INSPIRE: An Interactive Image Assisted
Non-Photorealistic Rendering System

Minh X. Nguyen Hui Xu

Xiaoru Yuan Baoquan Chen

Department of Computer Science and Engineering
University of Minnesota at Twin Cities
http://www.cs.umn.edu/~{mnguyen,hxu,xyuan,baoquan}
Email:{mnguyen,hxu,xyuan,baoquan} @cs.umn.edu

Abstract

Two prominent issues in non-photorealistic rendering (NPR) are ex-
tracting feature points for placing strokes and maintaining frame-
to-frame coherence and density of these feature points. Most of the
existing NPR systems address these two issues by directly operat-
ing on objects, which can not only be expensive, but also dependent
on representation.

We present an interactive non-photorealistic rendering system,
INSPIRE, which performs feature extraction in both image space,
on intermediately rendered images, and object space, on models
of various representations, e.g., point, polygon, or hybrid mod-
els, without needing connectivity information. INSPIRE performs
a two-step rendering process. The first step resembles traditional
rendering with slight modifications, and is often more efficient to
render after the extraction of feature points and their 3D properties
in image and/or object space. The second step renders only these
feature points by either directly drawing simple primitives, or addi-
tionally performing texture mapping to obtain different NPR styles.
In the second step, strategies are developed to promise frame-to-
frame coherence in animation. Because of the small computational
overheads and the success of performing all the operations in vertex
and pixel shaders using popularly available programmable graphics
hardware, INSPIRE obtains interactive NPR rendering with most
styles of existing NPR systems, but offers more flexibility on model
representations and compromises little on rendering speed.

Keywords: non-photorealistic rendering, interactive 3D graphics,
programmable graphics hardware, GPU.

1 Introduction

Recent advances in computer graphics hardware and algorithms
have introduced increasing interests in Non-Photorealistic Render-
ing (NPR). NPR effects such as pen and ink [14], painting [5], stip-
pling [16] and charcoal drawing [8] have been produced. There are
two fundamental isssues to address in producing NPR styles: (1) to
extract feature points for placing strokes (of various styles); and (2)
to maintain frame-to-frame coherence of these feature points during
a continuous navigation. Related to the second issue is the problem
of maintaining stroke density. Cornish et al. [2] summarize several
commonalities in NPR techniques for generating several highly var-
ied artistic effects.

According to where the NPR features are extracted, NPR meth-
ods can be categorized into object space and images space methods.
Object-space approaches for NPR are popularly used in existing
NPR systems. 3D features are directly computed based on 3D ge-
ometry [6] and strokes are placed on surfaces. This approach tends
to require a well behaved geometric representation of 3D models.
Raskar and Cohen employ a method which requires no polygon
connectivity information for displaying silhouette edges [12]. How-

ever, inspite of using the current graphics hardware, many more
primitives than required need to be rendered. Markosian [9] trades
accuracy and details for speed by only randomly examining a small
fraction of the edges. This randomized method cannot guarantee
that all silhouettes be retrieved. To maintain coherence, Meier [10]
associates strokes with particles defined on the surface of the object.
View-dependent particles can be selected based on view-dependent
polygon simplification [2]. Although effective NPR styles have
been achieved using object-space approaches, obtaining interactive
speeds for large models is often difficult, if not impossible.

Earlier NPR systems take an image-based approach by post-
processing intermediate images. Saito et al. [13] employ G-buffers
(geometric buffers) that preserve geometric properties of objects in
the scene in image space, such as normals, depths, or object iden-
tities, for deriving image-space information such as contour lines,
which are then combined with the conventionally rendered images.
Decaudin [3] enhances Saito’s method with an additional normal
map. Nienhaus et al. [11] accelerate image space edge filters utiliz-
ing modern texture hardware and combine edge features with other
conventional rendering through projective texture mapping [17].
However, their 3D models have to be rendered twice. The image-
based approach is attractive because there are a wealth of image
processing tools, hence it is more flexible and robust. However, sev-
eral issues related to the image-based approach are unsolved. The
first issue is the frame-to-frame coherence — as each frame is pro-
cessed independently, some weak features (like valleys or ridges)
in object space may not be consistently detected in subsequent im-
age frames. Then the detected image features are combined with
conventional or stylized renderings. The styles achieved in this ap-
proach are limited, and the image features lack 3D continuity.

