
We pre-compute the estimated gradient of the density and
store it in texture memory. We also pre-compute a lookup
table (LUT) to store the e�ect of an arbitrary number of
light sources using full Phong shading.
The �nal step in volume rendering is the compositing, or

blending, of the color samples along each ray into a �nal im-
age color. Most graphics systems have a frame bu�er with
an opacity channel and e�cient blending hardware which
can be used for back-to-front compositing. In the next sec-
tion we present our architecture, in Sec. 3 we present our
rendering optimization techniques, in Sec. 4 we compare our
method to existing methods, in Sec. 5 we present our paral-
lel implementation, and �nally in Sec. 6 we give our results
and draw conclusions.

2 Architectural Overview

Fig. 1(a) shows our architecture in which density and gradi-
ents are loaded into the texture memory once and resampled

by the texture hardware along rays cast through the volume.
The sample data for each ray (or slice) is then transferred
to a bu�er in main memory and shaded by the CPU. The
shaded samples along a ray are composited and the �nal
pixels are moved to the frame bu�er for display. Alterna-
tively within the same architecture, the shaded voxels can
be composited by the frame bu�er.
Fig. 1(b) shows the architecture that is traditionally used

in texture map based shaded volume rendering. One of the
disadvantages of this architecture is that the volume must
be re-shaded and re-loaded every time any of the viewing
parameters changes. Another problem with this method is
that RGB� values are interpolated by the texture hardware.
Therefore, when non-linear mappings from density to RGB�
are used, the interpolated samples are incorrect. We present
a more detailed comparison of the various methods in Sec. 4.
In Fig. 1(c), Van Gelder and Kim's [6] Ideal architecture

is presented. In this architecture, the raw density and vol-
ume gradients are loaded into the texture memory one time
only. The density and gradients are then interpolated by the
texture hardware and passed to a post-texturing LUT. The
density values and gradients are used as an index into the
LUT to get the RGB� values for each sample. The LUT
is based on the current view direction and can be created
using any lighting model desired (e.g., Phong) for any level
of desired image quality. This method solves the problems
of the current architecture including pre-shading the volume
and interpolating RBG� values. However, a post-texturing
LUT would need to be indexed by the local gradient which
would require an infeasibly large LUT (see Sec. 2.2).

2.1 Sampling

Ray casting is an image-order algorithm, which has the
drawback of multiple access of voxel data, since sampling
within the dataset usually requires the access of eight or
more neighboring data points [2, 11]. Ray casting using tex-
ture mapping hardware the multiple voxel accesses by using
the hardware to perform the resampling.
Graphics pipelines work on primitives, or geometric

shapes de�ned by vertices. Traditionally, volume rendering
has been achieved on texturing hardware systems by orient-
ing polygons parallel to the image plane and then composit-
ing these planes into the frame bu�er as in Fig. 2.
Because of the way that the texture hardware interpolates

values, the size of the original volume does not adversely af-
fect the rendering speed of texture map based volume ren-



Final Image Plane

Volume

Resampling
Polygon Slices

Figure 2: Polygon primitives for texture based volume ren-
dering when the �nal image is oriented parallel to one of the
faces of the volume

(a) (b)

Figure 3: Sphere rendered using (a) 8-bit �xed-point Phong
shading calculations, and (b) with a 5-bit, 4-index LUT

derers. Instead, the image size and number of samples along
each ray dictate how many texture map resamplings are
computed. This is true as long as the volume data �ts in
the texture memory of the graphics system. A typical high-
end graphics system is equipped with 64 MBytes of texture
memory which holds volumes up to 2563 with 32-bits per
voxel. Newer hardware supports fast paging between main
and texture memory for higher virtual texture memory than
is physically available [12, 8].

