
Dapper: Decompose-and-Pack for 3D Printing

Xuelin Chen1 Hao Zhang2 Jinjie Lin1 Ruizhen Hu3

Lin Lu1 Qixing Huang4 Bedrich Benes5 Daniel Cohen-Or6 Baoquan Chen1

1Shandong Univ. 2Simon Fraser Univ. 3Shenzhen Inst. of Adv. Tech. 4Toyota Tech. Inst. 5Purdue Univ. 6Tel Aviv Univ.

Abstract

We pose the decompose-and-pack or DAP problem, which tightly
combines shape decomposition and packing. While in general,
DAP seeks to decompose an input shape into a small number of
parts which can be efficiently packed, our focus is geared towards
3D printing. The goal is to optimally decompose-and-pack a 3D ob-
ject into a printing volume to minimize support material, build time,
and assembly cost. We present Dapper, a global optimization algo-
rithm for the DAP problem which can be applied to both powder-
and FDM-based 3D printing. The solution search is top-down and
iterative. Starting with a coarse decomposition of the input shape
into few initial parts, we progressively pack a pile in the printing
volume, by iteratively docking parts, possibly while introducing
cuts, onto the pile. Exploration of the search space is via a pri-
oritized and bounded beam search, with breadth and depth pruning
guided by local and global DAP objectives. A key feature of Dap-
per is that it works with pyramidal primitives, which are packing-
and printing-friendly. Pyramidal shapes are also more general than
boxes to reduce part counts, while still maintaining a suitable level
of simplicity to facilitate DAP optimization. We demonstrate print-
ing efficiency gains achieved by Dapper, compare to state-of-the-art
alternatives, and show how fabrication criteria such as cut area and
part size can be easily incorporated into our solution framework to
produce more physically plausible fabrications.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—[Curve, surface, solid, and object
representations]

Keywords: Decompose-and-pack, 3D printing, pyramidal shape

1 Introduction

Decomposition and packing are two of the most important and well-
studied optimization problems in geometry. In the classical setting,
decomposition seeks to partition a given object into a small number
of parts with each satisfying a desirable geometric property, and
packing involves placing a set of given objects into a given con-
tainer. Each of the two problems is difficult on its own and many
instances of the two problems are known to be NP-hard. Combining
the two problems is likely to increase the problem’s complexity.

In this paper, we pose the decompose-and-pack (DAP) problem,
which tightly combines shape decomposition and packing. In gen-
eral, DAP seeks to decompose an input shape into a small number

Figure 1: A 3D Inukshuk model (left) is decompose-and-packed
(middle) for powder-based 3D printing. The fabricated pieces are
assembled and glued together to form the final object (right).

of parts which can be efficiently packed. The unique challenges to
this problem are two-fold. First, unlike conventional packing, there
is no prescribed set of parts to pack; the packing set, which is the
decomposition itself, is continuously altered. At the same time, un-
like classical shape decomposition, there is no pre-determined part
property to drive the decomposition. It is unclear which stand-alone
shape property implies “packability”, which is a global property of
the set of parts to be packed.

The general DAP problem is quite intriguing and it can be instanti-
ated in a variety of ways to serve different applications. The focus
of our current work is geared towards 3D printing. Decomposition
is a natural choice when printing a 3D object which is too large to
fit into the printing volume [Luo et al. 2012]. However, our main
motivation is to not only decompose, but also efficiently pack the
components for printing to save print time and material. Specific to
powder-based printing, for example, the main objective is to min-
imize the height of the packing configuration in a given print vol-
ume. For fused deposition modeling (FDM), the main objective is
to minimize the volume of overhang which requires support mate-
rial that is wasteful and at times, difficult to remove.

Aside from the geometry criteria, the DAP objectives must be bal-
anced by part count, since otherwise the partition may contain
many small parts that clearly pack well. As the parts must be glued
or locked up by connectors to reproduce the input object, a low part
count is preferred to reduce excessive seams, lower assembly cost,
and improve integrity of the final product.

Given an input shape and necessary specifications of the printing
volume, we define an objective function which evaluates all partial
solutions to DAP. In a partial solution, a subset of the shape parts
are packed in the volume, forming a pile. A complete DAP solution
requires all parts to be packed. The objective function evaluates

(a) 4 pyramidal parts. (b) 7 boxes.

Figure 2: Decompose-and-pack polyonimoe shapes using pyrami-
dal primitives (a) vs. box primitives (b). Both can pack perfectly
without gap, but fewer pyramidal primitives are required.



(a) Pyramidal polycubes. (b) DAP with CAP and PAK moves. (c) Local refinement.

Figure 3: Overview of Dapper algorithm. Starting with an initial pyramidal decomposition of the input shape into few parts, we voxelize the
parts into polycubes (a). During global DAP optimization and through a bounded beam search, these parts, possibly cut, are progressively
packed into the printing volume (enclosed by dark lines). Shown in (b) are two moves, the first a cut-and-pack (or CAP) and the second a
pack (PAK). Finally, local refinement optimization further reduces gaps between the actual shape parts (c).

any pile where both part count and fabrication efficiency, e.g., min-
imization of pile height, are accounted for.

We develop an algorithm, called Dapper, which seeks a globally
optimal decompose-and-pack solution based on the objective func-
tion. The solution search is top-down and iterative, corresponding
to top-down expansion of a search tree. We start with a coarse
decomposition of the input shape into few initial parts. At each it-
eration, the algorithm performs a set of docking tests each of which
finds the best way to match the boundary of a particular unpacked
part, possibly while introducing a cut, to the boundary of the packed
pile in order to minimize gap. A docking bears resemblance to
playing the game of Tetris. However, here the Tetris pieces are not
pre-determined, but computed on-the-fly. These docking tests yield
a set of candidate moves, each with an associated priority score
which reflects its potential to lead to good DAP solutions. The pri-
ority scores induce a beam search [Lowerre 1976] to progress the
DAP solution. With the beam width controlling the width of the
top-down expansion of the search tree, depth pruning is achieved
by using a bound provided by the objective function.