In this paper, we present an NPR system, dubbed INSPIRE,
that extends the image-based approach to achieve most features of
object-based NPR systems, i.e., the wide range of styles, the frame-
to-frame coherence, and the uniform density control of strokes.
This is achieved by a number of novel strategies. Firstly, the content
of intermediate images (or G-buffers) is specially designed so that
sufficient geometric information is available for directing stroke
placement. The detected feature points are classified into strong
and weak edge points. This allows us to place different strokes to
illustrate strong and subtle features separately. Secondly, to ensure
frame-to-frame coherence, we employ a set of seed points on the
initial object and project them to the image space as well. These
seed points serve as candidate locations for placing strokes so that
strokes can appear sticking to object sufaces. Thirdly, these seed
points can be further used to illustrate the tone of the surfaces based
on interactive lighting changes. Finally, all major operations are
directly implemented in graphics hardware, specifically, the latest
vertex and pixel shaders, so that interactive NPR is achieved.

INSPIRE hence represents an extended image-based approach

that combines object space controls (i.e., seed points) to deliver
various NPR styles and coherent navigation. INSPIRE promises

a number of features: model independence, stylization flexibility
and efficiency.

1. Model independence: All the special features (silhouettes,
ridges, valleys) are detected on the fly from the rendered
2D image. This makes our method independent of object
representations, e.g., polygons, points, or hybrids [1]. Be-
cause of the model independence, this method can be easily
merged with almost any existing 3D rendering system with
optimizations such as multi-resolution and view-dependent
approaches. For the same reason, our method is suitable for
generating NPR images of dynamic scenes and animation ob-
jects as no connectivity information needs to be maintained.

2. Stylization flexibility: Because of a range of ways of specify-
ing feature points and the separation of feature point extrac-
tion and stylization, we can support various NPR styles within
the same framework.

3. Efficiency: Our method does not depend on the complexity of
a 3D scene for feature point extraction. Our combination of
image and object space techniques also provides an opportu-
nity to utilize hardware acceleration.

The rest of the paper is organized as follows. We first provide an
overview of our system (section 2), then discuss about our rendering
pipelines in details (section 3), especially our implementation in
vertex and pixel shaders. We present our results (section 4), and
conclude with a discussion and plan for future work (section 5).

2 System Overview

INSPIRE can illustrate both view independent edge features such
as ridges and valleys, and view dependent edges such as silhou-
ettes. INSPIRE can also illustrate tones of surfaces under different
lighting conditions. We will first explain procedures of illustrat-
ing only object edge features, in which we discuss how to maintain
stroke consistency and density uniformity during animation. Then,
we will explain the procedures for illustrating tones of shading.

The system can be divided into three steps, although 3D models
are rendered only once. The first step of the system is to render
3D models. In this step, seed points, which are pre-selected points
on object, are also optionally projected. The second step is to per-
form image processing (i.e., edge filtering) to extract edge points.
Seed points and edge points are combined to form feature points in
the third step in which strokes are placed. The strokes are drawn
either as line segments, or oriented rectangles mapped with stroke
textures.

All pixels with non-zero alpha value after edge filtering are can-
didate edge points, which can be excessive; drawing all of them
may lead to a cluttered effect. Therefore, in step 2, we further cate-
gorize candidate edge points into “strong” and “weak” edge points
by comparing the filtered alpha value with a threshold value. This
classification also helps us to apply different strokes to different
groups of edge points to emphasize desirable features and achieve
different styles. For example, strong edge points such as silhouettes
and sharp ridges and valleys are drawn using thick and long strokes,
while weak edge points are either discarded or drawn using thin and
short strokes, depending on desired styles. Without explicit notice,
hereafter we will refer to strong edge points simply as edge points.

