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Line Graph or Scatter Plot? Automatic Selection
of Methods for Visualizing Trends in Time Series

Yunhai Wang, Fubo Han, Lifeng Zhu, Oliver Deussen, and Baoquan Chen

Abstract—Line graphs are usually considered to be the best choice for visualizing time series data, whereas sometimes also scatter
plots are used for showing main trends. So far there are no guidelines that indicate which of these visualization methods better display
trends in time series for a given canvas. Assuming that the main information in a time series is its overall trend, we propose an
algorithm that automatically picks the visualization method that reveals this trend best. This is achieved by measuring the visual
consistency between the trend curve represented by a LOESS fit and the trend described by a scatter plot or a line graph. To measure
the consistency between our algorithm and user choices, we performed an empirical study with a series of controlled experiments that
show a large correspondence. In a factor analysis we furthermore demonstrate that various visual and data factors have effects on the
preference for a certain type of visualization.

Index Terms—Line graph, scatter plot, time series, trend.
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1 INTRODUCTION

Line graphs have been widely used for visualizing time series
data since they were invented by William Playfair in 1786 [1]. By
displaying temporal changes of values using up and down slopes,
they allow us to perceive trends and other patterns easily. Today,
such graphs are often taken as the best choice [2] for visualizing
time series data, although there are other options for comparing
values at particular time points [3]. When omitting all lines that
connect time points, a line graph becomes a scatter plot, which
displays a time series as a set of points [4]. Although using such
point representations often fail to show local changes between
points as line graphs are able to do, they still provide a visual
representation of the overall trend for a time series [5].

In this paper we present a method for automatically selecting
the right representation for trend exploration in time series data.
A small example shows the necessity of selecting the right vi-
sualization: when the amount of noise is small, the scatter plot
in Figure 1(a) and the line graph in Figure 1(d) both display the
given trend clearly. As the amount of noise increases, the scatter
plot shows the trend more clearly (Figure 1(c)), since the variance
of the data now introduces many disturbing lines in the line chart.
However, due to the presence of outliers, the trend shown in
Figure 1(b) is more visible than the one in Figure 1(c), although
the amount of noise is larger here. Besides data dependent factors,
the right choice between the two representations also depends on
visual parameters, such as the aspect ratio of the given display.

In his book [4], Cleveland shows how the aspect ratio of
a line chart influences the perception of trends. Figures 1(f,h)
demonstrate that a trend becomes more clear in a line graph
if the aspect ratio is increased and at the same time becomes
more obscured in a scatter plot (see Figures 1(c,g)). The chosen
visualization technique should, of course, always match the user’s
tasks [6]; however, as far as we know, there are no guidelines for
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finding the right choice between showing a time series as a line
graph or a scatter plot for exploring their overall trend.

Our hypothesis is that it is possible to select the right visualiza-
tion automatically. To support this hypothesis, we investigate how
well scatter plots and line graphs are able to represent data trends
and use these findings to automatically select the best approach for
visualizing the data on a given display. For doing so, we measure
the consistency between trend curves estimated by a LOESS
regression [7] and the trends that can be observed from a scatter
plot or a line graph and then choose the visualization method
whose consistency score is larger. Since LOESS regression depicts
the deterministic part of the variation within a time series, our
visualization choice will always represent the main pattern even in
absence of a clear trend. We performed a user study to investigate
how people choose visualizations and tested if our automatic
choice is consistent with user responses. Our results show that
choices made by our algorithm are mostly consistent with user
responses. Meanwhile, we find that outliers have a significant
effect on user choices, while the presence of noise has less of
an effect.

For computing the above-mentioned consistency, we start by
aggregating both visualizations into density fields that provide
us with an overview. This is achieved by using kernel density
estimation (KDE) [8], which characterizes the data distribution
with an appropriate bandwidth and a kernel function. Meanwhile,
the trend curve is transformed into a trend density field. Finally, the
consistency score is measured by matching the trend density field
with the density fields of the two visualizations using the Earth
Mover’s Distance (EMD) [9], a perceptual distance metric. The
main challenge in our approach is the proper selection of band-
widths for creating the density fields of the scatter plot and line
graph. Although many bandwidth selection methods have been
proposed, few of them are designed for time-series visualization.
Accordingly, we tailor an existing bandwidth selection method for
scatter plots of time series data and extend this method for line
graphs. Figure 2 illustrates the steps of our method.

Since the LOESS fit is used as a representative for the data
trend, our automatic selection relies on its quality. This might be
problematic in cases, where no clear trend is present. In such cases
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Fig. 1. The right visualization choice for time-series data –scatter plots (a,b,c,g) or line graphs (d,e,f,h)– is related to the amount of noise and outliers
in the data (a-f) and the aspect ratio of the given display area (g,h). When the amount of noise is small, the line chart in (d) is preferred due to its
continuity, while the scatter plot in (c) more clearly represents the main trend for a large amount of noise. However, due to the presence of outliers,
the trend shown in (b) is more visible than the one in (c), although the amount of noise is larger here. Besides such data dependent factors, visual
variables also affect the choice. For example, the trend in a line graph becomes more salient as the aspect ratio increases from the one in subfigure
(f) to the one in (h).

our approach employs the LOESS fit as a proxy. On the other hand,
even though in some situations the LOESS fit would be an accurate
data representation itself, overlaying it onto a scatter plot or a
line graph would distract the user from observing other interesting
patterns such as outliers and certain forms of noise. Hence, we
suggest to still watch the data from the selected visualization. In
summary, the main contributions of this paper include:

• We propose an approach that automatically selects be-
tween a scatter plot and a line graph in order to optimally
reveal the overall trend of a given time series shown on a
given display;

• We introduce a method for automatically selecting the
bandwidth for density estimation of scatter plot and line
graph visualizations for given time series data;

• We conduct a user study to verify that our automatic choice
is consistent with user responses. We found that outliers,
noise and aspect ratio all have significant effects on the
selection of a proper visualization but their influences are
quite different in magnitude.