Finding the optimal DAP solution over all possible decomposi-
tion and packing combinations is an intractable global optimiza-
tion problem. Through a bounded beam search, we explore only
a restricted search space; hence, any mentioning of a globally op-
timal DAP solution in our subsequent discussions surely refers to
optimality within the search space explored. That being said, even
with a modest beam width, the search space is still immense. To
make the problem more tractable, we discretize the global search
by voxelizing the shape parts and restricting Dapper to only work
with polycubes. In turn, the polycubes can only be rotated by a
90◦x angle during Tetris packing. After the global optimization
phase, we peel the boxy boundaries of the polycubes, extract the
actual shape parts, and “wiggle” them to pack more tightly. This
final gap-reducing optimization only involves local refinement. An
overview of all the key steps of Dapper can be found in Figure 3.

With the Dapper framework set up, an important algorithm de-
sign question still remains: what primitives should we work with
for decomposition and packing? Decomposition into arbitrarily-
shaped parts can lead to low part counts, but packing arbitrary
shapes overly complicates the problem. On the other hand, boxes
are “packing-friendly”, but they may be too simple and induce too
many parts in the decomposition. In this paper, we work with pyra-
midal primitives [Hu et al. 2014], extending their utility from indi-
vidual fabrication to the DAP setting.

Pyramidal shapes are terrain-like shapes, 2D or 3D, with a flat base.
They include boxes, but are more general and lead to decomposi-
tions with much fewer parts; see Figure 2. These shapes are not
only packing-friendly, as each has a flat side and they pack well

with proper docking, but also “printing-friendly”, since no support
material is needed to print them upright via layered additive fab-
rication. This factor is especially crucial when the decomposed
parts are large and hardly allow much packing in a limited print
volume. Docking tests between pyramidal parts reduce to match-
ing between functions. Last but not the least, the set of pyramidal
shapes are closed under vertical and horizontal cuts. In Dapper,
we start with an initial pyramidal decomposition of the input shape,
voxelize the resulting parts, and work with pyramidal polycubes
and axis-aligned straight cuts throughout global optimization.

Dapper is quite general and equally applicable to 2D and 3D shapes
and to shapes with arbitrary topology. However, with a focus on
pyramidal primitives, we process solid presentations of 3D ob-
jects rather than shell forms. We demonstrate Dapper on numerous
shapes, evaluate its performance, and show fabrication result.

2 Background and related work

We first cover some 3D printing basics, explaining the optimiza-
tion criteria for efficient fabrication, then discuss existing works on
decomposition and packing relevant to 3D printing. A 3D printer
takes as input a free-form 3D object which is not confined by the
printer’s physical setup. At the same time, the shape of the printed
mass inside the printing volume is also adjustable. As a result, there
is room for clever optimization to possibly reoriented the input ob-
ject, decompose it into 3D-printable parts, or intelligently arrange
the resulting parts in the print volume.

Efficient 3D printing. Most 3D printing technologies are based
on additive manufacturing, which involves sequential-layer mate-
rial addition or joining under automated control [Wikipedia 2014].
As the layers are built bottom-up, “filler” layers must be produced
to support object parts to be printed on top of others. For FDM-
based printing, the support material is removed after printing and
regarded as waste, while powder-based printing allows reuse of the
filler material. More critical to powder-based printing is the max-
imum height of the printed mass since powder material has to fill
the entire printing volume, layer by layer, up to that height.

Decomposition allows the fabrication of objects which do not fit
inside the print volume. A smart packing allows multiple parts to
be piled up and printed at a time, leading to better utilization of
the print volume, material, and time. For powder-based printing,
minimizing the maximum height of the pile is most essential, while
a tight packing reduces time spent on laying out filler material. For
FDM, a low pile is also desirable. The pile does not need to fill the
printing volume, but it is preferably pyramidal [Hu et al. 2014] with
a tight packing to minimize waste material and print time.



3D Packing. In engineering and manufacturing domains, some
methods pack 3D parts for efficient layered fabrication [Dickinson
and Knopf 2002] and rapid prototyping [Gogate and Pande 2008].
The general packing problem has many variants in many appli-
cation settings, including packing/loading, scheduling, and rout-
ing [Crainic et al. 2012]. Most instances of the packing problem
are NP-hard, hence heuristic-driven exhaustive or stochastic search
including branch-and-bound, simulated annealing, and genetic al-
gorithms are frequently adopted [Cagan et al. 2002].

The key difference between Dapper and these previous works is
that in our problem, the shapes to be packed are not given a priori;
they are the result of a simultaneous shape decomposition and are
modified on-the-fly. The coupling not only changes the nature of
the problem but also increases the search space significantly.

Decomposition for 3D printing. The problem of decomposing
3D objects into solid parts for efficient fabrication has drawn inter-
ests from graphics researchers recently. Perhaps the first attempt
was made by Luo et al. [2012], where they develop a tool to parti-
tion a 3D model so that each part can fit in the printing volume. Fac-
tors including low part count, assemblability, and aesthetics of the
cuts are taken into consideration, but the method is oblivious to sup-
port material or build time. The work by Hildebrand et al. [2013] is
motivated by the direction bias of additive manufacturing. It poses
the interesting problem of decomposing a 3D shape into few pieces
so that each piece can be consistently sliced with small geometric
error along one of three orthogonal slicing directions. Recent work
by Hu et al. [2014] decomposes a 3D object into a small number
of approximately pyramidal parts so that each can be printed by an
FDM printer with low cost in time and material.

Dapper also computes solid decompositions in 3D and seeks low
part counts. However, we add packing, a new dimension, to the
decompose-to-print problem. Smart packing strategies allow print-
ing multiple parts at a time, leading to better utilization of the print
volume while incurring small time and material cost.

Boxelization. Recent work by Zhou et al. [2014] “boxelizes” a
3D shape by voxelizing it, computing a tree linkage structure over
the voxels, and folding the linkage structure into a box. There is
slight resemblance between boxelization and Dapper: voxelization
and unlinking of voxels can be seen as a special form of decompo-
sition; folding into a box is a special form of packing. The resem-
blance would stop there though as the two problems have different
goals and operate on completely different primitives (linked voxels
vs. discrete set of polycubes) and constraints.