The key to the interactivity of this system is a compact hardware
implementation of all the key operations of the pipeline. The im-
age filtering step for edge detection is directly performed in pixel
shaders similar to that of Nienhaus et al. [11]. Using traditional
color images to detect object space edge features may fail to detect
some edge features due to the interference of lighting. Therefore,

here we generate intermediate images that encode surface normals
for edge detection. After image filtering, only edge points are kept.
However, normal information is needed to direct stroke orientation
for each detected edge point. To keep the normal information and
avoid rendering the object multiple times, we carefully encode dif-
ferent information in RGBA channels of the frame buffer. The Al-
pha channel stores the dot-products of the surface normals and the
view vectors. Instead of maintaining all three components of sur-
face normals, we convert object space normals into eye space and
then discard the “z” component. We store the other two compo-
nents in Red and Green channels respectively. The seed points in
the first step are projected and their intensities are stored in the Blue
channel.

Figure 1 illustrates the pipeline of generating one rendering style,
which can be generalized to the generation of other styles. Figure
1(b), (c), and (d), illustrate the eye space normals (red and green
channels), intensities of seed points (blue channel) and the dot-
products of normal and view vectors (alpha channel) respectively.
Figure 1(e) is the image of the alpha channel after edge filtering.
Figure 1(f) shows the selected “strong” edge points. Strokes are
placed at the edge points in Figure 1(f) and are oriented by their cor-
responding normals in Figure 1(b); Figure 1(g) is the image show-
ing strong silhouette edges. For non-edge points in Figure 1(e),
their corresponding seed points in Figure 1(c) are used as the re-
maining feature points; strokes of different styles are drawn, again,
using their corresponding normals in Figure 1(b). The final image
is depicted in Figure 1(i).

3 Implementation Details

3.1 Rendering of 3D Models

This step performs conventional 3D rendering but substitutes the
general color attributes with geometric attributes. The objective of
this rendering is to obtain image space geometry buffers for further
processing. This rendering is independent of model representation.
Polygon, point, or hybrid models can be used. In our experiment,
we mostly use point-based rendering for improving rendering ef-
ficiency without compromising on the final image quality. We as-
sume rendering primitives as points in the next discussion.

Each color component encodes a different geometric attribute.
One such attribute is the dot product of the normal vector and the
view vector at each point. This scalar value is stored as the alpha
component. The normal at each point is projected to screen space
and the x and y components constituting the screen space normal
are stored as red and green values respectively, while the “z” com-
ponent is simply discarded. After rendering, the obtained alpha
channel will be used for edge detection, while the red and green
channel can be used to guide the stroke orientation. Because of this
compact representation, there is still a blue channel left, which will
be used for storing seed point projection, to be discussed next. At
this 3D rendering step, the blue value of each point is set to zero.

These geometric attributes are computed in vertex shaders. The
pseudo code (VertexProgram1) can be found in Appendix A.

3.2 Rendering of Seed Points

In the first step, pre-selected seed points are also projected and
taken as candidate locations for laying strokes for illustrating inte-
riors of the object, in order to maintain coherence between frames
when the 3D model dynamically changes. The seed points are a
subset of original object points; their number depends on the re-
quired density. In fact, the number of seed points needs to be dy-
namically changed to maintain a constant screen density. The seed
points’ density correlates to feature points’ density, and therefore, a
constant on-screen density of seed points leads to uniform density

(b)

/ red and green

blue

alpha

(2)

