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Abstract. Object cutout is a fundamental operation for image edit-
ing and manipulation, yet it is extremely challenging to automate it in
real-world images, which typically contain considerable background clut-
ter. In contrast to existing cutout methods, which are based mainly on
low-level image analysis, we propose a more holistic approach, which con-
siders the entire shape of the object of interest by leveraging higher-level
image analysis and learnt global shape priors. Specifically, we leverage
a deep neural network (DNN) trained for objects of a particular class
(chairs) for realizing this mechanism. Given a rectangular image region,
the DNN outputs a probability map (P-map) that indicates for each pixel
inside the rectangle how likely it is to be contained inside an object from
the class of interest. We show that the resulting P-maps may be used
to evaluate how likely a rectangle proposal is to contain an instance of
the class, and further process good proposals to produce an accurate ob-
ject cutout mask. This amounts to an automatic end-to-end pipeline for
catergory-specific object cutout. We evaluate our approach on segmen-
tation benchmark datasets, and show that it significantly outperforms
the state-of-the-art on them.

1 Introduction

Object cutout is a fundamental operation in image editing and manipulation [3,
35,37], an operation which graphics artists perform routinely. Performing this
operation in a completely automatic fashion involves solving two classical and
challenging computer vision tasks: object detection and semantic segmentation.
Furthermore, in some scenarios an automatic approach is infeasible, since the
user’s intent is difficult to predict. Thus, a variety of interactive cutout tools
have been proposed over the years, e.g., [24,22,28]. A common approach is to
let the user indicate the object of interest with a bounding box, and attempt
to proceed automatically from this minimal input to obtain an accurate cutout
mask [28].

However, these tasks of detection and segmentation, which the human visual
system accomplishes with ease, are notorious for being surprisingly hard for a
computer program. They are especially challenging when the object of interest is
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Fig. 1. A cluttered scene with four chairs (a); an aggregated P-map visualizing object
detection (b); local P-maps inside proposed rectangles (c) ; cutouts produced with the
aid of our local P-maps (d) ; cutouts produced using GrabCut, for the same rectangles

(e) .

located in front of a cluttered background, which may contain many distractions,
such as other objects with similar low-level statistics to the foreground object.
Such an example is demonstrated in Fig. 1(a), where the background contains
chairs identical in appearance to those in the foreground.

Methods that are based mainly on low-level image analysis tend to fail when
the foreground object and the background are not statistically separable, and
when salient separating edges cannot be easily detected. Sparse user input, such
as a bounding box [28] or a pair of scribbles [22], is not sufficient to overcome
these difficulties, as demonstrated in Fig. 1(e). A more holistic approach, which
considers the whole shape rather than its pieces by leveraging higher-level image
analysis and global object shape priors, has a better chance of coping with these
challenging scenarios.

Recent advances in deep neural networks (DNNs) have shown promising re-
sults in solving various image understanding tasks, such as classification, detec-
tion and segmentation [29]. However, object cutout presents DNNs with three
additional challenges. Firstly, the network should learn a large variety of de-
tailed shape priors, which differ significantly among different object classes. Sec-
ondly, the solution space is high-dimensional, since the images operated upon
and the resulting cutout masks are required to be of high resolution. Thirdly,
the cutout masks have sharp boundaries. For example, the state-of-the-art DNN-
based instance-level object segmentation approach of [21] achieves 24.5% AP"
at 0.5 ToU*, on the chair class, which is far from being useful for graphics ap-
plications.

In this work, we leverage a Convolution-Deconvolution (DeconvNet) DNN [25].
However, we train it specifically using objects of a particular class (chairs). By

4 AP is short for average precision, which is the area under precision-recall (PR) curve.
IoU is short for Intersection over Union, i.e., A(P(G)/A(PJG), where P and G
are segmentation prediction and ground truth, respectively, while A(e) indicates
their areas. To measure the precision of segmentation, AP" is used, which is region
based AP. Here, a segmentation is considered to be positive when it reaches 0.5 ToU.
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focusing the training on a particular class, we reduce the learning difficulty and
push it to learn more detailed shape priors. Moreover, to provide a more exhaus-
tive coverage of the class in the training phase, we leverage synthetic imagery
generated from ShapeNet [33]. Given a rectangular image region, the trained
network generates a map (of the same resolution as the input region), where
each pixel indicates the likelihood of belonging to the object. We refer to such
maps as P-maps for short.