2 RELATED WORK

2.1 Time Series Visualization
Line graphs [1] display data over time by a series of data points
connected by line segments. Since such graphs allows us to detect
data trends and other patterns, many variants including small mul-
tiples [10], horizon graphs [11], stacked graph [12] and braided
graphs [13] have been developed over time. All these variants
enable systems to display multiple time series, their effectiveness
has been discussed and evaluated by Javed et al. [13].

To visualize specific patterns in such data, a number of other
representations have been proposed. For example, calendar-based
visualization [14] can present patterns and trends on multiple tem-
poral scales (days, weeks, seasons) simultaneously, while spiral
visualizations [15] map each periodic section of a time series to
a single ring. To identify patterns in large datasets, VizTree [16]

computes sets of symbolic representations and encodes the corre-
sponding symbols into a suffix tree.

When the screen resolution is too small for displaying large
time series, multi-scale representations can be used. Line Graph
Explorer [17] provides an overview + detail interface for exploring
such series. It displays a compact overview by encoding the y-
dimension of the line graph with color instead of space and shows
selected graphs in detail using standard techniques. Hao et al. [18]
present a space-filling, multi-resolution matrix representation of
time series, where the display space is allocated in proportion to
the degree of interest for certain data subintervals.

To allow focusing on points of interest while maintaining
the context, SignalLens [19] distorts the time-axis to magnify
interesting areas and adds in-place magnification. Javed et al. [20]
present Stackzoom, which allows users to simultaneously explore
several foci by organizing multiple magnified interests in a nested
tree layout. ChronoLens [21] offers multi-step transformations of
one or more time-series and overlays the transformed data on
top of the original time series. After evaluating Stackzoom and
ChronoLens, Walker et al. [22] introduce TimeNotes that supports
hierarchical navigation of time-series data. Our work could be
used as an addition to these multi-scale representations, since the
right choice between line graphs and scatter plots can help users
to explore data in focal areas.

2.2 Graphical Perception
Since Eells’ pioneering work [23] in 1926, investigating the
effectiveness of different graph types became a major subject in
graphical perception. Croxton et al. [24] compare bar charts with
circle diagrams for representing component parts, while Cleveland
& McGill [25] study how different bar chart designs impact the
accuracy of relative height estimation. To further explore and
understand Cleveland & McGill’s results, their study has been
extended by other researchers [26], [27].

As line graphs are one of the most common representation
for time series, researchers have found different ways to improve
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Fig. 2. Overview of our method: given a time series, we generate three visualizations: a scatter plot, a trend curve represented by a LOESS fit
and a line chart. Next, we transform the trend curve and the two visualizations into density fields. Finally, we match the density fields of the two
visualizations to the density field of the trend function. The visualization with a smaller EMD distance is chosen.

them. Cleveland [4] investigates the influence of the aspect ratio
for perceiving trends in line graphs. He proposes the approach
of banking to 45◦ for aspect ratio selection, which centers the
orientations of the plot’s line segments to around 45 degrees. By
extending this idea, Heer and Agrawala [28] find a set of aspect
ratios that optimally display trends at varying scales. Talbot et
al. [29] propose an alternative method that chooses the aspect ratio
by minimizing arc length under the constraint that the area of the
plot is preserved. Their method outperforms previous methods,
although it does not follow the approach of banking to 45◦.
Through a rigorous user study, Talbot et al. [30] find that banking
to 45◦ is not necessarily the best choice.

Besides aspect ratio, Heer et al. [31] measure the effect
of chart size and layering on the graphical perception of time
series visualizations. Lam et al. [32] investigate the graphical
perception of multiple line series but focus on the differences
between low-resolution and high-resolution visual representations.
Javed et al. [13] systematically study the performance of different
line graph representations in displaying multiple time series and
provide guidelines for choosing proper methods for temporal
visualizations. We follow these ideas by building a computational
model that compares the efficiency of a line graph with a scatter
plot in representing trends of a given time series.

2.3 Density Estimation
By convolving a given sample with a kernel function, KDE [8]
approximates the probability density function without any prior
information. With an appropriate bandwidth and kernel, the ap-
proximation can truthfully characterize the given data patterns.

Recently, it has been adapted for different inputs. Feng et al. [33]
use KDE to aggregate the data of scatter plots and parallel
coordinate plots, and show that aggregation can help to visualize
multivariate uncertainty. Extending point-based convolution along
trajectories, Willems et al. [34] visualize vessel traffic at two
levels of detail with large and small kernels. Scheepens et al. [35]
investigate a method to assign various kernel radii to multiple
attributes of the data.

To reveal trends in large time series, Lampe and Hauser [36]
propose curve density estimates (CDE) that extends 1D KDE to
2D line spaces and demonstrate the usefulness in trend explo-
ration. However, the selection of the right bandwidth for CDE
has not been discussed as far as we know. Our work extends the
existing point-based bandwidth selection of CDE and shows its
effectiveness by summarizing trends represented by line graphs.

3 OVERVIEW

As an input we take a time series and a given display geometry. To
determine the appropriate visualization, we start with estimating a
trend curve from the time series and create the scatter plot and line
graph. Next, we convert the trend curve and the two visualizations
into density fields using KDE [8], since these density fields pro-
vide us with approximations of the overall trends in the data [36],
[37]. Finally, we match the trend density field to the density fields
of both visualization and choose the more consistent one. Please
note that this way of processing and judging visualizations could
also be applied to different problems. In this work, however, we



1077-2626 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2017.2653106, IEEE
Transactions on Visualization and Computer Graphics

SUBMITTED TO IEEE TVCG FOR REVIEW 4

Fig. 3. The density fields of a scatter plot (first row) and line graph (second row) computed by using KDE and CDE, respectively. The density fields
(b,c,d) of the scatter plot (a) computed with various bandwidths: (b) the result with values (1.02,0.31) generated by Silverman’s rule of thumb; (c)
the results with values (0.5,0.15) produced by our method; and (d) the result with values (0.24,0.08) generated by CDE for comparison with (c).
Lower row: the density fields (f,g,h) of line graph (e) computed with various bandwidths: (f) the result with values (1.2,0.3) generated by extending
Silverman’s rule of thumb to lines; (g) the result with values (0.24,0.08) produced by our method; and (h) the result with values (0.5,0.15) generated
by KDE for comparison with (g).

focus on time series. In the following we describe the individual
steps (see also Figure 2 for illustration).