Figure 1: The general rendering pipeline includes three steps of rendering. Step 1: the object (a) is rendered by encoding different information
in different frame buffer channels: (b) red and green channels store eye space normals; (c) blue channel encodes projected seed points (and
optionally their shading intensities); (d) alpha channel stores the dot-product between surface normals and viewing directions. Step 2: image
filtering is performed on alpha channel (d) to obtain edge points (€), which is further classified into strong (f) and weak edge points. Step 3:
rendering strokes at edge points. The strong edge points are rendered using strokes of one style (g) while the weak edge points are rendered
using strokes of another style (h). All strokes are oriented based on their corresponding normals in (b). The final image (i) is a combination

of image (g) and (h).

of strokes, hence producing a constant tone of the surfaces [15]. To
achieve this, we take a randomized approach in which the initial
point set of an object is randomly ordered and stored in a linear
buffer. Then at runtime, depending on the number of seed points
needed, a point set is fetched from the linear buffer starting from
the beginning. This method is successfully used in [18].

When lighting is enabled, we can obtain different tones by con-
trolling the stroke density, and therefore, the density of seed points.
We apply half-toning techniques to this seed point selection pro-
cess. Freudenberg et al. [4] achieve real-time halftoning by com-
paring a pre-designed halftone texture with the target shading in-
tensity. Inspired by Freudenberg’s hardware threshold method, we
assign each input primitive (here points) with an evenly distributed
random value. The range of random values matches that of the
shading intensity. Hardware threshold operation is made by com-
paring the random value with the illumination value. Thus lesser
seed points will be selected for highlight regions while more seed
points will be selected for dark regions. Therefore, the shading in-
tensity is conveyed by spatial point density distribution.

The seed points are rendered using OpenGL command

GL_POINTS with size 1. We utilize the depth buffer from the previ-
ous 3D modeling rendering to do the depth test so that only visible
seed points remain in the frame buffer. For each seed point, in a
vertex program, the light intensity with respect to the current light
source is computed and stored in the blue channel of the output
color if it is larger than the pre-stored value, otherwise the vertex’s
blue channel remains unchanged. At the pixel level, the visible
seed points are combined with the 3D model image by a small frag-
ment program. Pseudo codes for both the vertex program (vertex
program 2) and fragment program for rendering of seed points are
provided in Appendix A

3.3 Feature Points Extraction and Classification

This step involves two operations. Firstly, edge detection is per-
formed on the above obtained alpha channel by applying any edge
filter and then, the obtained values are further analyzed and com-
bined with the information from other channel to form feature
points.

The edge detection can be efficiently done using the multitexture
and texture rectangle features provided by the current commodity
graphics hardware. The details can be found in [7] and [11]. A
wide range of edge filters can be implemented.

Once the edge detection is done, the entire frame buffer is read
back into the main memory. The alpha buffer is scanned through
and each pixel is classified as either a strong edge point or a weak
edge point based on its alpha channel value and a pre-selected
threshold value. If only strong silhouette edges are of interest, weak
points are discarded. Otherwise, weak edge points may also be de-
picted but using a different style. Optionally, their blue components
are further tested so that only the weak edge points with non-zero
blue channel value are regarded as feature points. For some styles,
seed points can also be used directly as feature points independent
of their alpha values.

3.4 Feature Points Stylization

Various NPR styles are achieved by applying different textures
(e.g., strokes, furs, and dots) on feature points rendered as textured
quads. Specifically, for each feature point, we generate four ver-
tices on the view plane representing the four corners of the quad
centered at the feature point. Texture coordinates (0,0), (0,1), (1,0),
and (1,1) are assigned to the four vertices respectively. The quad
is placed in such a direction that the texture orientation follows the
perpendicular direction to the projected normal vector (stored in
Red and Green channels). Figure 2 shows various styles achieved
by INSPIRE using different textures. To fully utilize the efficiency
of the GPU computation, we calculate the vertex coordinates of the
quad in vertex shaders, similar to [18].

4 Results

We have implemented our NPR pipeline on an 800MHz Pentium
111 PC with OpenGL under Windows 2000. The main memory
is 1GB. We use an nVidia GeForce4 Ti4600 graphics card with
128MB video memory. All images are rendered using 640 x 640
resolution.