We show that the resulting P-maps are useful for a number of vision tasks
and applications.

First, given a set of proposals (generated by any state-of-the-art method), we
are able to evaluate and rank it better using the P-map. This capability enhances
automatic location of chairs in an image. Second, getting back to the original
motivation for our work, we are able to use the P-map to guide an iterative
graphcut process [28] towards an accurate object cutout (see Fig. 1(d)). Thus,
the approach described in this paper amounts to an end-to-end solution for
automatic object cutout.

We use chairs as our running example, as they represent a family of shapes
that have a rich variability of geometry and topology, and pose a challenge
to state-of-the-art DNNs. Our technique is specifically designed to deal with
cluttered images, learning to extract the foreground shape from a background
that may contain objects with similar local statistics. We show that our holistic
shape prior based approach considerably improves the accuracy of the resulting
cutouts, compared to the current state-of-the-art, especially for cluttered images.

2 Related Work

Over the past few decades, tremendous amount of research have been devoted
to studying how to faithfully perceive objects in images. Significant progress has
been made on several sub-tasks towards this goal, including object recognition,
object detection, and semantic segmentation, from which still only a coarse un-
derstanding of the scene can be established. In this section, we briefly review
advances made in these directions and discuss their connections to the task of
instance-level object cutout.

Image segmentation is the process of partitioning an image into multiple seg-
ments of similar appearance. The problem can be formulated as a clustering
problem in color space [4]. To incorporate more spatial constrains into the pro-
cess, the image may be modeled as a graph, converting image segmentation into
a graph partition problem. The weights on the graph edges can either be inferred
from pixel colors [10] or from sparse user input, as an addition [28]. Algorithms
have been proposed for efficiently computing the partition, even when the pixels
are densely connected (DenseCRF) [16]. Such methods are capable of inferring a
sharp segmentation mask from sparse of fuzzy probabilities, and thus are widely
used as a post-process for methods that produce segmentation probability maps.
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Semantic segmentation. Instead of grouping pixels only by appearance, semantic
segmentation forms segments by grouping pixels belonging to same semantic
objects; thus, a single segment might contain heterogeneous appearances. Since
such segmentation depends on semantic understanding of the image content,
state-of-the-art methods operate by running classification neural networks on
patches densely sampled from the image in order to predict the semantic label of
their central pixels [23, 26, 36]. Instead, Noh et al. [25] proposed a DeconvNet to
directly output a high resolution semantic segmentation. We leverage DeconvNet
for solving the more challenging object cutout problem by adapting and training
it extensively on objects from a specific class.

Object cutout. Object cutout further pushes semantic segmentation from category-
level to instance-level. The additional challenge is that objects with similar ap-
pearance may hinder the cutout accuracy for individual instances. The state-
of-the-art addresses the object cutout problem by solving it jointly with detec-
tion [13,21], object number prediction [20], or by explicitly modeling the occlu-
sion interactions between different instances [30,2]. Though significant progress
has been made recently, the performance on some object categories is still very
low. In this work, we take advantage of being able to utilize training data syn-
thesized from 3D models [31], and focus on leveraging rich holistic shape priors
for addressing segmentation ambiguities.

3D object retrieval and view estimation. Recently, exciting advances in image
based 3D object retrieval and object view estimation have made [1, 19, 31]. Such
efforts are quite related to object cutout, as the retrieved 3D model can be
rendered in the estimated view to approximate the object in the image, thus
providing a strong prior for cutout. However, we found that the gap between
projected proxies and accurate cutout masks cannot be easily bridged. One rea-
son is that there are only few models in the existing shape databases that match
well with real world objects. The inherent mismatch between 3D database and
real world objects, plus the introduced retrieval and view estimation errors, ren-
der it infeasible to compute object cutout through such an approach, in general
cases.