2.2 Shading Options

The 3-4 parameter LUT presented by all three architectures
in Fig. 1 is used to optimize the computation of the lighting
equation for shading of samples. The LUT summarizes the
contribution of ambient, di�use, and specular shading for
every gradient direction in the LUT.
We present alternatives to compute the shading of the

re-sampled points along the rays. Van Gelder and Kim im-
plied that a 3-4 parameter LUT within the graphics pipeline
could be used. Even if there were only four viewing param-
eters to consider, four 8-bit indices into a LUT would mean
2564 = 4 Gigaentries in the table. Since this is an RGB�
table it would consume 16 GBytes of memory. Furthermore,
it would require 4 Gigacalculations to compute the LUT.
If the same calculations were used on the resampled data,
then a 400�400�256 projection of a volume could be shaded
with 40 Megacalculations, or two orders of magnitude less

than computing the LUT. If the table is to be indexed by
only four parameters (Gx, Gy, Gz, density value) then the
table would need to be recomputed every time any light or
viewing parameter changed, or every frame in the usual case.
Trade-o�s could occur to also use eye and light position as
indices, but the table is already much too large. Reducing
the precision brings the table downn to a much more man-
ageable size. However, that deteriorates the image quality.
Fig. 3(a) shows a sphere generated with an 8-bit �xed-point
Phong calculation and Fig. 3(b) with a 4-index Phong LUT
with 5-bits per index and 8-bit values. Five bits is about
the largest that can be considered for a manageable lookup
table since 324�4Bytes = 4 MBytes.
Fortunately, with the Phong lighting model it is possible

to reduce the size of the LUT by �rst normalizing the gra-
dient and using a Re
ectance Map [14]. With this method,
the Phong shading contribution for 6n2 surface normals is
computed. They are organized as six n2 tables that map to
the six sides of a cube with each side divided into n2 equal
patches. Each sample gradient vector Gx;y;z is normalized
by its maximum component to form Gu;v;index, where index
ennumerates the six major directions. A direct lookup re-
turns RGB� intensities which are modulated with the object
color to form the shaded sample intensity.
Trade-o�s in image quality and frame rate occur with the

choice of shading implementation. We have chosen to imple-
ment re
ectance map shading because it delivers good image
quality with fast LUT creation and simple lookup.

2.3 Pre-computation of Volume Gradients

To be able to compute accurately shaded volumes we pre-
compute the Gx, Gy and Gz central di�erence gradient val-
ues at each voxel position. Our voxel data type is then four
8-bit values which we load into an RGB� type texture map,
although the �elds are really three gradient values and raw
density. These gradient values are then interpolated along
with the raw density values to the sample positions by the
3D texture mapping hardware. Assuming a piecewise linear
gradient function, this method produces the same gradient
values at the sample locations as if gradients themselves were
computed at unit voxel distances from the sample point. The
gradient computation needs to occur only once for any vol-
ume of data being rendered, regardless of changes in the
viewing parameters. Since the gradients are processed o�-
line, we have chosen to compute high-quality Sobel gradients
at the expense of speed. Computing gradients serially o�-
line for a 2563 volume takes 12 seconds on a 200MHz CPU.

3 Rendering Optimization Techniques

Software ray casting algorithms enjoy speedup advantages
from several di�erent optimization techniques; we consider
two of them. The �rst is space leaping, or skipping over
areas of insigni�cant opacity. In this technique, the opacity
of a given sample (or area of samples) is checked before any
shading computations are performed. If the opacity is under
some threshold, the shading and compositing calculations
are skipped because the samples minimally contribute to the
�nal pixel color for that ray.
A second optimization technique employed by software

ray casting is the so-called early ray termination. In this
technique, only possible in front-to-back traversal, the sam-
pling, shading and compositing operations are terminated
once the ray reaches full opacity. In other words, the ray has
reached the point where everything behind it is obscured by



Volume

All rays for a row of
final image pixels.