We are able to generate various NPR styles within a unified
framework. Figure 2 demonstrates representative styles that are
generated by INSPIRE. For comparison, we use the same model
for illustrating all the styles. For each style image, the zoom-in
image of a part of the complete image indicated by a square is illus-
trated at the top-left corner, under which the stroke texture is also
illustrated.

1. Cartoon style: Figure 2(a) illustrates this style, which is done
by disabling seed points. The outline is created by rendering
the strong edge points with strong stroke texture. The interior
of the model is painted with a solid color.

2. Pencil style: Figure 2(b) illustrates this style, which is similar
to Figure 2(a) with seed points. The threshold for selecting the
strong edge points is decreased to a small number so that more
strong edge points are selected.

3. One-Tone style: Figure 2(c) illustrates this style. Lighting
is enabled in this style. Each seed point is drawn as a dot if
its light intensity is less than a pre-assigned threshold. The
outlines (strong edge points) of the model is drawn with a dot
texture.

4. Two-Tone style: Figure 2(d) illustrates this style. Instead of
one threshold as in the One-Tone style, there are two thresh-
olds, high and low thresholds. The seed points with light in-
tensity larger than the high threshold are colored white, the

Table 1: Rendering performance (image resolution: 640x640).

Model # of Points | FPS
Bunny 34,834 20.0
Elephant 155,688 15.1
Dragon 437,645 8.5
Armadillo 172,974 10.4
Hip 530,168 7.41

seed points with light intensity less thn the low threshold are
colored black, the remaining seed points are ignored. All of
these are placed on top of a gray background.

For Figure 2(c) and (d), the seed point distribution are in-
creased to about 50% to achieve the effects.

5. Curly fur style: Figure 2(e) illustrates this style. Here a ziz-
zag” texture is drawn at each seed point. To make the texture
more visible at each seed point, the basic quad’s size drawn at
each seed point is increased by a constant of 4.

6. Fur style: Figure 2(f) illustrates this style. A hairy texture is
placed on strong edge points and seed points. To control the
fur density, we can increase or decrease the number of seed
points. Alpha blending is enabled to achieve smoothness.

7. Sketch style: Figure 2(g) illustrates this style. Here a straight
line texture is simply used with alpha blending enabled at each
seed point.

8. Indian-ink style: Figure 2(h) illustrates this style, which is
very similar to One-Tone style, but seed points are drawn with
a strong stroke texture if their light intensity is less than pre-
selected threshold.

We have also demonstrated another style for medical object il-
lustration (Figure 3). This style is created by taking weak edge
points as feature points. However, to avoid excessive number of
feature points, another threshold is specified to filter away weak
edge points of extremely small values. No seed points are taken as
feature points.

Finally, we demonstrate the rendering efficiency of our system
in Table 1. All objects are point-based models. The frame rate is
average performance of typical interaction with the models. Perfor-
mance difference between rendering of different styles is negligible
since all styles share the same rendering pipeline.

5 Conclusions and Future Work

We have presented an NPR system that features stylized render-
ing and interactive navigation in a unified framework. We have
achieved various styles. By designing a compact hardware imple-
mentation, interactive rendering speed can be obtained. Specifi-
cally, to achieve common features of non-photorealistic rendering,
we have developed procedures to first extract feature points and and
then employing different geometric primitives (or strokes) to illus-
trate these feature points. By employing different strokes for differ-
ent feature points through texture mapping, we can obtain a number
of artistic effects. We have also developed methods for maintaining
consistent animation and screen space stroke density during navi-
gation. We have leveraged modern commodity graphics hardware
by deferring almost all operations to the GPU. The results obtained
have shown that our NPR system is both flexible, in terms of vari-
ous stylizations, efficient, in terms of interactivity, and consistent in
terms of animation.