Object detection. Object detection is usually done in two steps: object bounding
box proposal generation and proposal evaluation. Proposal generation yields
a set of bounding boxes that potentially contain objects [34,38,17]. Proposal
evaluation typically extracts features from the image patches contained in the
proposed bounding rectangle, and estimates the confidence of the image patches
to belong to objects of certain classes. R-CNN [11] is an representative work in
object detection and several works extended it to further improve efficiency and
accuracy [14, 12, 27]. We show that the P-maps generated by our category-specific
DeconvNet can benefit proposal evaluation for improving object detection and
subsequent object cutout.
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Fig. 2. A schematic illustration of the DeconvNet architecture. Records of the max
pooling operations that occur during the first convolutional half, are forwarded to the
subsequent deconvolution half of the network.
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3 Instance Probability Maps

In this section, we introduce our method for generating instance probability
maps. The term “instance” indicates that the maps aim to locate specific in-
stances of a particular object class, rather than only detect the presence of such
an object in the image. These probability maps, which will be referred to as P-
maps, specify for each pixel its likelihood of belonging to an object instance. As
we show in later sections, they allow efficient detection and consequent cutouts
of objects, as well as the retrieval of 3D shapes.

Our P-maps are based on the non-trivial observation that although an im-
age of an object may be high-dimensional, the underlying object can often be
represented by a compact feature vector. Dosovitskiy et al. [7] show that a DNN
can be trained to generate object images from given object type, viewpoint, and
color. This raises the expectation that neural networks can detect the presence
of an object, encode it into a rather low-dimensional feature vector, from which
it then should be possible to “reconstruct” the object, or its binary cutout mask.
The premise of this approach is that the extraction of this low-dimensional rep-
resentation in fact “peels off” the background clutter.

However, only rather fuzzy images can be reconstructed if the feature vector
is extracted from real-world cluttered images, instead of a clean feature vector
consisting of object type, viewpoint, and color [8]. To generate a sharper image
or cutout mask, additional information must be passed into the reconstruction
process, and we build our approach upon the DeconvNet architecture proposed
by Noh et al. [25], which we found to be better suited for cluttered scenes. In this
network, not only the feature vector, but also additional information about the
feature extraction process is forwarded into the reconstruction process, which
greatly improves the reconstruction sharpness.

More specifically, the feature extraction part of our network (see Fig. 2) is
composed of convolutional layers and pooling layers, which gradually encode the
input as a 4096-dimensional feature vector. This feature vector is then taken by
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Fig. 3. . Given an input image (left), DNN trained extensively with large amount of
images from a particular class can learn to “reconstruct” a fuzzy image while ignoring
background clutters (middle). Pooling mask forwarding in DeconvNet greatly improves
the sharpness of output cutout probability maps (right).

the reconstruction part of the network composed of deconvolutional layers and
unpooling layers, which gradually reconstruct the P-map. Importantly, the pool-
ing masks, which record the full history of the pooling operations, are forwarded
into the unpooling layers. The pooling mask forwarding relieves the difficulty
in learning how to perform a sharp reconstruction, thus greatly outperforming
approaches that only use the feature vector. See Fig. 3 for a visual comparison
of results with and without the use of pooling masks.

The original DeconvNet was proposed for solving a semantic segmentation
problem using 21 classes. We adapt it to solve our instance-level segmentation
problem by changing its last layer to output only two channel images: one for
foreground and one for background. Then a softmax function over these two
channels gives the foreground/background probability for each pixel. DeconvNet
was originally trained on PASCAL VOC 2012 [9] data, where the number of
segmented images is not particularly high, since image segmentation is a hard
task for crowd sourcing. When narrowing the data to a specific category, it is
insufficient to inject enough shape priors into the trained model. Instead, we
choose to train the network using a much larger number of synthetic images
with ground truth cutout masks, which are generated completely automatically
by rendering 3D models. In the reminder of the paper, we refer our adapted
DeconvNet as DNCS (DeconvNet-Class-Specific). As we shall see, the amount
and quality of our training data enables the trained network to learn a powerful
shape prior, which makes it possible to perform well even in the presence of
considerable background clutter.
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Fig. 4. Comparison of instance probability maps and the resulting cutout masks gen-
erated by various baseline methods and by our approach. It may be seen that our
DNCS is more successful at injecting the learnt shape priors into the probability map
generation. Furthermore, our GrabCut+P cutout method makes more effective use of
the probability maps to produce a cutout, compared to DenseCRF.

4 Proposal Evaluation

The ability to generate high-quality instance probability maps over rectangles
of roughly the expected object size in the image is useful not only for generating
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Fig. 5. An aggregated P-map for an entire image can be generated by accumulating
instance probability map from bounding box proposals (b). By weighting the proposals
with Xenn an even better aggregated P-map can be generated (c).