Resampling polygon
perpendicular to 
final image plane

Final image plane

Figure 4: Polygon primitives for texture based volume ren-
dering with rows of rays using the Planes method

other objects closer to the viewer. Since we are using the
hardware to perform all interpolations, we can only elimi-
nate shading and compositing operations. However, these
operations typically dominate the rendering time.
Below, we propose two methods to apply these optimiza-

tion techniques to speed up the computation of accurately
shaded volume rendering utilizing texture mapping hard-
ware.

3.1 Planes: Compositing on the CPU

Previous texture map based volume rendering methods re-
sample a volume by dispatching polygons down the graphics
pipeline parallel to the image plane. The textured polygons
are then blended into the frame bu�er without ever leav-
ing the graphics hardware [1, 7, 3, 4, 6]. Fig. 2 shows the
common polygon resampling direction.
In contrast, since we propose to shade the samples in the

CPU and take advantage of the two optimization techniques
discussed earlier, we wish to have all the samples for a ray in
the main memory at one time. For this reason we have cho-
sen an alternative order for accessing the resampling func-
tionality of the 3D texture map hardware. Polygons are
forwarded to the graphics pipeline oriented in such a way
that they are coplaner with the rays that would end up be-
ing a row of pixels in the �nal image plane. Fig. 4 shows the
polygon orientation for this method.
Once the data has been loaded back into the main mem-

ory, the raw density value, and three gradient components
are extracted and used in a re
ectance map computation
to generate the Phong shaded RGB� for each sample. The
samples are composited front-to-back taking advantage of
early ray termination and skipping over low opacity samples.
Similar to the shear-warp approach [10], the composition is
now an orthogonal projection with no more resampling. The
ray composition section is therefore computed as quickly as
in the shear-warp approach. In fact, this method can be
viewed as resembling the shear-warp method where we let
the texture mapping hardware perform the shearing and per-
spective scaling. Furthermore, our method does not require
a �nal warp since the planes are already resampled into im-
age space. This not only speeds up the total processing over
shear-warp, but removes a �ltering step and thus, results in
higher image quality. Algorithm 1 renders a volume using
the Planes method.

Load texture rotation matrix

Resample first plane into frame buffer

Read first plane from frame buffer into memory

loop over all remaining scanlines

Resample next plane into frame buffer

loop over all columns in previous plane

Initialize integration variables

while within bounds and ray not opaque

Lookup opacity in tranfer function

if sample opacity > threshold

Lookup shade in reflectance map

Composite ray color OVER sample

end if

end while

Store ray color in previous row of image

end loop

Read next plane from frame buffer into memory

end loop

Shade and composite final plane as above

Algorithm 1: Planes method for texture map based volume
rendering

Notice that we interlace the CPU and graphics hardware
computation by initiating the texture mapping calculations
for scanline y+ 1 before doing the shading and compositing
on scanline y in the CPU.
Table 1 presents rendering times for various volumes and

image sizes. The Translucent Solid is a 643 volume that is
homogenous and translucent with a 1=255 opacity. This es-
tablishes a baseline of how long it takes to process an entire
volume. Since there are no transparent voxels, every sample
is shaded (i.e., the low opacity skipping optimization is not
utilized). Additionally, the rays do not reach full opacity for
191 samples inside this volume, so for most cases in the table,
the early ray termination optimization does not take e�ect.
The Translucent Sphere is a radius 32 sphere of 4=255 opac-
ity in the center of a transparent 643 volume. In this volume,
the e�ect of the low opacity skipping optimization becomes
apparent. The Opaque Sphere is the same sphere, but with
a uniform opacity of 255=255. This is the �rst volume to
take advantage of early ray termination and the rendering
times re
ect that. These �rst three volumes were created as
theoretical test cases. The next three MRI and CT scanned
volumes are representative of the typical workload of a vol-
ume rendering system. All three of these contain areas of
translucent \gel" with other features inside or behind the
�rst material encountered. Renderings of the Lobster, MRI
Head, Silicon and CT Head datasets on a four processor SGI
Onyx2 are shown in Figs. 5, 6, 7 and 8, respectively.
The image sizes cover a broad range (most are included

for comparison to other methods; see Sec. 4). The number
of samples along each ray is also included because the run
time of image-order ray casting is typically proportional to
the number of samples computed and not the size of the
volume. To show this, we rendered the Opaque Sphere as a
323 volume in 0.13 seconds, as a 643 volume in 0.13 seconds,
and as a 1283 volume also in 0.13 seconds (for all of these
we rendered 1002 images with 100 samples per ray using the
Planes method).