Trend Curve Extraction To identify the main trend we use
a robust version of the locally weighted scatterplot smoothing
(LOESS) algorithm [7]. As suggested by the author, the span value
of the LOESS fit is set to 0.4 in order to capture large scale patterns
well.

Density Field Generation Next, we aggregate the two visu-
alizations into density fields using KDE and also transform the
extracted LOESS fit into the trend density field. With an appro-
priate bandwidth and kernel function, KDE is able to characterize
the distribution of the data [33], [36].

Trend Consistency Computation Finally, we use the Earth
Mover’s Distance (EMD) [9], a perceptually meaningful distance
measure, to compute the similarity between the density fields of
the two visualizations and the density field of the trend, and select
those that has the smaller distance.

4 DENSITY FIELD COMPUTATION

As mentioned above, we compute density fields to reveal overall
visual representations for the two visualizations and the trend
curve obtained by the LOESS filtering step.

4.1 Density Fields for Scatter plots
Kernel density estimation (KDE) [8] is an effective method for
computing the density field of a scatter plot. The field is denoted
by ρ(s) in this section. Let {pi} = {(xi,yi)}i=1,··· ,n denote the
points in the scatter plot, the density field is then modeled by

ρ
(s)(x,y) =

1
n

n

∑
i=1

K(
x− xi

hx
)K(

y− yi

hy
), (1)

where K(x) is a kernel function centered at 0, hx and hy are positive
bandwidth along the x and y axes. Typical choices of the kernel

functions are Gaussian and Epanechnikov functions. In this work,
we use a Gaussian function as the kernel function.

Bandwidth Selection It is not trivial to determine the right
bandwidth for our application. Different bandwidths will lead to
different density fields as shown in Figure 3, a bandwidth that
is too large might obscure smaller hotspots while a too small
bandwidth might lose the overall trend due to creating many small
clusters [38]. Silverman’s rule of thumb [36] is often used for a
proper selection. The created bandwidth, however, is designed to
reflect the standard deviation of a distribution and therefore might
generate too large and smooth density fields that smooth out trends
of the data. An example is shown in Figure 3(b): Silverman’s rule
over-smoothes the density field of the scatter plot. This might
be due to the fact that the data in time series is not completely
random, therefore we have to set the bandwidth considering the
special properties of the time series. Since the x-axis represents
the time parameter, we set hx = α∆x, where ∆x is the time step
used for sampling the time series, α is a scaling factor in [5,15],
and we set α = 10 by default. The y-coordinates in these plots
represent the distribution of the data. The vertical bandwidth hy is
set using a tailored version of Silverman’s rule of thumb:

hy = 1.06×min{σ̂y,
R

1.34
}n−1/5, (2)

where n is the number of the points, σ̂y is the standard deviation of
{yi}i=1,2,...,n and R = y[0.75n]− y[0.25n] is the difference of the 25%
and 75% quantiles of {yi}, which is used to create a bandwidth
hy insensitive to outliers. The difference between this tailored
version and the original Silverman’s rule of thumb is that we use a
minimum of σ̂y and R/1.34 rather than just R/1.34. Figures 3(b,c)
demonstrate that our method better aggregates the visual trend
while keeping the randomness of the time series.
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Fig. 4. a) Projecting the point (x,y) to the i-th line segment with the
coordinate (ui,vi) defined in the local coordinate; b) Computing the
bandwidth for the line segment between P4 and P5.

4.2 Density Field for Line Graphs

For line graphs we use curve density estimation (CDE) to model
the density field, which is denoted by ρ(l). The curved density
field was first introduced by Lampe and Hauser [36] for displaying
function graphs. Here we use it to create the visual aggregation for
a line graph. It is computed by integrating the kernel density field
along lines.

We first define the local coordinate system {di,d⊥i } of the i-th
line segment, where di is the normalized vector from pi to pi+1 and
d⊥i is the vector by rotating di 90 degrees counterclockwise. In the
coordinate system {di,d⊥i }, the point (x,y) has a local coordinate
(ui,vi), which satisfies (x,y) = pi +uidi +vid⊥i . Now we integrate
the kernel functions along pipi+1 in its local coordinate system,
yielding the density field of the i-th line segment

Li(x,y) =
1
li

∫ 1

0
K(

ui− r
hu

)K(
vi

hv
)dr, (3)

where r ∈ [0,1] is introduced to parameterize the i-th line segment
c(r) = pi + r(pi+1−pi), li = |pipi+1| is the length of the i-th line
segment, hu and hv is the bandwidth along the axis di and d⊥i
as illustrated in Figure 4(a). The density field of the line graph
{pipi+1}i=1,2,...,n−1 is finally computed by summing up the density
field of each line segment pipi+1:

ρ
(l)(x,y) =

n−1

∑
i=1

Li(x,y). (4)

Bandwidth Selection As for KDE, it is not trivial to select the
proper bandwidth for CDE in our application. Analogous to the
bandwidth selection for scatter plots, hu and hv in Equation 3 can
be determined by computing the standard deviations between all
line segments in horizontal and vertical directions of each local
coordinate. However, the distance between line segments is not
simply the Euclidean distance that is used for points. Different line
segments have different lengths and orientations (see Figure 4) and
thus we cannot simply put all line segments together to compute
their standard deviations. Figure 3(f) shows a result generated with
the bandwidth produced by such a straightforward method, the
bandwidths in two directions are both too large. Thus, we have to
compute the standard deviation of each line segment individually.

To compute hui and hvi for the i-th line segment, we project
all line segments to this segment as the shown in Figure 4(a)
and obtain a set of local coordinates {(ui, j,vi, j)} j=1,··· ,n. Since
the absolute value of vi, j is |sin(θ) ∗ (xi− x j)| (see Figure 4(b)),

the corresponding standard deviation σvi will be too large if we
consider all the data points.

Thus, we only take α adjacent line segments (see Section 4.1)
into account for the bandwidth selection. Due to the variation in
y-dimension, some projections are out of the i-th line segment.
With regard to the Gaussian kernel function, the densities of such
projections will be quite small and thus we only consider the
projections located within the range of the i-th line segment. That
is why in Figure 4 u1,4 and u8,4 are ignored.