Fig. 6. P-map enhanced chair detection results. Note that since our P-map “sees” the
individual chairs, it can locate chairs well, even with heavy background clutter.

accurate binary cutout masks (Section 5), but also helpful for locating object
instances from a given scene image, referred to as detection task in computer
vision. Given a proposal, we are able to evaluate and rank it better when using
the corresponding P-map, thus improve detecting object out of an entire image.

Proposal evaluation on RGB-P images. A proposal is a rectangular region in a
large image, which is deemed likely to contain an object of interest. There are
many methods that generate proposals, whose objective is to avoid performing
an exhaustive search over the entire image. We show that using an RGB-P
image, where the fourth P channel is computed by the instance cutout DNN,
benefits such proposal evaluation methods. More formally, let I;, be a rectangular
proposal, its evaluation by a function X : I, — R, maps the input proposal to
a real value that indicates the confidence of having an object of a specific class
contained in it. In our case, the function X is no more than a binary classifier
that tells how likely the proposal depicts a chair.

We train the classifier X with synthetic images, and we generate many rectan-
gular proposals with any state-of-the-art methods. Since in our synthetic images
we know the ground truth bounding boxes of the objects, we can easily generate
positive and negative examples. We treat proposals with more than 80% over-
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lap with the ground truth bounding boxes as positive samples, and the rest as
negative samples. For each proposal, we also compute its P-channel.

We trained two classifiers: Xgyar and Xoyy. For Xy, we extract AlexNet [18]
CNN features (4096 dimensions, the output of fc7 layer) from the RGB chan-
nels, and HoG [6] features (24304 dimensions) from the P-map, which are then
reduced with PCA to 4096 dimensions. Then we concatenate the CNN features
and the PCA reduced HoG features for training a linear Support Vector Machine
(SVM). The Xcyn classifier is an end-to-end CNN approach, where we add a
fourth channel to the filters of the first convolutional layer of AlexNet to adapt
the additonal P-channel, and fine tune the network to work as a binary classifier.

The effect of proposal evaluation is visualized in an aggregated P-map in
Fig. 5, where we generate an aggregated P-map, by running instance cutout in all
proposals, accumulating the resulting P-maps with weights from the confidences
given by Xcnpn, and normalizing the result. Another example of such a map is
shown in Fig. 1(b). It is clear that our P-map enhanced proposal evaluation can
greatly narrow down attentions to chair regions. We compare the performance of
our two classifiers with versions trained without using the P channel, and found
that both classifiers perform better when P channels is used (see Table 2). This
is a strong evidence that the P-channels are effectively improving the proposal
evaluation. As can be seen from Fig. 6, chairs, even with heavy background
clutters can be well located by our P-map powered detection.

5 Cutout Mask Extraction

Given a P-map generated by DNCS within a proposal rectangle, our goal is now
to generate a binary cutout mask for the object of interest contained therein.
We achieve this goal by adapting the iterative graphcut approach (GrabCut) of
Rother et al. [28].

The original GrabCut algorithm uses the bounding rectangle to initialize
two GMM color models, one for the background, based on colors outside the
rectangle, and one for the foreground, based on colors inside the rectangle. The
minimum graphcut is then computed [15], using the two color models to deter-
mine the unary (data) term for each pixel. The process is then repeated itera-
tively using the result from the previous iteration to update the background and
foreground GMMs, instead of the initial rectangle.

The above process will generally fail to converge to an accurate cutout mask
whenever there is a significant overlap between the background and foreground
color models, which will happen if the background contains objects with similar
colors to those of the foreground object, as demonstrated in Fig. 1(e). However,
armed with our P-map we can initialize the background and foreground color
models in a much more precise fashion.

Specifically, we first convert the continuous P-map into an initial binary
foreground mask, by computing the minimum graphcut where the unary term
at each pixel is determined by our P-map. Denoting by p; the P-map value
of pixel i, we set the foreground likelihood to P = p® and the background
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Table 1. IoU comparison of various instance cutout probability map generation meth-
ods with various post-processing methods. In Shape View, the cutout probability map
is generated by rendering images of similar shape retrieval in estimated viewpoint.
DeconvNet (original) is the DeconvNet model trained on 21 classes of images from
PASCAL VOC 2012. GrabCut + P is our method described in Section 5.