Discrete scissor congruence. More closely related to DAP is
the intriguing Scissoring Congruence problem, which disects two
shapes into identical sets of segments. Note that this problem is
identical to DAP if its target container has the same area/volume as
the input shape. Zhou and Wang [2012] discretize the problem on
a grid and solve Discrete Scissoring Congruence (DSC) by recur-
sive co-disection of the two input shapes. Our DAP problem has a
different goal: it decompose-and-packs an input shape into an open-
ended volume as tightly as possible while minimizing part count. In
contrast, DSC works with a fixed target container and seeks exact
congruence without setting an objective to minimize the number of
segments. Both problems require difficult global optimization. To
counter local minima, the DSC solution applies random exploration
of hundreds of pairs of initial seeds for the co-disection.

PackMerger. PackMerger [Vanek et al. 2014] appears to be the
first work which considers improving a decomposition for better
packing. The method first converts an input 3D object into shells,
while Dapper works with solid decomposition. Moreover, Pack-

Merger works with terahedralized input and imposes additional re-
strictions on the input object, possibly leading to uneven gluing
boundaries. Dapper, on the other hand, only makes planar cuts.

Algorithmically, while Dapper follows a top-down search, Pack-
Merger is bottom-up. In PackMerger, the initial set of segments is
obtained with packing in mind, e.g., larger cut areas are preferred.
However, the consideration of packing is only implicit, the decom-
position is not coupled with any packing process. After the initial
decomposition, PackMerger executes a merge-and-pack step which
again decouples the two tasks; it corresponds to a “merge-and-then-
pack” process. Specifically, this step randomly explores mergings
between segments, and for each merging, recomputes a tight pack-
ing with a fixed set of segments. The search merely amounts to
a random sampling of packing solutions. The final solution is se-
lected as the merging configuration leading to the best packing.

In our work, we adhere to the true spirit of DAP, emphasizing the
strong coupling, rather than interleaving the solution by solving a
decomposition and then a packing, independently.

The main potential advantage of PackMerger over our algorithm is
that it searches over arbitrary rotations of the shape pieces during
packing. Dapper could allow this as well. However, the coupling
of decompose and pack significantly increases the search space
over any decoupled approach, making a refined discretization of the
space of rotations prohibitive. As the experimental comparison re-
sults would later reveal, the quality and computational advantages
afforded by Dapper with only axial rotations appear to outweight
any gains offered by PackMerger with the consideration of arbi-
trary rotations. Indeed, the difference is mainly in the optimization
or search strategy, not the discretization of search spaces.

3 Decompose-and-pack pyramidal shapes

Our goal is to optimally decompose-and-pack a 3D input object into
a container, the printing volume, for efficient fabrication. The input
to the Dapper algorithm is a solid 3D object, along with a target
container which is a rectangular cuboid. In our coverage, to ease
understanding of the algorithm, we mainly illustrate it in 2D. We
assume that the container has sufficient height to admit a packing
of all the decomposed parts. However, the horizontal dimensions of
the container are limiting, so that the input shape cannot fit inside
without being cut into smaller pieces. The challenge is to efficiently
pack the input using a small number of pieces.

3.1 Overview

Dapper starts with an initial partitioning of the input shape into few
pyramidal parts. The parts are voxelized into pyramidal polycubes.
Dapper then applies a global DAP optimization over the polycubes.
After packing the polycubes into the container, the positions of the
enclosed shape parts are locally refined to obtain a lower and tighter
packing. Figure 3 outlines the major steps of Dapper.

In the global optimization phase (Section 4.1), we decompose and
pack pyramidal polycubes. We pictorially regard the container as a
pile of packed polycubes. Each pile corresponds to a partial DAP
solution and a complete solution is reached when all polycubes are
packed. Our solution search is top-down and iterative. At each iter-
ation, we generate a set of candidate moves, each of which involves
packing a part onto the pile, possibly after a part decomposition.
Iterative selection of candidate moves advances the DAP solution
and forms a search tree. Expansion and pruning of the search tree
are based on a priority score we define for each candidate move and
a global objective function we define for each DAP solution.



Our solution strategy (Section 4.2) is a bounded beam search. At
each iteration, we prioritize the set of candidate moves based on
a scoring function M . The set of top β moves define the front
of a beam search [Lowerre 1976], with a user-defined beam width
β. We define an objective function O for any DAP solution and
store the objective function value for the best complete DAP solu-
tion found so far. This function value serves as a bound to prune
certain branches of the search tree. The bounded beam search re-
turns a complete DAP solution which attains the optimal value in
the objective function O within the explored search space.

At each iteration of the search, the set of candidate moves are ob-
tained by performing a set of docking tests. Docking searches for
the geometric transformation which best aligns the convexities (re-
spectively, concavities) of a part with the matching concativities
(respectively, convexities) of a larger part. In our case, we dock
pyramidal polycubes onto the pile in the container. Each candi-
date move allows an unpacked part to be docked directly, or first
cut and then docked, onto the pile. All cuts are axis-aligned and
straight, resulting in smaller polycubes which remain pyramidal.
When searching for possible cuts, desirable constraints, such as
those related to physical fabrication or assembly, can be imposed
(see Section 4.4). When docking a polycube, we allow it to be ro-
tated with angles that are multiples of 90◦, like in Tetris.

In the final local refinement step (Section 4.5), we develop a con-
tinuous optimization scheme to reduce the gaps between the actual
shape parts by rigidly transforming them. We introduce an opti-
mization formulation, whose objective function includes various
objective terms, and the constraint set ensures that the pieces do
not collide with each other during their movement.

3.2 Use of pyramidal primitives

The Dapper algorithm described above could work with arbitrarily
shaped primitives. In our paper, we advocate the use of pyramidal
shapes for decomposition and packing. Pyramidal shapes are both
packing- and printing-friendly, providing an ideal fit to our prob-
lem. At the same time, pyramidal shapes are more general than
boxes to lead to decompositions with much fewer parts, yet they
maintain a suitable level of simplicity to facilitate both docking and
cutting during DAP optimization.

Simplicity and efficiency. Having a restricted class of primitives
reduces the computational cost considerably. Pyramidal shapes
gain their efficiency from their representational simplicity: they are
2.5D with a flat base; only one side (the top side) needs to be pro-
cessed. This immediately suggests efficient matching or docking
operations based on common image matching techniques.