After obtaining hui and hvi for each line segment, we weight
the average bandwidth by the lengths of the line segment to
compute a uniform bandwidth hu and hv:

hu =
∑i hui li

∑i li
, hv =

∑i hvi li
∑i li

, (5)

where li is the length of the i-th line segment. This seems to be
reasonable since longer line segments have more visual impact
than shorter ones. As illustrated in Figure 3(g), the result generated
with our bandwidth selection preserves the large scale trend in the
data as well as major local changes. While the optimal choice
for the bandwidth in KDE and CDE remains an open problem
in nonparametric estimation and statistics [39], we find it is
sufficient to use the above described heuristic strategy to select
the bandwidth in our application.

4.3 Trend Density Field

Similar to the line graph, we also transform the trend curve into
a density field τ , where the bandwidth is computed by using the
method discussed in Section 4.2. The field shown in Figure 2 is
an example with peak and valley points highlighted.

Please note that the bandwidths for these three density fields
are different for the same data as shown in Figure 2. This is
reasonable since KDE and CDE are defined in different coordinate
systems. For KDE the kernel function for each point is defined in
global coordinates whereas for CDE the kernel function for each
line segment is defined in local normal-tangential coordinates as
shown in Figure 4. Thus, the density fields will not compare well
if we use the same bandwidth. Two examples are shown in Fig-
ures 3(d,h), where the density fields in Figure 3(d,h) are computed
by using the bandwidths estimated for CDE (see Figure 3(g)) and
KDE (see Figure 3(c)), respectively. The continuous trend is lost
as shown in Figure 3(d) while outliers are obscured in Figure 3(h).
Although the bandwidth values of these two examples differ, we
can see that the resulting main influence regions are quite similar.

5 COMPUTATION OF THE TREND CONSISTENCY

Having computed the density fields, we use them as scalar fields
that represent the visual aggregate for the information contained
by scatter plot, line graph as well as trend curve. These fields
also allow us to have a uniform representation for the input data
–points in scatter plots and line segments for line graphs– for our
comparison.

Our rationale is that if the density field ρ of a visualization
method better fits to the trend density field τ , it is more informative
and suitable for depicting the time-series data. For doing so, we
need to quantify how well the density field matches the trend
density field.
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mass transportation problem.

5.1 Consistency Score Computation
Since we want to quantify how well a user is able to perceive the
trend in the data from the density field, a perceptually meaningful
distance measurement is preferred in our application. The distance
between distributions is often measured by using λ 2 statistic
and the Kullback-Leibler divergence [40], which compares the
densities of corresponding pixels in fields ρ and τ . These dis-
tances, however, do not match human perception for comparing
distributions, since they do not account for the spatial distance
between pixels. That is to say, if a point is far away from the
trend curve, the distance between the two fields does not change if
the point is perturbed further away. Thus, we choose to adopt the
Earth Mover’s Distance (EMD) [9], which considers the spatial
distance of non-corresponding pixels.

Here we only briefly discuss the formula of EMD and refer
to the above cited work for details. Suppose the scalar fields ρ

and τ are discretized in form of pixels with their values {ρi}
and {τi}, and coordinates {(xi,yi)}, where i ∈ {1,2, ...,m} and
m is the number of pixels. Regarding the scalar field as a mass
distribution, EMD measures the cost of transporting one heap of
mass to another and thus computes the minimal flow between ρ

and τ:

min∑
m
i=1 ∑

m
j=1 fi jdi j

s.t. fi j ≥ 0, i, j ∈ {1,2, ...,m}
∑

m
i=1 fi j ≤ ρ j, j ∈ {1,2, ...,m}

∑
m
j=1 fi j ≤ τi, i ∈ {1,2, ...,m},

(6)

where fi j is the amount transported from the i-th to the j-th
pixel and di j is their spatial distance. Figure 5 illustrates the
transportation from ρ to τ . After solving this problem using linear
programming, the EMD is defined to be the total cost normalized
by the total flow

EMD(ρ,τ) =
∑

m
i=1 ∑

m
j=1 fi jdi j

∑
m
i=1 ∑

m
j=1 fi j

. (7)

To reduce the computational cost, we adapt the distance di j to the
L1 norm, i.e., di j = |xi−x j|+ |yi−y j|, and use the efficient method
for EMD-L1 as proposed in [41].

By doing so, a bigger amount of noise within the time series
leads to a larger EMD, and a line segment of the line graph passing
through such noise further amplifies the EMD between ρ (of the
line graph) and τ . This effect enhances the consistency between
our automatic selection and user responses (see result of Figure 2).
On the other hand, if the line graph is close to the trend curve, the
noise is small and thereby requires less costs for the transportation

(c.f. Figures 1(a,d)). Both examples demonstrate EMD to be a
valid measurement for quantifying perceptual differences between
two distributions.

6 EVALUATION

The goals of our evaluation are two-fold: finding out which
visualization method allows to see the trend better and to assess
the consistency between the choices made by our algorithm and
by users. Based on the results, we can furthermore investigate the
factors that influence the users in their choice. Hence, we designed
a user study where subjects were asked to select the visualization
method that better reveals the overall trend of a given time series.

6.1 Study Design
Users’ choices will be dependent on the factors provided by the
given data and also by the visualization method. According to the
non-seasonal model [42], a time series can be decomposed into
a trend and some irregular components (noise and outliers). Our
data factors thus refer to three general patterns:

• Trend (T): A long-term upward or downward movement
in a time series, which can be linear or nonlinear.

• Noise (N): The residual between the observed data and the
true signal, that often follows a certain assumed pattern.

• Outlier (O): An outlier is a data point that significantly
differs from the majority of other points, and that may
sometimes be of special interest.

Besides data factors, various visualization factors such as aspect
ratio, chart size, color, and shape also impact the perception of the
trend from a visualization [25], [31], [43], [44]. In our study, we
are especially interested in how the aspect ratio impacts the selec-
tion and thereby we fix the other factors in both visualizations.

Gamma(2,16)
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Fig. 6. Six trend functions used for time series synthesis.

Hypothesis Our intuition is that outliers can have a strong effect
on the selection of a visualization, that trends might have a weak
effect and that the noise effect is between them. Regarding aspect
ratio, we suspect that its effect is not strong.