3.2 Blend: Compositing in the Frame Bu�er

When we tested and studied the performance of the system
we noticed that, depending on the volume data and transfer



Image Size Translucent Translucent Opaque Lobster Silicon MRI CT
� Samples Solid Sphere Sphere Head Head
per Ray 643 643 643 1282�64 128�322 64�2562 1282�113

1282�84 1.04 0.54 0.19 0.24 0.48 0.36 0.20

2002�VolDepth 1.90 0.99 0.35 0.31 0.52 1.27 0.48

2002�200 5.55 2.69 0.73 1.22 2.21 1.76 0.67

4002�128 13.19 6.10 1.84 2.78 5.98 4.53 1.84

5122�VolDepth 11.96 6.15 1.94 1.88 3.06 7.99 2.81

Table 1: Renderings rates in seconds for the Planes method

Figure 5: CT scanned Lobster dataset with a translucent shell
rendered in 0.26 seconds at 2002 resolution (also in the color
section)

Figure 6: MRI scanned Head dataset showing internal brain
structures rendered in 0.43 seconds at 2002 resolution (also
in the color section)

Load texture rotation matrix

Resample furthest slice into frame buffer

Read furthest slice from frame buffer into memory

loop over all remaining slices back-to-front

Resample next slice into frame buffer

loop over all samples in previous slice

if sample opacity > threshold

Lookup shade in reflectance map

Write shade back into buffer

else

Write clear back into buffer

end if

end loop

Blend slice buffer into frame buffer

Read next slice from frame buffer into memory

end loop

Shade and Blend nearest slice as above

Algorithm 2: Blend method for texture map based volume
rendering

function, there was still a substantial amount of time spent
in the compositing portion of the algorithm. In fact, we
found that the number of samples per ray before reaching
full opacity and terminating is proportional to the time spent
compositing. We propose to composite using the blending
hardware of the graphics hardware by placing the shaded
images back into the frame bu�er and specifying the over
operator. Of course, this requires that we return to using
polygons that are parallel to the �nal image plane as in Fig 2.
In this method, we can employ the optimization of skipping
over low opacity samples by not shading empty samples.
However, since the transparency values reside in the frame
bu�er's � channel and not in main memory, we can not
easily tell when a given ray has reached full opacity and can
not directly employ early ray termination without reading
the frame bu�er. Algorithm 2 renders a volume using this
Blend method.

Notice that we now resample along slices rather than
planes. Also, there are two frame bu�ers, one for the slices
of samples and another for the blending of shaded images.
Since compositing is not performed in software, it is quicker
than the Planes algorithm. However, because of the added
data transfer back to the graphics pipeline for blending into
the the frame bu�er, and the fact that shading is performed
for all voxels, this method does not always produce faster
rendering rates.

Considering Table 2, the Blend method always produces
better rendering rates for the �rst two columns, due to the
fact that here the volumes are \fully translucent". In other
words, since the rays never reach full opacity, the early ter-
mination optimization that the Planes method typically uti-



Image Size Translucent Translucent Opaque Lobster Silicon MRI CT
� Samples Solid Sphere Sphere Head Head
per Ray 643 643 643 1282�64 128�322 64�2562 1282�113

1282�84 0.83 0.48 0.48 0.26 0.46 0.35 0.29

2002�VolDepth 1.48 0.88 0.83 0.23 0.38 1.21 0.84

2002�200 4.64 2.63 2.66 1.31 2.50 1.83 1.49

4002�128 11.30 5.40 3.19 3.04 5.13 13.49 3.44

5122�VolDepth 9.29 5.46 5.14 1.32 2.36 7.26 4.68

Table 2: Rendering rates in seconds for the Blend method

Figure 7: Silicon dataset 
ythrough showing translucent
surfaces rendered in 0.29 seconds at 2002 resolution (also
in the color section)