Closure. Pyramidal shapes are closed under vertical and horizon-
tal (in reference to their up orientations) cuts. Since we introduce
axial cuts on-the-fly, it is vital that the pyramids are split into two
pyramids. Note that convex shapes are also closed under arbitrary
cuts, but they cannot be fully represented by a single depth image.
In rare cases, a pyramidal shape can be split into more than two
parts with a single cut. We then limit the cut to produce only two
parts, to maintain a low part count.

Packing- and printing-friendly. Exact pyramidal parts can be
printed in their upright orientations with no support material. Also,
in case our DAP solution overflows the printing volume, the leftover
piece after a horizontal cut can be printed separately without extra
treatment to handle overhangs. Pyramidal shapes are also packing-
friendly: not only are they one-sided, facilitating docking, also the
opposite sides are flat and do not introduce any gaps to fill. Boxes
might be a natural primitive to consider for DAP as they are both

packing- and printing-friendly, but they are too simple to likely de-
mand a decomposition with too many parts. Pyramidal shapes are
almost as friendly as boxes, and at the same time, they are generic
enough to yield more compact decompositions.

4 Dapper algorithm

Given an input shape S and a printing volume or container C,
we obtain the initial set of parts by pyramidal decomposition [Hu
et al. 2014] using a low part count. We upright-orient each ini-
tial pyramidal part along its up direction and voxelize the part at
a user-specified resolution as follows. Let X∗, Y ∗, and Z∗ be the
lengths of the tightest axis-aligned bounding box (AABB) of the in-
put model S along the x, y, and z dimensions, respectively. We set
the side length of the voxels as Rvox · min(X∗, Y ∗, Z∗). Without
loss of generality, assume that the smallest dimension is x. Then
we increase the y and z dimensions of the AABB so that they are
multiples of Rvox ·X∗. The voxelization is uniform over the possi-
bly expanded AABB and a voxel is set to 1 if any part of the input
model intersects that voxel. By default, we set Rvox = 0.1.

The set of voxels tightly bound the pyramidal part with its base
coinciding with voxel boundaries. The resulting shape for global
DAP analysis is thus a pyramidal polycube with a designated up
orientation. For simplicity, we use the term voxel to reference the
grid-based representation in both 2D and 3D.

Next, we detail our algorithm for global DAP optimization, where
the input consists of an initial set of pyramidal polycubes and the
output is a packed pile in the given container C. Our coverage is
focused on powder-based 3D printing and later, we explain how the
global objective function and the search priority are adjusted for
FDM-based printing (Section 4.3). Local refinement is executed
after global DAP to locally optimize positioning of the actual shape
parts to procude a lower pile and tighter packing.

4.1 Global DAP for powder-based printing

For powder-based 3D printers, the goal is to minimize the maxi-
mum height of the pile in the container C while ensuring a low part
count. We formulate DAP for powder-based fabrication as,

P ∗ = argmax
full pile P

OPWD(P ) = argmax
full pile P

H(C)−H(P )

Nα
, (1)

with the global objective function OPWD, where H(P ) denotes the
maximum height of the pile P , N is the number of parts in the
pile, H(C) is a constant that represents the height of the container
C, and α is a tunable parameter to trade-off between part count
and pile height. The global optimization seeks to maximize the
objective function OPWD. The optimal solution P ∗ is attained by a
full pile, a pile consisting of all parts.

Each partial solution to DAP consists of a set U of unpacked poly-
cubes and a packed pile P in the container consisting of a set of
packed polycubes. The search space consists of sequences of moves
supported by Dapper, where each sequence evolves the initial par-
tial solution (all parts unpacked and empty pile) to a complete so-
lution (all parts packed and a full pile).

Dapper considers two possible moves:

• PAK: This move packs a part from U onto the pile.

• CAP: This move cuts a part in U and packs one of the resulting
pieces onto the pile.

Note that packing a part corresponds to a docking operation and
docking can occur on the top or side of the pile P . Figure 3 shows



(a) (b) (c)

Figure 4: A few options to define the priority score. (a) Maximum
height is oblivious to moves which do not increase the maximum
height of the pile; two such moves are shown, with the left one being
more desirable for packing. (b) Maximizing total height gains as
the priority prefers packing larger pieces which may leave vertical
gaps. (c) Combining total height gains with a penalty on vertical
gaps, a compact packing with smaller pieces can win.

the two moves in action. All cuts are axis-aligned, straight, and
result in one and only one additional part. It is easy to see that the
set of pyramidal polycubes is closed under such cuts.

We assume that the container height H(C) is sufficiently large so
that all the decomposed parts can be packed. This is unrealistic in
practice. With a fixed print volume height H(C), the DAP search
ought to terminate when the next part to be packed exceeds the
allowed height. We do not insist on packing this part by cutting
it. Instead, the remaining unpacked parts serve as input to the next
Dapper iteration with an empty printing volume.

4.2 DAP search for powder-based printing

We explore the search space for DAP using a search tree, through
a bounded beam search. The search tree is β-ary, where β is the
beam search width. Each node of the tree stores a supported move
(PAK or CAP), with the root starting as empty. At each node, we
expand the search tree by generating β children, corresponding to
the top β candidate moves according to a priority score M . During
the search, we keep track of P ∗ which is the best complete solu-
tion found so far, i.e., P ∗ minimizes the global objective function,
which, for powder-based printing, is OPWD as defined in (1).

The search terminates when a prescribed maximum number of at-
tempted moves is reached or when all solutions have been ex-
hausted. The optimization returns P ∗ as the final packing solution
in the container. The path of nodes in the search tree leading to P ∗

form the winning sequence of moves. Each node corresponds to
either a PAK or a CAP move. The set of cuts defined by the win-
ning sequence of moves define a decomposition of the input shape,
while the set of packing moves define the packing.

Priority score. As we build up a sequence of moves, the next
move chosen should be one that tends to lead us towards a globally
best final solution. We define a priority score to select the candi-
date next moves. The first choice for the priority is the global ob-
jective function. For powder-based printing, this would be OPWD.
However, it is not a proper choice, since OPWD depends on maxi-
mum height and it cannot distinguish between two moves neither
of which increases the maximum height; see Figure 4(a).