Study Data Based on the above factors, we follow the conventions
of Javed et al. [13] and Heer et al. [31] to generate synthetic
data with controlled visual patterns. Following the non-seasonal
model [42], we synthesize a time series by:

yt = Tt +βNt +δOt , (8)
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where yt is the value at the tth time step, and β and δ are
the weights of the two patterns, ranging from 0 to 1. Since
the perceived similarity of different trends can differ [45], we
create six different trends as shown in Figure 6. Additionally, we
produce noise using a white noise function and generate outliers
by randomly picking γ = 10% of the points and assign values to
them with large fluctuations.

Since the number of possible combinations for the weights are
too large, we pre-specify a set of parameters:

β = {0,0.25,0.5,0.75}, δ = {0,1}. (9)

Additionally, the aspect ratio is fixed to 4, 1, 1/4 and the ideal
one for line graphs chosen by using banking to 45◦ [4]. Thus,
we generate 192 different conditions. To increase the robustness
of our study, each condition is repeated twice, yielding a total
number of 384 trials for each participant.

Apparatus The study was conducted on a desktop machine with
a 3.3GHz Intel i5-4590 CPU, 8 GB of RAM and Windows 10
operating system using a 24-inch LCD display with 1920 x 1080
pixels. Participants only used the mouse during their trials.

6.2 Pilot Studies
Prior to conducting our experiment, we performed a pilot study
involving 9 students from our university and including several
candidate visualizations. We used the results from these informal,
rapid studies to quickly iterate on our experimental design.

In this pilot study, we showed participants just eight time series
visualized by line graphs and scatter plots, and then asked them
which one they would prefer. From the results we found that some
participants almost always selected the line graph. In these cases
we performed a follow-up interview with each participant and
asked them why they think the line graph is generally better. The
answers indicated that such participants focused on capturing the
variance of the plot rather than the main trend; subjects thought
that the line graph, due to its continuous nature, would be better
able to show a clear temporal ordering. Accordingly, we refined
our scenario in a way that now the trend curve is shown on the
same page with two visualizations and subjects are asked to select
the visualization that better matches with the trend curve.

6.3 Study Procedure
We recruited 27 participants (17 males and 10 females) from the
student pool of our university (average age 23, median age 24) on
a voluntary basis. All of them were master and Ph.D. students in
visualization or computer graphics and had a sufficient amount of
experience in graph reading.

Participants were first asked to fill out a demographic question-
naire including name, gender, age, and research directions. Then
they were placed in front of the study computer and informed
about the goal and the procedure of the experiment. Once the
test started, the trend function (see Figure 6) of a time series and
the line graph and scatter plot that visualize the time series were
shown, and then the participants were asked to choose between
line graph or scatter plot by considering which one better captures
the trend. Since we knew the trend functions of the synthesized
time series for this study, we showed these functions to the subjects
rather than the LOESS fit to the data.

Compared to our automatic classification, we added two more
options “Both good” or “Both bad. ” We considered this to be
useful in cases when the trend was clearly shown or destroyed

in both visualizations. We instructed participants to make quick
choices but each participant was able to advance at his/her own
pace.

6.4 Study Results
With 27 participants and 384 trials per participants we collected
a total of 9600 responses for the whole experiment. Most partic-
ipants finished the study within 20-25 minutes (a per-trial time
of 3.5 seconds). We use repetitions to check whether the user
made different choices for the same data. If the percentage of such
choices exceeded 75%, we assume responses from this user to be
invalid. Using this limit, the responses from two participants were
removed. Subsequently, we took the trial from the duplicates that
were completed in the shorter time for the following analysis. In
the following step we compared our algorithm to the user choices
and then performed inter-subject comparisons to investigate the
effects of data factors and visual factors in user choices.

TABLE 1
The selection percentages of our algorithm choices and user

responses.

Alg.
User Line Graph Scatter Plot Both good Both bad

Line Graph 15% 6% 12% 5%
Scatter Plot 10% 30% 15% 7%

Consistency between user and algorithm Table 1 shows the
percentages of different choices made by users and our algorithm.
For convenience, we name these entries by concatenating the
abbreviations of user choice and algorithm choice. For example,
“LL” refers to the entry where the user selects line graph and the
algorithm selects line graph and “GS” corresponds to the entry
where the user selects “Both good” and the algorithm selects the
scatter plot.

Let us first look at the selections for scatter plots and line
graphs made by our algorithm in contrast to the users. Our
algorithm selected a scatter plot in 62% of the cases and line graph
only in 38%, while users selected scatter plots in 36% of the cases
and the line graph in 25%, “Both good” in 27%, and “Both bad”
in 12% of the cases. This seems to be counterintuitive, since users
typically prefer line graphs for visualizing time series. We believe
that the main reason for that behavior is that our synthesized time
series exhibit certain artifacts including noise and outliers that let
scatter plots look more intuitive – we will discuss this further in
Section 7.1.

If we investigate the agreement between human judges and
algorithmic choices in the four cases: “LL,” “LS,” “SL” and “SS,”
we can see that the percentage of the inconsistent choices of scatter
plot and line graph is 16% (10% from “LS” and 6% from “SL”),
while the one of the consistent choices is 45% (30% from “SS”
and 15% from “LL”). Hence, the ratio between the consistent
and inconsistent choices is 45:16, which indicates a consistent
agreement between human judgement and algorithmic choices in
all those case where there is a single visualization that is clearly
superior in revealing the trend in the time series.

We assume that the user was not able to decide which
visualization better reveals the data trend when selecting “Both
good.” As shown in Table 1, the percentage of such selections is
27%, among which the percentages of “GS” and “GL” are 15%
and 12%, respectively. To investigate whether our algorithm also
would not be able to decide which is better for these situations,
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Fig. 7. Relative scores for eight cases of the user study shown in Table 1,
where we assume that the algorithm also cannot clearly decide which
visualization is better for the samples (highlighted in the red box).

we examined how close the two EMD scores are in these cases.
Since the absolute score is meaningless for comparing different
time series, we compute the relative score by

rs(ρ(l),ρ(s),τ) =
|EMD(ρ(l),τ)−EMD(ρ(s),τ)|

min(EMD(ρ(l),τ),EMD(ρ(s),τ))
, (10)

where τ is the trend density field, and ρ(l) and ρ(s) are the density
fields of scatter plot and line graph. A relative score of zero means
that there is no difference between our algorithmic rating for the
scatter plot and the line graph, while a high score indicates a strong
algorithmic preference. To better understand how our algorithm
performs the decision, we compute the relative scores for the
corresponding visualizations of all entries in Table 1.