The above efforts have created a framework for developing ad-
ditional artistic styles in the future. Research is already under way
in this direction. Currently, since we define seed points as a sub-
set of polygon vertices or points of point-based models, the maxi-
mum number of seed points is hence fixed. When the camera gets
very close to the object, no new points can be added, hence, the
stroke density starts to decrease. We wish to address this issue in
future. A potential solution is to either generate new points, or
generate texture patterns with more textured strokes. We are in-
vestigating efficient approaches for hardware implementation of ei-
ther approaches. One bottleneck of our system is the frame-buffer
read-back operation in step two of the rendering pipeline. For large
image resolutions this will have a noticeable effect on rendering
speed. We will investigate methods that allow us to generate larger
resolution images while keeping the intermediate image resolution
moderate. We will also analyze new features of future graphics
hardware to hopefully avoid this bottleneck.

6 Acknowledgements

Our thanks to Amit Shesh for proofreading the paper. We also thank
Stanford Computer Graphics Laboratory for the bunny, dragon and
armadillo models and GRAIL at the University of Washington for
the elephant model. The hip and teeth models are from Cyberware
sample repository.

Support for this work has included a Computer Science Depart-
ment Start-Up Grant and a Grant-in-Aid of Research, Artistry, and
Scholarship, 2002-2003, Digital Technology Center Seed Grant
2002, all from the University of Minnesota; and NSF CAREER
ACI-0238486. This work was supported also in part by the Army
High Performance Computing Research Center under the auspices
of the Department of the Army, Army Research Laboratory cooper-
ative agreement number DAAD19-01-2-0014. Its content does not
necessarily reflect the position or the policy of this agency, and no
official endorsement should be inferred.

References

[1] B.Chenand M. X. Nguyen. POP: A hybrid point and polygon
rendering system for large data. Proc. of IEEE Visualization
’01, pages 45-52, Oct. 2001.

[2] D. Cornish, A. Rowan, and D. Luebke. View-dependent parti-
cles for interactive non-photorealistic rendering. In Proceed-
ings of Graphics Interface 2001, pages 151-158, 2001.

[3] P. Decaudin. Cartoon-looking rendering of 3d-scenes. In-
ria technical report 2919, university de technologie de com-
piegne, france, June 1996.

[4] B. Freudenberg, M. Masuch, and T. Strothotte. Real-
time halftoning: A primitive for non-photorealistic shading.
In Proceedings 13th Eurographics Workshop on Rendering
Techniques, pages 227-231, 2002.

[5] A.Hertzmann. Painterly rendering with curved brush strokes
of multiple sizes. In SIGGRAPH 98 Conference Proceedings,
pages 453-460, July 1998.

[6] A. Hertzmann and D. Zorin. Illustrating smooth surfaces.
Proceedings of SIGGRAPH 2000, pages 517-526, July 2000.
Held in New Orleans, Louisianna.

[7] H. H. M. Hadwiger, Thomas Theul and E. Grller. Hardware-
accelerated high-quality filtering on pc graphics hardware. In
Proceedings of Vision, Modeling, and Visualization, pages
105-112, 2001.

[8] A. Majumder and M. Gopi. Hardware accelarated real time
charcoal rendering. In Non-Photorealistic Animation and
Rendering 2002 (NPAR ’02), Annecy, France.

[9] L. Markosian, M. A. Kowalski, S. J. Trychin, L. D. Bourdev,
D. Goldstein, and J. F. Hughes. Real-time nonphotorealistic
rendering. In SIGGRAPH 97 Conference Proceedings, pages
415-420, Aug. 1997.

[10] B.J. Meier. Painterly rendering for animation. In SIGGRAPH
96 Conference Proceedings, pages 477-484, Aug. 1996.

[11] M. Nienhaus and J. Doellner. Edge-enhancement — an algo-
rithm for real-time non-photorealistic rendering. pages 346—
353, 2003.

[12] R. Raskar and M. Cohen. Image precision silhouette edges
(color plate S. 231). In Proceedings of the Conference on the
1999 Symposium on interactive 3D Graphics, pages 135-140,
Apr. 1999.