Next to consider would be to maximize the total height gain.
Specifically, for a voxel v in a part that is packed, the height gain
at v is the difference between the container height H(C) and the
actual height of v in the packed pile. We use the term “gain” to
indicate that the measured difference value represents the gain a
voxel make by having been packed into the pile. For any voxel that
belongs to an unpacked part, its height is assigned to be H(C).

(a) Current pile. (b) Gap for powder. (c) Gap for FDM.

Figure 5: Different measures of total gap for powder-based (b) and
FDM-based (c) printing. The gap voxels are shown in yellow for the
pile configuration given in (a).

Clearly, maximizing total height gains prioritizes low packing on
the pile. If gains are measured over all voxels in a part, then prefer-
ence would also be given to larger parts, which is desirable. How-
ever, as illustrated in Figure 4(b), considering only height gains is
insufficient in penalizing vertical gaps. These gaps require filler
material, for both powder- and FDM-based printing, hence they
should be reduced. Combining the factors discussed so far, we ar-
rive at the following priority score MPWD for packing a part q onto
the pile P , geared towards powder-based printing,

MPWD(q, P ) =

∑
v∈P⊕qHGAIN(v, P )

nα
− η ·GPWD(P ⊕ q), (2)

where HGAIN(v, P ) is the height gain at voxel v in the combined
pile (P ⊕ q) after q is packed onto P , GPWD(P ⊕ q) is the total
number of voxels accouting for all the vertical gaps or filler material
necessary in the combined pile, n is the total number of packed as
well as unpacked parts in the current partial DAP solution, and η is
a tunable parameter as the penalty weight for vertical gaps. Moves
associated with higher priority scores are preferred. Figure 4(c)
shows that by combining the considerations of height gain and total
gap, the priority score may prefer more compact packing.

The way total gap is measured in the priority score M depends on
the type of printer. For powder-based printing, the powder is filled
up to the height of the pile, hence the total gap is measured as the
number of voxels needed to fill the current packing configuration
up to the maximum height of the pile; see Figure 5(b).

Docking and cutting polycubes. Given the set U of unpacked
parts and the current pile P , we perform docking tests for each part
in U . For each such part p, we consider six axis-aligned orientations
and for each orientation, we performing docking tests against P
from five directions (top, left, right, front, and back). When per-
forming a docking test, we treat the two opposite sides of the part
and pile as depth images. Docking test is like playing a Tetris game.
We shift the part over the extent of the horizontal dimensions of the
print volume and at each discrete grid position, we “drop” the part
onto the pile in the volume.

Note that the docking problem in one-dimensional space is an in-
stance of the string matching problem, which is well-known and
for which there are very efficient solutions, e.g., the Aho-Corasick
Algorithm [Aho and Corasick 1975]. This particular algorithm al-
lows one to dock multiple pieces simultaneously onto a (1D) pile,
while the matching is exact. There are also fast algorithms for in-
exact string matching and two-dimensional extensions of these fast
matching methods are also available. The latter methods would be
applicable to the docking problem we have at hand. However, for
simplicity, we take an enumerative approach in this work.

In addition to docking tests, CAP moves also require making cuts.
We only allow axis-aligned straight cuts to the polycubes and re-
strict the extent of the cuts, if necessary, to ensure that only one



CAP PAK

PAK
PAK

complete solutiondepth pruned

Figure 6: An illustration of DAP search on a minimal example for
powder-based printing; arrows show the search paths. The illus-
tration starts at a partial solution (a node in the search tree) with
two pieces (left) to process. By a CAP move and two following PAK
moves, the top path runs into a complete solution, while the bottom
path is depth pruned, in reference to the complete solution found.

new part is generated with each cut. We also enumerate cuts along
a given dimension, but assign a higher priority to balanced cuts.

Candidate moves. For each docking test, two moves are selected
and placed into a pool of possible moves to consider as the candi-
dates. One move accomplishes the lowest docking (maximizing
total HGAIN) and the other results in the least amount of total gap
GPWD. Among all selected moves in the pool, the algorithm chooses
the top β moves, either corresponding to a CAP or a PAK, according
to the priority score given in Eqn. (2).

Depth pruning. Limiting the search radii by beam width serves
as a search tree pruning in breadth. Depth pruning, where an en-
tire subtree of the search tree is cut off, can be accomplished by
evaluting DAP solutions at a node and comparing it with the cur-
rent best full DAP solution based on the global objective function
OPWD. That is, pruning happens only after we already have at least
one full solution. Specifically, let P denote the pile associated with
the partial DAP solution corresponding to node d in the search tree.
Let P ∗ be the full pile found so far which gives the maximum ob-
jective function value OPWD. Our pruning strategy is fairely simple:

if OPWD(P ) < OPWD(P
∗),

then the subtree at node d is pruned. The pruning strategy is valid
only if, under the above condition, no further search expansion is
necessary beyond node d. This would be the case as long as no
further packing moves can improve the objective function OPWD.

The key enabling property of OPWD which validates the above depth
pruning is that, indeed, OPWD never increase as the solution pro-
gresses, i.e., as the moves accumulate. With PAK and CAP moves,
this property holds since both moves induce packing of a piece onto
the pile. Any packing move would increase the part count, thus in-
creasing the denominator of OPWD. As well, any packing move ei-
ther increases the maximum pile height H(P ) or keeps it the same,
thus decreasing the numerator of OPWD or keeping it the same. In
neither case, the objective function OPWD could increase. Hence, if
a partial pile P already loses to P ∗, then it can never win over P ∗

by having more pieces packed onto it.

Figure 6 provides illustrations on a minimal example which in-
cludes several key ingredients of our DAP search such as the iden-
tification of candidate moves, docking, and depth pruning.

4.3 Global DAP for FDM-based printing

The global DAP optimization scheme described so far has been
geared towards powder-based printing. To modify it to optimize
for FDM-based printing, we only need to adjust the global objec-
tive function O and the priority score function M .