Figure 8: CT scanned Head dataset showing bone structures
rendered in 0.44 seconds at 2002 resolution (also in the color
section)

lizes is unavailable. Since both methods must shade the same
number of voxels and composite every sample on every ray,
letting the graphics hardware perform this compositing is the
quickest. However, for the Opaque Sphere the Planes method
is always faster. This is because 78.5% of the rays intersect
the sphere and the optimization from early ray termination
is greater than the time gained from not performing com-
positing. We notice for the three \real" volumes, the Blend
method is quicker when the number of samples along each
ray is equal to the number of voxels in that dimension of the
volume. When the sampling rate is close to the resolution
of the image, the excessive slices that must be shaded and
returned to the frame bu�er again allow the early ray ter-
mination optimization in the Planes method to out-perform
the Blend method.
In theory, which method would be optimal can be deter-

mined from the desired rendering parameters, volume den-
sity histogram, and transfer function. For a more opaque
volume, the Planes method always produces better render-
ing rates. For transparent volumes, if there are many slices
to render, the Planes method is usually quicker, while if
there are few slices the Blend method is the better of the
two. Yet in practice, we feel it may prove to be di�cult
to determine how \few" and \many" are de�ned. For this
reason, we prefer the Planes method, since it is faster for all
opaque volumes and for some of the translucent volumes.

4 Comparison to Other Methods

Here we compare the performance of our rendering algorithm
to others presented in the literature, in terms of both image
quality and rendering rates. The image quality comparisons
point out quality trade-o�s as they relate to lighting meth-
ods. We noticed in our testing on di�erent volumes, that
the number of samples more accurately determined the run
time of the algorithm than simply the volume size. For this
reason we have included image sizes and sample counts in
our runtime tables (see Tables 1 and 2). We also noticed
that the volume data and transfer functions greatly in
u-
ence rendering rates. For our method this is probably more
of an e�ect because we are utilizing runtime optimization
techniques whose performance directly relies on the volume
data and transfer functions.
Our Planes method renders the Lobster at a sampling res-

olution of 512�512�64 in 1.88 seconds. Our method is 19
times slower than the method of Cabral et al. However,
their method does not employ directional shading or even
view independent di�use shading. This is a major limita-
tion to their method since shading cues are highly regarded
as essential to visual perception of shape and form. Our im-
plementations with full Phong lighting with ambient, di�use
and specular components produces a much higher quality
image.



In comparison to Cullip and Neumann [4], our method
is again slower. Cullip and Neumann achieve better image
quality than Cabral et al. by computing a gradient coe�-
cient that is used to simulate di�use highlights. This still
is not as high an image quality as our full Phong lighting,
and if the light geometry changes with respect to the vol-
ume, Cullip and Neumann's texture maps must be recom-
puted. Therefore, if the viewing geometry is dynamic, then
our method obtains higher quality images, including specu-
lar highlights, at faster rates.
Our method produces an image of Opaque Sphere in 1.84

seconds with the Planes method, faster than Sommer et
al.'s [13] isosurface rendering. For a translucent rendering of
the Lobster our Planes method runs 12 times faster in 2.78
seconds. The image quality of both methods is equivalent
since they both compute full lighting e�ects. As Sommer
et al. pointed out, storing the gradients in the texture map
has the disadvantage of limiting the size of the volume that
can be rendered without texture paging, so our frame rate
is limited by the amount of available texture memory, like
all other texture map based methods.
Although Lacroute's shear-warp [9] is not a texture map