Figure 7 shows the relative scores of eight cases. It can be seen
from the figure that the relative scores for inconsistent choices
(“LS” and “SL”) lie in-between consistent ones (“SS” and “LL”)
and the ones for “Both good”. Most of the relative scores of
“GS” and “GL” are also smaller than the ones for the other four
cases, which indicates that our algorithm creates more similar
scores for scatter plots and line graphs and thus the result is
consistent with the user selection. Therefore, we take the samples
highlighted in the red box of Figure 7 as consistent samples.
This range covers half of the samples in “GS” and 75% of the
samples in “GL.” Summing up these samples to the ones in “SS”
and “LL,” the percentage of the consistent choices reaches 62%.
Since the participants assume that scatter plots and line graphs
neither can reveal the data trend in the case of “Both bad,” we
removed the corresponding data. After doing so, we recomputed
the consistency and the percentage of consistent choices now
reaches 71%. This indicates that the choice made by our algorithm
is mostly consistent with the user responses in the case that there
is at least one visualization that is able to reveal the trend in the
given data.

To investigate why some relative scores of “GS” are quite
large, we carefully checked the corresponding cases and found
that both visualizations clearly show the trend but the LOESS fit
fails to indicate the trend. Regarding the choice of “Both bad,”
we found the corresponding visualization cannot clearly reveal
the trend to most users (see Figure 8), but the LOESS fits are
reasonable in some cases (see Figure 8(b,c)) so that the relative
scores are not very large. On the other hand, we can see that

relative scores of “BS” are larger than the ones of “BL.” This
indicates that continuous line segments result in larger influences
of outliers and noise than the points of a scatter plots.

Reliability of LOESS Fit Since real data does not have a ground
truth trend, we have to use the LOESS fit also as the representative
of the trend in such data. To investigate the reliability of the
LOESS fit, we replaced it with the (known) trend of our synthetic
data and checked if our algorithm would behave differently.
Figure 9(a) presents differing choices made by our algorithms
based on the LOESS fit vs. the true trend. We can see that the
percentage of consistent choices is 95%, with only ten inconsistent
choices among 192 data sets. We carefully went through the
data sets of such choices and found that line graph as well as
scatter plot both clearly show the trend here (see an example
in Figures 9(b,c,d)). Thus, we assume that the inconsistency is
resulting from the uncertainty of the algorithm in these cases.

Please note that the choices are also consistent for cases in
which the LOESS fit cannot accurately model the trend (see
Figure 8(a)). We believe the reason for this is that the selec-
tion is determined by the difference between EMD(ρ(l),τ) and
EMD(ρ(s),τ). Since the LOESS fit is able to capture most patterns
in our data, the choices are still consistent. When the real trend
incorporates many oscillations, our algorithmic choice might get
inconsistent with user selections because the LOESS fit will be
smoothed in such cases.
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Fig. 8. Three representative examples for which the user selected “Both
bad,” where our algorithm selects scatter plots in (a,c) and a line graph in
(b). Each example consists of a scatter plot, line graph, LOESS fit curve
(blue) and analytic trend function (red). (a) Gaussian function (σ = 2)
with β = 0.5, γ = 1 and aspect ratio 1; (b) Gamma function (2,16) with
β = 0.75, γ = 1 and aspect ratio 4; (c) Logarithmic function with β = 0.5,
γ = 1 and aspect ratio 1/4.

Consistency between users To analyze how different factors
influence user choices, we conducted a repeated measures multi-
variate analysis of variance (RM-MANOVA) on the user respons-
es. Along with the statistical significance, we computed partial
eta-square (η2) values, a measure of the effect size, where 0.01
denotes a small size, 0.06 is medium, and 0.14 a large effect [46].
Table 2 summarizes the main effects, where we can see that trend,
noise, and outliers all have significant effects with the following
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Fig. 9. (a) The selection percentages of our algorithms based on LOESS
fit and real trend, respectively. (b,c,d) An example where the algorithms
based on LOESS fit and real trend select the scatter plot, and line graph,
respectively. (b) Scatter plot; (c) the LOESS fit curve (blue) and real
trend curve (red); (d) line graph.

TABLE 2
Effects of different factors for user choices (MANOVA).

Factors Df F p η2

Trend (T) 5 54.62 ** 0.10
Noise (N) 3 18.95 ** 0.03
Outlier (O) 1 20.02 ** 0.06

Aspect Ratio (A) 3 10.86 ** 0.10
T*N 15 6.01 * 0.06
T*O 5 13.96 * 0.04
T*A 15 8.71 ** 0.016
N*O 3 4.48 * 0.04
N*A 9 4.16 * 0.04

T*N*O 15 3.47 * 0.02
T*N*A 45 2.22 * 0.01

T*N*O*A 45 2.29 * 0.06
∗= p≤ 0.05,∗∗= p≤ 0.001

order: aspect ratio and trend, then outliers and finally noise.
Although strong effects of the other three factors were expected,
we did not expect the large effect of the trend itself. To investigate
the effect of trend functions, we performed an univariate analysis
of user choices for trend functions.

By pairing every two trend functions, we performed 30 one-
way ANOVA tests and obtained the results shown in Table 3,
where we can see that the trend functions Gaussian(σ = 2) and
ln(x) have significant effects, while the other functions have no
significant effect. In order to verify this finding, we removed the

TABLE 3
Effects of factors for user choices generated by applying one-way
ANOVA to the paired trend functions. σ = 2 and σ = 5 refer to the

bandwidths of the Gaussian functions.

gamma(2,16) σ = 2 σ = 5 ln(x) sin(x) x2

Gamma(2,16) \ ** 0.31 ** 0.83 0.11
σ = 2 ** \ ** * ** **
σ = 5 0.31 ** \ ** 0.34 0.45
ln(x) ** * ** \ ** **
sin(x) 0.83 ** 0.34 ** \ 0.11

x2 0.11 ** 0.45 ** 0.11 \

∗= p≤ 0.05,∗∗= p≤ 0.001

TABLE 4
Effects of factors for user choices (MANOVA) after removing the

conditions related to the trend functions (Gaussian(σ = 2) and ln(x)).