For FDM-based printers, the goal is to minimize the total amount
of overhang or support waste (material) in the packed pile. We thus
change the problem formulation to:

P ∗ = argmax
full pile P

OFDM(P ) = argmax
full pile P

V (S)−GFDM(P )

Nα
, (3)

where V (S) is the total number of voxels for the input shape S,
GFDM(P ) is the total amount of vertical gaps (overhang) in the pile
P , N is again the number of parts in the pile, and α is same as
before, a trade-off parameter as in Eqn. (1).

While for powder-based printers, the filler material is filled up to
the maximum height of pile, for FDM, the support only need to
exist under some parts of the pile. Hence, the total gap GFDM(P )
in (3) for FDM printers is defined as the total number of empty or
gap voxels which exist below some voxels occupied by the current
pile P in the printing volume. This is illustrated in Figure 5(c) to
contrast (b) for powder-based printers.

Accordingly, we define the priority score MFDM for FDM-oriented
DAP search as

MFDM(q, P ) =

∑
v∈P⊕qHGAIN(v, P )

nα
− η ·GFDM(P ⊕ q), (4)

for packing a part q onto the pile P , where n, the free parameter η,
and the height gain HGAIN(v, P ) are the same as in Eqn. (2), and
GFDM(P ⊕ q) is the total gap defined above for FDM. Note the
symmetry that exists in our definitions of the priority scores. For
both types of printers, both height-related criterion, HGAIN, and gap
related criterion, GFDM or GPWD, are included.

At last, it should not be hard to see that like OPWD, the global object
function OFDM also never increases with additional packing moves.
All we need to note is that any packing move onto the pile P ei-
ther increases the total gap GFDM(P ) or keeps it the same. Conse-
quently, depth pruning for FDM-oriented DAP search would em-
ploy a similar condition, OFDM(P ) < OFDM(P

∗).

4.4 Fabrication criteria

If the only criterion for selecting cuts in Dapper is based on how
well the resulting parts dock with the pile, the object pieces pro-
duced may possess undesirable characteristics during physical fab-
rication and assembly, when the 3D-printed pieces are glued or oth-
erwise physically connected to reconstruct the input object. Pre-
vious works on decomposition for 3D printing, including Chop-
per [Luo et al. 2012] and PackMerger [Vanek et al. 2014], all con-
sider fabrication constraints in one way or another.

Our current global DAP optimization framework allows straight-
forward incorporation of several fabrication constraints via simple
thresholding when selecting candidate CAP moves during the solu-
tion search. These constraints include:

• Cut area. Small cut areas may cause instability when gluing
parts over these areas and they make the insertion of physical
connectors difficult. We add a threshold rA, where any CAP

move whose cut area is smaller than rA ·min (X̂Ŷ , Ŷ Ẑ, ẐX̂)

is disallowed, where X̂ , Ŷ , and Ẑ are the x, y, and z voxel
dimensions of the input shape, respectively.



• Part volume: Small parts are also undesirable for fabrica-
tion. We add a threshold parameter rV , where any CAP move
which results in a polycube whose volume is smaller than
rV ∗ V (S) is disallowed. Recall that V (S) is the number
of voxels in the voxelization of the input shape S.

• Part thickness: To prevent thin structures which are easy to
break, we add a threshold parameter rT , where any CAP move
which results in a polycube with some parts whose thickness
is less than rT ∗ V (S) is disallowed.

In our current algorithm, all three fabrication constraints are op-
tional. Note that the fabrication constraints considered by Pack-
Merger are precisely cut area and part volume. Any constraint that
can be localized to the selection of CAP moves should be easy to
incorporate into our solution. However, more global criteria, such
as symmetry constraints, are not as straightforward to factor in.

4.5 Local refinement

The last step of the Dapper is a local refinement of the objects. The
accuracy of the global decomposition and assembly procedure is
restricted by the resolution of the grid. Thus, the goal of the lo-
cal refinement step is to perform continuous optimization to further
diminish the packing potential.

Specifically, suppose we have N pieces Pi, 1 ≤ i ≤ N , ob-
tained from global DAP. We seek to optimize for a rigid transforma-
tion Ti ∈ SE(3) for each piece Pi to improve the assembly and we
formulate this as a constrained optimization. The objective function
describes the packing potential in terms of minimizing the height
and/or the vertical gaps. There are two optimization constraints: (i)
the pieces should not penetrate each other, and (ii) the pieces are
bounded by the container B = (l,u), where l and u describe the
lower and upper corners respectively. Without losing generality, we
translate the pieces and the container so that l = (0, 0, 0)T , after
which the height of the container is uz .

Packing potential. The packing potential includes two terms.
The height term fheight = hz is given by the height of the pile.
The vertical gap term discretizes the volume of the vertical gap.
Specifically, we uniformly sample the base of the container us-
ing a grid and shoot a vertical beam up from each sample (see
the inset figure). Each beam is divided by the packed pieces into
multiple segments, whose endpoints lie on the piece boundaries.

Ti(ci)

Tj(cj)

We collect all segments with end-
points from different pieces: C =
{(ci, cj)|ci ∈ Pi, cj ∈ Pj}.
Without loss of generality, we as-
sume the z coordinate of the loca-
tion Ti(ci) of ci after transforma-
tion Ti is bigger than that of the
location Tj(cj). With this setup,
it is easy to see that the volume of the vertical gap is estimated as

fgap = r2
∑

(ci,cj)∈C

eTz (Ti(ci)− Tj(cj)), (5)

where r denotes grid resolution and ez is the z axis. In our imple-
mentation, we set r = 0.01 times the width of the printing base.

The objective function combines the height and vertical gap terms:

f = fheight + λfgap. (6)

The tradeoff parameter λ controls the relatively strength of these
two terms. The height term is dominant for the powder printer,
while for the FDM printer the gap term is dominant.

Constraints. It is straightforward to formulate the bounding con-
straint i.e., each piece is included in the bounding container:

0 ≤ Ti(qik) ≤ u, ∀qik ∈ CH(Pi), 1 ≤ i ≤ N (7)

and CH(Pi) denotes the convex hull of Pi.