. DeconvNet DNCS
GrabCut | ShapeView (original) [DenseCRF |GrabCut + P
PASCAL 2012 45.6 46.2 39.8 49.4 52.1
Our Benchmark 58.1 63.3 59.6 78.9 81.5

likelihood to PP = (1 — p;)®, where o = 2.3. The resulting binary mask is then
used to initialize the two GMM color models, instead of the bounding rectangle.
In subsequent iterations, we set the unary term to a weighted combination of
the value predicted by the GMM color model and the P-map likelihood, with
the latter’s weight decreasing as the iterations progress:

CPF = GMM! exp(—wPP)
C'Pf = GMM? exp(—wP}), (1)

where GMMY and GMM?P are the color models for the foreground and back-
ground, respectively. The weight w = b/k, where k is the iteration number and
b = 25 was empirically tuned to reduce the influence of P¥ and PP as the
iterations progress.

Fig. 1(d,e) compares two results produced using our P-map enhanced Grab-
Cut (d) with those of the original GrabCut approach (e). It may be seen that the
latter includes in the cutout mask parts of the background which have similar
appearance to the foreground chair (in fact, these are parts of identical chairs in
the background), while our approach produces a nearly perfect cutout mask.

6 Experiments

In this section, we quantitatively evaluate the performance of our instance cutout
approach, and compare it against several other baseline methods. We also quan-
titatively evaluate the boost in object detection performance enabled by the use
of our P-maps.

6.1 Evaluation of Instance Cutout

Dataset and evaluation metric. We evaluate our instance cutout performance
on two chair image datasets. One is from PASCAL VOC 2012, which contains
175 chair images with ground truth cutout annotations. We found this dataset
to be highly challenging for the cutout task, as it contains not only background
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Fig. 7. Examples of instance probability maps generated by retrieving similar shapes
and rendering them from the corresponding predicted viewpoints (ShapeView proba-
bility maps).

clutter, but also heavy occlusion, thus many of the chair instances are only
partially visible. Occlusion also makes it more challenging for object detection
to providing reasonably good proposals, since a rather complete presence of the
object of interest is expected. In addition, we have prepared another benchmark,
with 418 chair images, which contains considerable background clutter, but fewer
occlusions. We evaluate different approaches using the Intersection over Union
(IoU) metric, which measures the ratio between the areas of intersection and
union of ground truth and predicted cutout masks. Higher IoU score indicates
better cutout accuracy.

Baseline methods. Recent advances in image based 3D object retrieval [19] and
object view estimation [31] provide an potential solution for generating an in-
stance probability map, by retrieving similar shapes and rendering them from
the predicted viewpoint. The rendered images approximate the underlying ob-
ject in the input image, and thus can be used as probability maps for instance
cutout. More specifically, we pick top 5 retrievals, render them as binary im-
ages from the predicted viewpoints, weight the rendered images by the retrieval
confidence, and then overlay them into a normalized instance cutout probability
map. We refer to this approach as “ShapeView”; see Fig. 7 for examples of the
resulting instance probability maps. Another baseline to our approach are the
probability maps generated by the original DeconvNet, which was trained for
semantic segmentation with 21 classes. In our comparisons we use GrabCut [28]
to generate a cutout mask directly from a given image with a proposal rectangle,
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Table 2. Object proposal evaluation accuracy of classifiers Xsyva and Xeyy on RGB
images and RGB-P images. Augmenting the image with a P-channel boosts the per-
formance of both classifiers.

RGB Images|RGB-P Images
Xsvm 69.6 87.9
Xonn 65.6 86.5

while DenseCRF is used for generating a cutout mask from instance probability
maps.

We compare our P-map enhanced GrabCut method (Section 5) applied on the
P-maps generated by DNCS model against the original GrabCut, and DenseCRF
applied on probability maps generated using the ShapeView approach and the
original DeConvNet. The quantitative results are summarized in Table 1, while
Fig. 4 shows a visual comparison using nine examples from our benchmark.
Note that our method outperforms the baseline methods on both the PASCAL
VOC 2012 dataset (by 5.9%) and on our benchmark (by 18.2%) (see Table 1).
The full set of the test images and the results of these methods is included
in our supplementary materials. The performance boost on our benchmark is
much higher, since our network was trained with synthetic images that exhibit
considerable background clutter, but no occlusions. This suggests an interesting
future work direction on synthesizing images with realistic occlusion patterns
for training occlusion-aware DNNs. Note that the ShapeView baseline method
we proposed also consistently outperforms the original DeConvNet. This may be
explained by the fact that it is trained on many classes, and thus cannot learn
a sufficiently strong shape prior for each class.