Factors Df F p η2

Trend (T) 3 0.26 0.85 0.00
Noise (N) 3 15.91 ** 0.02
Outlier (O) 1 75.93 ** 0.23

Aspect Ratio (A) 3 13.06 ** 0.04
N*O 3 10.93 ** 0.03
A*O 3 4.29 * 0.05

N*O*A 9 4.49 ** 0.04
∗= p≤ 0.05,∗∗= p≤ 0.001

conditions related to these two trend functions, ran RM-MANOVA
again, and received a new result (see Table 4) where the trend has
no significant effect (p = 0.85,η2 = 0.00). Still outliers, aspect
ratio and noise have significant effects, while the relationship of
the corresponding effect sizes are: outlier > aspect ratio > noise.

6.5 Informal Follow-up User Study
Our results are limited to an amount of outliers that is 10% of
the data points, but many real-world time series data sets involve
varying degrees of outliers. To study the effect of different amount
of outliers, we designed an informal follow-up experiment where
we investigated user choices for varying amount of outliers.

Based on four selected trend functions used in Table 4,
we synthesized time series with the parameters β = 0 and
γ = {0,1%,5%,10%,15%,20%,25%} and an aspect ratio of 1
according to Equation 8. Hence, we generated 28 time series
and recruited 17 unpaid participants (10 male and 7 female) to
pick the visualizations which better represent the given trend
functions. We collected 476 individual trials and found that almost
all user choices were scatter plots when γ is larger than a specified
threshold. This is consistent with the finding that outliers have the
significant effect on the selection.

7 DISCUSSION

We can summarize our finding as follows:

• Our algorithm produces selections that are consistent with
user choices for most data inputs;

• Some trend functions have significant effects whereas
others only have weak effects;

• Outliers, aspect ratio and noise all have significant effects
on user choices, the effect magnitudes, however, are dif-
ferent: outliers have the largest effect, noise the smallest
and the aspect ratio is in-between them.

These results confirm our intuition that outliers, aspect ratio
and noise might influence user choices but we had not explored
how the selection made by our algorithm is related to them. This
is why we examined how these factors influence the calculation of
the consistency score. To facilitate such an analysis, we adopted
time series whose trend functions did not have a strong effect on
user choices and examined their intermediate density fields.

7.1 Factor Analysis

Outlier To investigate how the amount of outliers added effects
user choices, we created seven time series with a sinusoidal trend
function and different degrees of outliers (see Section 6.5). We ran
our automatic algorithm on this data and computed the relative
scores for each time series. Figure 10 shows the visualizations
for four selected time series and the curve of relative scores.
Our algorithm always selects the scatter plot except for the case
when γ ≤ 1% (see Figure 10(a)). The relative scores quickly go
down to a local minimum when γ grows from 1% to 5% and the
selection goes from the line graph to a scatter plot. Subsequently,
the relative scores reach large values when γ = 10% and then
maintain these values when γ is between 10% and 20%. This
indicates that the algorithm is confident in the selection of scatter
plot. Finally, the score goes down to a local minimum again for
γ = 25% while the choice is still scatter plot. This indicates that
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Fig. 10. Overlaying different degrees of outliers γ on a sin(x) function: (a) 1%; (b) 5%; (c) 10%; (d) 25%. Each example consists of a scatter plot
(top left), line graph (top right), the point density field (bottom left) and the line density field (bottom right). (e) Relative scores generated by using
seven different γ. Green triangles indicate that the algorithm selected the line graph, violet circles the scatter plot. The visualizations selected by
our algorithm are highlighted with red boxes.
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Fig. 11. Overlaying noise on the trend function Gaussian(σ = 5) with different weights β : (a) 0.25; (b) 0.5; (c) 0.75. Each example consists of a scatter
plot (top left), line graph (top right), the point density field (bottom left) and the line density field (bottom right). (d) The relative scores generated by
using four different β . Green triangles and violet circles indicate the algorithm selects the line graph and scatter plot , respectively. The visualizations
selected by our algorithm are highlighted with red boxes.

the algorithmic ratings for scatter plots and line graphs are similar,
but the score EMD(ρ(s),τ) is tightly smaller than EMD(ρ(l),τ).
All algorithmic choices in this case are scatter plots, which is
consistent with the user choices in Section 6.5. This is reasonable
since continuous line segments might amplify the influences of
outliers while discrete points do not have that behavior when
the amount of outliers is not too large. In such cases the visual
influence of points and line segments seem to be close.

Noise To investigate how noise influences the selections suggested
by our algorithm, we next overlaid different amount of noise onto a
Gaussian trend function (σ = 5) (cf. Figure 11). In this case more
continuous regions (clusters) are formed for the line density field
as the amount of noise increases while at the same time the point
density field becomes more scattered. This indicates that the trends
of point and line density fields are both obscured by noise but with
different degrees of obscuration (cf. Figure 11(d)). In this case, the
relative score is closed to zero when β is 0.5 but the algorithm still
prefers the scatter plot. Observing the corresponding density fields
yields that the influence of noise in scatter plots is restricted to a
smaller range than the one for outliers. On the other hand, the
small relative score indicates that it is hard for the algorithm to
decide which visualization is better here. This is consistent with
the user choices that indicate“Both good” in these cases.

Aspect ratio For a sinusoidal trend with parameters β = 0.75
and γ = 10%, we visualized different aspect ratios as shown in
Figure 12. We observed that the line graph better preserves the

shape of the trend function when the aspect ratio is large, while the
scatter plot does a better job when the aspect ratio is small. This
observation is also reflected by our algorithmic selection: scatter
plots for Figures 12(a,b,c) and line graphs for Figures 12(d,e). It
should be noted that all relative scores in this case are smaller
than 0.5 and thus our algorithmic choice is quite uncertain. This
is consistent with user choices that are mostly “Both good” for
Figures 12(a,b,c) and line graphs for Figures 12(d,e).