The non-penetration constraints consider the signed distances from
points of one piece to other pieces. In our implementation,
we discretize the distance function using the point-to-plane dis-
tance [Chen and Medioni 1992], which serves as a first-order ap-
proximation of the distance function. More precisely, the non-
penetration constraints are given by

(T−1
j Ti(pil)− fijl)

Tnijl ≥ ε,
∀pil ∈ Pi,
1 ≤ i 6= j ≤ N, (8)

where fijl is the closest point to T−1
j Ti(pil) on Pj , and nijl is the

normal direction at fijl. When the rigid transformations are opti-
mized, we also update fijl and nijl so that the first-order approx-
imation is accurate. A user-specified threshold ε is used to define
the gaps between different pieces. In our implementation, we set
ε = 0.005 times the width of the container.

Optimization via iterative linear programming. The above-
described optimization problem is hard to solve due to the non-
linearity of the rigid transformations. We propose to optimize se-
quentially, so that in each step we solve an easier problem where
the rigid transformations are replaced by first-order approxima-
tions. After each iteration, we apply a projection operation to obtain
rigid transformations for the next step. Note that the closest points
and the segment endpoints are also updated. Such a procedure has
been widely used in the context of rigid alignment of range scans
(c.f. [Chen and Medioni 1992]).

Specifically, denote Ti = (Ri, ti), where Ri and ti are its rigid
and translational components. Let T ci = (Rci , t

c
i ) denote its value

obtained from the previous step. We can approximate Ti in local
neighborhood of T ci as (c.f. [Chen and Medioni 1992])

Ri ≈ ((vi×) + I3)R
c
i , ti ≈ vi × tci + vi, (9)

where× denotes the cross-product operator and (vi,vi) is a vector
in the tangent space of SE(3) at T ci .

Substituting (9) into (5), (7), (8), and ignoring the quadratic terms
in vi and vi, we arrive at the following optimization at each step:

minimize
hz ,{vi,vi}

hz + λr2
∑

(ci,cj)∈C

eTz (vi × ci + vi − vj × cj − vj)

subject to 0 ≤ qcik + vi × qik + vi ≤ u,
∀qik ∈ CH(Pi)
1 ≤ i ≤ N

((vi − vj)× pcil + (vi − vj)− fijl)
Tnijl ≥ ε,

∀pil ∈ Pi, 1 ≤ i 6= j ≤ N. (10)

Here pc denote the position of p after the previous step. Since the
objective function and the constraints of (10) are linear, equation
(10) is a linear program, which can be effectively solved. In our
implementation, we employ the CVX package.

The solution to (10) is given by the optimal displacement vectors
vi,vi for each piece i. Its rigid transformation is given by

Ri = exp(αvi×)Rci

and
ti = exp(αvi×)tci + αvi,



(a) Local refinement with further height reduction of 25%.

(b) Local refinement with further gap reduction of 59%.

Figure 7: Local refinement introduces further improvement for
powder-based (top) and FDM printers (bottom), respectively.

where exp(·) denotes the matrix exponential map, i.e, the project
operator. Parameter α ∈ (0, 1] is a value that ensures all constraints
are satisfied under the resulting rigid transformations. In this paper,
we determine α via bisection line search. This process is iterated
until the rigid transformations become steady. In our experiments,
10-30 iterations are sufficient for convergence.

Figure 7 shows a few cases where the refinement step led to rela-
tively more significant height reduction over the global optimiza-
tion step. This further height reduction depends on the voxel reso-
lution. Lower resolution voxelizations induce larger empty spaces
in voxels, leading to larger gaps between shape parts after packing
polycubes and more height reduction via local refinement.

5 Results

We show virtual and physically fabricated results obtained by Dap-
per, along with statistics and evaluation. Initial pyramidal decom-
positions were obtained by code provided by Hu et al. [2014]. We
also make qualitative and quantitative comparisons to two related
approaches: PackMerger [Vanek et al. 2014] and discrete scissors
congruence [Zhou and Wang 2012]. More results and illustrations
can be found in the video and supplementary material.

Setting up printing volume. Unless specified otherwise, we as-
sume, for simplicity, that the printing volume is a rectangular
cuboid with a square base. We set the default side length Lmax of
the base as Lmax = 1.618 · V1/3

input, where Vinput is the total vol-
ume of the 3D input object. For the 2D examples, we set the length
of the bottom side of the container to Lmax = 1.618 · A1/2

input,
where Ainput is the total area of the 2D input shape.

Note that these setups of the print volumes are not meant to reflect
any design intent or physical meaning. Empirically, they seem to
well constrain, but not overly constrain, Dapper to produce inter-
esting and non-trivial solutions for the 3D models we tested. Other
horizontal dimensions are also experimented with; we specify the
parameters when appropriate. In general, altering these print vol-
ume setups does not significantly change the trends we are showing
in our evaluation and comparative studies.

Parameters. Aside from the thresholds rA, rV , and rT for set-
ting up fabrication constraints, there are five tunable parameters in
the core Dapper algorithm: exponent α on part count in the global
objective function (1) or (3); beam search width β; the minimum
strip width ω to bound exploration of cuts at each iteration; the
penalty weight η on vertical gap in the priority score (2); and the
weight λ placed on height minimization during local refinement.

Figure 8: A gallery of 2D results from DAP with the goal of height
minimization. For each example, we show the input shape, the final
decomposition, and the packing after local refinement. All results
are obtained with the same default parameter setting except for the
last row (a different setting α = 0.1 and η = 30 is used).

Unless otherwise specified, all DAP results shown were obtained
by setting α = 0.3, ω = 2, η = 10, and λ = 0.001 for powder-
based printing. For FDM, we make an adjustment to λ = 100. The
parameter β varies between 4 and 8 to control breadth pruning.

Note that we fix the way voxelization resolution is set for an input
model, by setting Rvox = 0.1. Increasing the resolution does al-
low the polycubes to reduce in size, hence leading to more compact
packing. However, we have found the gains to be generally not suf-
ficiently large to justify the significant increase in search time. Be-
sides, the local refinement step, which is applied to the actual shape
parts, often provides a good remedy for the packing inefficiencies
caused by the loose bounds given by the polycubes.