based approach, we include a comparison, since it is one
of the quickest methods for rendering with a full accurate
lighting model on a workstation class machine. For example,
shear-warp produces fully shaded monochrome renderings at
a rate of 10 Hz, but, this is a parallel version of shear-warp
running on a 32 processor SGI Challenge. Lacroute reports
that a 128�128�84 volume can be rendered in 0.24 seconds
on one processor. Our Planes method renders a 1282 im-
age of the Opaque Sphere with 84 samples per ray in 0.19
seconds and the Lobster in 0.24 seconds. Our parallel im-
plementation runs even faster (see Sec. 5). Since shear-warp
must generate three copies of a compressed data structure
per classi�cation, interactive segmentation is not possible as
is with our method. Shear-warp performs classi�cation be-
fore bilinear resampling, whereas our method performs tri-
linear interpolation followed by classi�cation. Additionally,
our method performs arbitrary parallel and perspective pro-
jections in the same time while shear-warp takes up to four
times longer for perspective projections.

5 Parallel Implementation

We have parallelized the Planes algorithm on a four proces-
sor Onyx 2 worksatition with In�nite Reality graphics. We
constructed a master-slave model for the parallel processing
where the master process implements the texture mapping
interface to the graphics hardware and once a plane of or-
thogonal rays is resampled by the hardware, the work is
farmed to a slave process for the raycasting. We use the
shared memory symmetric multi-processor (SMP) function-
ality of the Onyx 2 and IRIX 6.4 operating system. The best
speedup we can achieve with the parallel version is bound
by the time it takes to perform the texture mapping for all
the planes. This is because the texture mapping computa-
tion must be performed sequentially since there is only one
graphics pipeline.
Figure 9(a) shows the rendering rates for one to four pro-

cessors for various volumes. For all cases we rendered 1282

images with 84 samples per ray. The time to perform the
texture mapping of 128 128�84 planes is 0.12 seconds as
shown on the graph. As can be seen, the rendering rates
approach this theoretical best rendering time. Figure 9(b)
presents speedup curves for the same datasets. The Opaque
Sphere dataset is the rendered the fastest. However, it also

achieves the poorest speedup because it quickly approaches
the limit for raw rendering time imposed by the sequential
texture mapping. On the other end of the spectrum, the
Translucent Sphere achieves the best speedup performance
although it su�ers from the slowest rendering rates. This is
because the CPU bound raycasting portion of the compu-
tation is the dominant percentage of the sequential time for
this dataset. The Lobster dataset is representative of vol-
ume rendering applications and shows results between the
two extremes.
Given enough processors, any dataset will eventually be

limited by the time to perform the texture mapping. The
number of processors required to reach this limit depends
on the time it takes for the CPU portion (raycasting) of
the algorithm to run and the fact that that portion relies
heavily on software data dependant optimizations. The limit
is reached when the number of processors is equal to Tc=Tt,
where Tc is the time to perform the raycasting for one plane
on the CPU and Tt is the time to texture map one plane in
the graphics hardware.

6 Results and Conclusions

We have presented a method for high-quality rendering
of volumetric datasets which utilizes the 3D texture map
hardware currently available in graphics workstations. The
method produces images whose quality is not only compa-
rable to that of accurate software ray casting, but also the
highest quality method currently available, at a substantially
faster frame rate than that of software ray casting. Other
methods achieve higher frame rates than ours, but either
lack shading, lack directional shading, or require multiple
processors.
Our method is accelerated by multiple processors, al-

though the speedup is limited by the throughput of the se-
rial graphics pipeline. Although shear-warp achieves higher
rendering rates for multiprocessor machines, our method is
faster on typical graphics workstations with 3D texture map-
ping and also supports interactive classi�cation.

7 Acknowledgements

This work has been supported by the National Science Foun-
dation under grant MIP9527694, O�ce of Naval Research
under grant N000149710402, Mitsubishi Electric Research
Lab, Japan Radio Corp., Hewlett-Packard, and Intel Corp.
The Lobster dataset is courtesy of AVS, Inc. The Silicon
dataset is courtesy of Oak Ridge National Lab. The MRI
Head dataset is courtesy of Siemens. The CT Head is from
the UNC database.