[13] T. Saito and T. Takahashi. Comprehensible rendering of 3-D
shapes. Computer Graphics, 24(4):197-206, 1990.

[14] M. P. Salisbury, S. E. Anderson, R. Barzel, and D. H. Salesin.
Interactive pen—and-ink illustration. In A. Glassner, editor,
Proceedings of SIGGRAPH ’94 24-29, 1994), pages 101-
108, July 1994,

[15] M. P. Salisbury, M. T. Wong, J. F. Hughes, and D. H. Salesin.
Orientable textures for image-based pen-and-ink illustration.
In SIGGRAPH 97 Conference Proceedings, pages 401-406,
Aug. 1997.

[16] A. Secord. Weighted voronoi stippling. In Non-Photorealistic
Animation and Rendering 2002 (NPAR ’02), Annecy, France,
pages 37-43, June 2002.

[17] M. Segal, C. Korobkin, R. van Widenfelt, J. Foran, and P. Hae-
berli. Fast Shadows and Lighting Effects Using Texture Map-
ping. In Computer Graphics (SIGGRAPH 92), pages 249-
252, July 1992.

[18] H. Xu and B. Chen. Stylized visualization of 3d scanned out-
door environments. In IEEE Visualization 2003 (under re-
view), 2003.

A Vertex and Pixel Shader Pseudo-codes

VertexPrograml

INPUT: Vertex P, Normal N

o[HPOS] « P transformed by view projection matrix
Py <+ P in the eye space

Ny <+ N in the eye space

Vo « view direction from P to (0,0,0) in the eye space
o[COL0(].red < No.z

o[COLOQ].green < Ny.y

o[COLO].blue < 0

o[COLO].alpha + max(dot(No, Vo),0)

@O NSO RWNE

VertexProgram2

. INPUT: Vertex P, Normal N, Light Direction L
INPUT: pre-generated random value r at P
CONSTANT: EPSILON <« 1/255

o[HPOS] « P transformed by view projection matrix
Py « P in the eye space

Ny + N in the eye space

QAR ®WNE

7: Lo + L in the eye space

8: Vb « view direction from Py to (0,0,0)

9: intensity < light shading using Lo, No, Vo
10: if intensity < r then

11: intensity < EPSILON

12: end if

13: o[COLO0].red + 0

14: o[COLO0].green < 0

15: o[COLO0].blue + intensity

16: o[COLO0].alpha < 0

17: o[TEX0] « 2D coordinate of the projection of P

FragmentProgram is applied to each rasterized pixel from Ver-
texProgram2. If at VertexPrograml level, TEXO is bound to the
frame buffer of Step 1, then at pixel level, T E X0 contains the cur-
rent value of the frame buffer, COLO0 contains the incoming color
value of the pixel.

FragmentProgram

1 output + TEX0+ COLO

(®

Figure 2: Rendering of the Armadillo object using different NPR styles (the top-left corner small images are the zoom-ins
of the right images; under the zoom-ins are the stroke textures used): (a) Cartoon style (interior solid color; only strokes
on strong edge points), (b) Pencil style (similar to (a) without interior color, more strong edge points are selected),
(c) One-Tone style (strong edge points drawn using dots texture; lighting enabled; seed points with intensity above
threshold drawn as black dots), (d) Two-Tone style (similar to (c), two thresholds used; white and black dots are drawn
for seed points above larger threshold and seed points below smaller threshold, respectively, against a gray background),
(e) Curly fur style (weak points drawn using “zig-zag™ textures in large sizes), (f) Fur style (edge points drawn using
hair textures; blending enabled for smoothness), (g) Sketch style (seed points drawn using straight line textures; alpha
blending enabled), (h) Indian-ink style (similar to one-tone style; dense seed points with light intensity less than pre-
selected threshold are drawn using thick stroke textures).

~

Figure 3: Another style for medical illustration. The images to the right depict pencil drawings of the corresponding left images,
which are generated photorealistically.