7.2 Real data

To demonstrate the usefulness of our automatic selection, we
applied our algorithm to two real time series [47], which have
multiple peaks and valleys as shown in Figure 13. The first
row in Figure 13 shows the number of electrical components
manufactured in the Euro area. The scatter plot (Figure 13(a))
fails to reveal the trend shown in Figure 13(e) while the line graph
(Figure 13(b)) characterizes the trend although there are some
distracting line segments by the outliers. Our algorithm selects the
line graph that is consistent with this observation. In contrast, our
algorithm selects the scatter plot for the electrocardiogram (ECG)
data that is displayed in the second row. The outliers obscure the
trend shown in the line graph (see Figure 13(g)) but much less
impact the trend shown in scatter plot (see Figure 13(f)). Although
the overall trend might not be the main interest for ECG data,
clearly showing the trend could be still useful in some cases.
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Fig. 12. Visualizing the time series with different aspect ratio values: (a) 0.25; (b) 0.5; (c) 1; (d) 2; (e) 4. The algorithm choices highlighted with red
boxes are scatter plots in (a,b,c), and the ones in (d,e) are line graphs. Each example consists of a scatter plot (top left), line graph (top right), the
point density field (bottom left) and the line density field (bottom right).

Fig. 13. Selecting the visualization (highlighted with red box) that is more effective in revealing the overall trends of two real time series, which are
shown in the first and second rows, respectively. (a,f) scatter plots; (b,g) line graphs; (c,h) point density fields; (d,i) line density fields; and (e,j) trend
density fields.

8 CONCLUSION AND FUTURE WORK

In this paper, we propose an algorithm that automatically selects
a line graph or a scatter plot for visualizing a time series data
for a given display. By assuming that the main information in
a time series is the overall trend, we measure the consistency
between a LOESS fit to the data and the visual representation
by the two visualization types. The visualization with the larger
consistency score is then suggested to be the right choice. We
conducted a user study to see if their choices are consistent and
compared these choices with our algorithm. The results show that
our algorithm is consistent with the user choices for most of the
given data. By carefully analyzing the user choices, we found
that outliers, noise and aspect ratio all have significant effects on
the visualization selection but their effect sizes are different with
outliers having the largest effect. Even though we gained a good

degree of consistency, we only made a first step in automatically
selecting a proper visualization for time series and there is a lot of
room for further studies.

Marker Shape and Size In our algorithm a line graph is formed
by connected thin solid lines and a scatter plot consists of as a
set of filled small dots. A line graph, however, can be shown in
different styles (solid, dashed, and dotted) and data points in a
scatter plot can be represented by different shapes (circles, squares,
triangles, etc.). Since the marker type and size both will impact
the visualization effects [43], we would like to explore how these
factors affect the selection of visualization methods. This could
be incorporated into our computations by letting marker styles
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and sizes vary the kernel functions and radii during density field
calculation.

Bandwidth Selection The computation of our consistency score
relies on the estimated density field, which depends on the
bandwidth. In our work we used a standard bandwidth selection
method and extended it for our application. This strategy is able
to generate reasonable density fields for most data, but we cannot
guarantee that it works for any data. Looking at visualizations
with inconsistent choices by users and our algorithm, we found
that some estimated bandwidths are a little too large and thus the
bandwidth selection strategy remains to be improved for future
work.

LOESS Fit Our method is based on the assumption that the
LOESS fit is able to reflect the data trend in most cases. However,
this might be not true for some data sets. For example, the LOESS
fit shown in Figure 8(a) does not capture the overall trend at all.
Inspired by uncertainty visualization, one possible way would be
to match the density fields with multiple LOESS fits obtained
from running the regression with different parameters and then
computing the uncertainty within the consistency. On the other
hand, we would like to develop a perceptual LOESS fitting by
having user sketch the overall trend for a variety of plots and
understanding the relation of those lines with traditional LOESS
fitting using the EMD distance metric.

Overall Trend Our automatic selection is based on the assumption
that the main information of a time series plot is the overall
trend, which might be not true for different visualization tasks.
As discussed by Javed et al. [13] and Fuchs et al. [49], there
are many potential tasks that users may want to perform on time
series data and many different visualization methods have been
introduced for time series data. In the future, we would like to
learn how different visualizations perform for different tasks and
design more general computational methods to choose the right
visualization.

It should be noted that our current algorithm framework is
useful when both a scatter plot and a line graph, can generally be
used to visualize a given time series and it gives an appropriate
suggestions which one better reveals the overall trend. There are,
however, cases in which scatter plots and line charts are not
interchangeable, since scatter plots are often used for showing
unordered data and lines graphs are used to visualize continuous
time series.

User Study Our study, while fairly comprehensive, only includes
four factors that influence user choices. Many types of temporal
data, e.g., climate data, includes seasonal and cyclic patterns that
our current study data does not take into account. Moreover, the
strength of outliers was fixed in our experiments, which may limit
us to understand their influence in the selection process. Regarding
visual factors, we did only investigate a few aspect ratios while
leaving out many other factors such as mark/line sizes or mark
shapes, which might also impact the perception of a series.

On the other hand, although our study demonstrates that our
algorithm produces selections that are consistent with user results,
we have not deeply examined for which conditions they are
inconsistent. Once we have identified such conditions, we would
like to improve our algorithm accordingly.

Multiple Time Series Our current work is limited to visualizing
a single time series. For multiple time series, many different
visualization methods have been designed [13], [50]. We plan to
extend our algorithm for multiple time series data and investigate

how different visualizations perform for such tasks. Intuitively,
lines graphs would be better for most of tasks because the
introduced crossing might make the trends shown in scatter plots
hard to discriminate. We will conduct a user study to verify this
observation for different user tasks.

Finally, our techniques for automatic selection of visualiza-
tion techniques are not limited to line graph and scatter plot
visualizations for time series data. We would like to apply them
to select other visualization techniques for different user tasks
and different data. For example, choosing scatter plot or parallel
coordinate plots to see which are better reveal the correlation
among variables.
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