References

[1] K. Akeley. RealityEngine Graphics. In Computer
Graphics, SIGGRAPH '93, Anahiem, CA, August
1993. ACM.

[2] R. Avila, L. Sobierajski, and A. Kaufman. Towards a
Comprehensive volume Visualization System. In Pro-
ceedings of Visualization '92, Boston, MA, October
1992. IEEE.

[3] B. Cabral, N. Cam, and J. Foran. Accelerated Vol-
ume Rendering and Tomographic Reconstruction Using
Texture Mapping Hardware. In Symposium on Volume



1 2 3 4
Number of Processors

0

0.1

0.2

0.3

0.4

0.5

R
un

tim
e 

(s
ec

.)

Transparent Sphere
Lobster
Opaque Sphere
Texture Mapping

1 2 3 4
Number of Processors

1

2

3

4

S
pe

ed
up

Optimal Linear
Transparent Sphere
Lobster
Opaque Sphere

(a) (b)

Figure 9: (a) Parallel rendering rates for 128�128�84 samples and (b) Parallel speedup

Visualization, pages 91{98, Washington D.C., October
1994. ACM.

[4] T. J. Cullip and U. Neumann. Accelerating Volume
Reconstruction with 3D Texture Hardware. Technical
Report TR93-027, University of North Carolina, Chapel
Hill, 1993.

[5] J. Eyles, S. Molnar, J. Poulton, T. Greer, A. Las-
tra, N. England, and L. Westover. PixelFlow:
The Realization. In Proceedings of the 1997 SIG-
GRAPH/Eurographics Workshop on Graphics Hard-
ware, pages 57{68, Los Angeles, CA, August 1997. Eu-
rographics.

[6] A. Van Gelder and K. Kim. Direct Volume Render-
ing with Shading via Three-Dimensional Textures. In
Symposium on Volume Visualization, pages 23{30, San
Francisco, CA, October 1996. ACM.

[7] S.-Y. Guan and R. Lipes. Innovative volume rendering
using 3D texture mapping. In Image Capture, Format-
ting and Display, Newport Beach, CA, February 1994.
SPIE.

[8] M. J. Kilgard. Realizing OpenGL: Two Implemen-
tations of One Architecture. In Proceedings of the
1997 SIGGRAPH/EurographicsWorkshop on Graphics
Hardware, pages 45{56, Los Angeles, CA, August 1997.
Eurographics.

[9] P. Lacroute. Analysis of a Parallel Volume Rendering
System Based on the Shear-Warp Factorization. IEEE
Transactions on Visualization and Computer Graphics,
2(3):218{231, September 1996.

[10] P. Lacroute and M. Levoy. Fast Volume Rendering us-
ing a Shear-warp Factorization of the Viewing Trans-
form. In Computer Graphics, SIGGRAPH '94, pages
451{457, Orlando, FL, July 1994. ACM.

[11] M. Levoy. Display of Surfaces from Volume Data. IEEE
Computer Graphics and Applications, 8(5):29{37, May
1988.

[12] J. S. Montrym, D. R. Baum, D. L. Dignam, and C. J.
Migdal. In�niteReality: A Real-Time Graphics Sys-
tem. In Computer Graphics, SIGGRAPH '97, pages
293{302, Los Angeles, CA, August 1997. ACM.

[13] O. Sommer, A. Dietz, R. Westermann, and T. Ertl.
Tivor: An Interactive Visualization and Navigation
Tool for Medical Volume Data. In The Sixth Inter-
national Conference in Central Europe on Computer
Graphics and Visualization '98, February 1998.

[14] J. van Scheltinga, J. Smit, and M. Bosma. Design
of an On-Chip Re
ectance Map. In Proceedings of
the 10th Eurographics Workshop on Graphics Hardware
'95, pages 51{55, Maastricht, The Netherlands, August
1995. Eurographics.