6.2 Evaluation of Object Proposal Evaluation

We evaluate the performance of the Xgya; and Xony classifiers described in
Section 4 on 35154 proposals generated by the Selective Search method [34].
These proposals were generated from 52 images from our benchmark, with each
of the images containing a single chair. We measure the accuracy by the average
recall on positive and negative samples.

We compare our P-map enhanced Xsyy and Xonpy classifiers against those
trained without P-maps, and found that the use of P-maps greatly enhances pro-
posal evaluation accuracy, as reported in Table 2. Our experiment suggests that
the instance cutout task should be more tightly coupled with object detection
tasks, as the improvement in one benefits the other.

6.3 Comparison to Seeing 3D Chairs

We also compare chair detection performance based on Selective Search + X
with that proposed in Seeing 3D Chairs [1]. Given an image, Seeing 3D Chairs
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Table 3. Comparison of top-k detection accuracy between Seeing 3D Chairs, and our

P-map powered detection pipeline.
‘l

Fig. 8. Failure cases. We found several sources of errors in our cutout masks: (a)
Chairs that are rarely seen in training data might be misunderstood by the DNN; (b)
Occlusions pose additional challenges over background clutter; (c¢) The binary mask
generation step sometimes eliminates thin structures even though they are preserved
in the probability map; (d) Strong similarities between objects might result in highly
confusing situation from specific view points.

Top-1|Top-2|Top-3|Top-4|Top-5

Seeing 3D Chairs 13.86|24.67|28.11|28.78 | 30.61
Selective Search + Xsva|21.73128.76135.49(40.16 [ 43.49
Selective Search + Xconn|20.29|31.58(38.41(44.86(49.37

outputs a ranked list of chair proposals. We generate chair proposals with Se-
lective Search and then rank them with our classifiers. We compare the top-k
detection accuracy of these approaches on the first 100 chair images from PAS-
CAL VOC 2012. The results are reported in Table 3. Note that Seeing 3D Chairs
is also an approach extensively trained on the chair class, yet we show that our
P-map powered approach achieves better accuracy.

7 Conclusions

Many computer graphics applications depend on accurate object cutouts. Fa-
cilitating automatic cutout extraction remains extremely challenging, since it
cannot rely on low-level image analysis alone, and necessarily requires some de-
gree of high-level semantic analysis. The P-maps that we introduced aim to
provide some of the latent semantics to assist in the extraction of cutouts. The



14 Huayong Xu et al.

presented network aims to encode in the P-maps the essence of the shape prior
with rich variability of geometry and topology.

The semantic information that P-maps carry was shown to be effective not
only directly for cutouts, but also for locating the target object. We have shown
that they significantly improve the evaluation of proposals, which are again
means to enhance and accelerate a variety of applications that require image
analysis.

The claim to fame of the P-maps is their competence to deal with cluttered
images, where the target object has “rivals” in its background. Our network was
designed explicitly to deal with these types of distractions, and together with
our modified GrabCut approach makes a substantial step toward automatic and
accurate instance cutout.

Nevertheless, our approach has its limitations. First, it is category specific,
and requires training on the target class. It is intensively data-driven, which
implies that a large amount of annotated data is required. For chairs, the problem
is less significant since large 3D datasets are readily available. However, there are
always peculiar shapes (see Fig. 8 (a)). For many other object classes there is no
comparable availability of rich enough 3D models, yet. Second, the relative size
of target object in the input image should be in an expected range, defined by the
training set. Arguably, a more significant limitation of our technique is occlusion
(see Fig. 8 (b)). While cluttering is handled well, occlusion remains a hurdle. For
this reason, our performance advantage on the challenging PASCAL VOC 2012
benchmark is somewhat more modest. One of the challenges we encountered in
training for occlusion is to realistically synthesize it, which is left for future work.
Another limitation is demonstrated in Fig. 8 (c), where the final binary mask
generation step sometimes fails capture thin structures, even though they are
present in the P-map.

We believe that more fundamental processing can benefit from similar seman-
tic layers. For example, image-based 3D shape retrieval, 2D-3D correspondence,
or fitting and registering 3D proxies into an image. The P-maps or possibly sim-
ilar semantic layers have the potential to boost the performance of applications
that link 2D to 3D. We would also like to explore the potential of P-maps for en-
hance other low-level image processing operations, such as edge detection, where
the saliency of the edge is augmented or amplified by the P-channel.
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