DAP results for powder-based fabrication. Figures 8 and 9
show a gallery of 2D and 3D results produced by Dapper, all opti-
mized for powder-based 3D printing (i.e., to minimize height of the
packed configuration). The input has a mixture of organic and man-
made objects, with varying complexity and geometric characteris-
tics. Note that the skyline model in Figure 8 is already pyramidal
hence no initial decomposition was applied. All results are obtained
under the default parameter setting (except for the skyline result in
the last row of Figure 8), with both global and local optimizations,
but without imposing fabrication constraints. In Figure 9, we also
include photographs showing the physically fabricated pieces pro-
duced by a ProJet 660-Pro powder-based printer.

With the default parameters, the skyline result in the first row of
Figure 8 leaves large gaps, but boasts a small part count. By setting
α = 0.1, to lower the influence of part counts, and η = 30, to pe-
nalize more on total gap, we obtain a lower pile shown in the last
row. Figure 10 shows a 2D example of how Dapper produces dif-



Figure 9: A gallery of 3D results from Dapper optimized for
powder-based 3D printing (i.e., height minimization). For each ex-
ample, we show (from left to right) the input shape, the final (vir-
tual) decomposition and packing, and a photograph of the fabri-
cated pieces. Part counts are shown in Table 1.

Figure 10: DAP results with different part counts as container
width varies from 25 (8 parts), 30 (5 parts), to 40 (2 parts).

ferent solutions as the container changes its dimension. Evidently,
a more liberally sized container would allow Dapper to produce
fewer pieces in the final decomposition.

While many parts produced by Dapper are box-like, there are plenty
of decompositions whose parts are far from box-shaped or convex,
e.g., see results for the tower, bridge, chair, table, and skyline mod-
els. In these cases, a box or convex DAP scheme would have gen-
erated more parts. Working with pyramidal primitives appears to
strike a good balance between part count and printing efficiency.

Note that the DAP result for the excavator examples in Figure 8
is sub-optimal. A piece at the top of the pile could have been
moved down to fill a gap below, thus reducing the overall height
of the pile. However, the global DAP optimization works on voxels
which could represent loose bounds over the actual shape pieces.
As shown in Figure 11(a), such loose bounds would not leave the
kind of gaps as the actual pieces would. Moreover, the local nature

(a) (b)

Figure 11: Sub-optimality of the global and local DAP optimiza-
tions. (a) With voxels employed by the global DAP step providing
rather loose bounds of the actual shape pieces, the dark green vox-
elized piece on top could not fit in the yellow gap. The actual piece
can (b). However, local refinement cannot move the piece either as
only local moves (without interpenetration) are allowed.

Model #y #v #mv #p %h tg tl
Skyline 1 1 534 (1 ,2) 3 78% 44s 23s
Tower 2 444 (2, 0) 2 48% 50s 20s
Bridge 2 552 (2, 2) 4 63% 54s 86s
Jordan 4 528 (4, 2) 6 - 92s 36s
Eagle 3 378 (3, 5) 8 - 35s 7s
Duck 5 456 (5, 0) 5 33% 75s 22s
Excavator 4 576 (4, 4) 8 - 98s 5s
Skyline 2 1 534 (1, 4) 5 83% 35s 34s
Candelabra 2 2651 (2, 4) 6 67% 49s 20s
Chair 2 538 (2, 3) 5 66% 57s 28s
Bar stool 3 544 (3, 2) 5 81% 33s 13s
Table 2 647 (2, 2) 4 - 27s 57s
Airplane 2 2810 (2, 4) 6 - 94s 14s

Table 1: Printing efficiency, timing, and other statistics for DAP
on examples from Figures 8 and 9. We report the number of initial
pyramidal parts (#y), total number of voxels (#v) covering all
parts, the number of (PAX, CAP) moves (#mv), the final part count
(#p), and percentage reduction in height achieved (%h). Note that
height reduction is not reported if the input model cannot fit into the
container at all. Execute time (in seconds) are reported for both the
global (tg) and local optimization (tl) phases and accounts for all
DAP operations (exincluding pyramidal decomposition). Timing is
measured on an Intel(R) Core(TM) i5-4570 with 8GB RAM.

of the refinement step dictates that it would not be able to move the
top pieces to fill the gaps below. Both of these issues reflect current
limitations of our DAP optimization.

Table 1 shows timing, printing efficiency improvements, and prim-
itive counts for Dapper, when applied to models in Figures 8 and 9.
Between the global and local optimization steps, height reduction
is attributed mostly to the former. Local refinement does further re-
duce height of the final packing, but often only slightly, about 10%
on average. Compared to the global DAP step, local refinement is
relatively quick, taking 20-30s on average.

When measuring height reduction, the reference height for the input
shape is the minimum height attained by fitting it, in its entirety, in
the container, which has a limited base but unlimited height. While
the latter is unrealistic, this setup allows for a meaningful assess-
ment of the height reduction Dapper achieves. If the input model
cannot fit into the container, we do not report height reduction.

Fabrication constraints. Figure 12 shows a few photos of the
3D printing process and assembled objects after gluing. Note that
gluing for the chair model from Figure 9 was difficult due to small
cut areas; the assembled object was not stable. The chair solution
also contains a thin part on top. Indeed, without imposing fabrica-
tion constraints, the decomposition may result in small cut areas,



Figure 12: A few snapshots of powder-based 3D printing of pieces
produced by Dapper, along with photos of assembled 3D objects
from the 3D gallery after gluing the pieces.

Figure 13: Contrasting DAP results without (left) vs. with (right)
fabrication constraints. As opposed to optimization results with-
out fabrication constraints, decrease in search time and increase in
height of the final packing might occur, due to the more stringent
search criteria enforced by the constraints. Note the elimination of
small cuts (e.g., chair, eagle leg), small parts (eagle leg), and thin
structures (many on Jordan, eagle, and top piece of chair).

tiny parts, and thin structures, e.g., see the Jordan and eagle ex-
amples in Figure 8 as well. Figure 13 shows new results obtained
for the above three examples with thresholding applied to cut area,
part volume, and part thickness. Since the physical properties of
different models vary, the threshold values must vary accordingly
to allow physically plausible fabrications and assemblies. Also, as
the fabrication constraints narrow down the search, the total search
time decrease but printing efficiency achieved degrades slightly.

FDM printing. Figure 14 shows several DAP and 3D printing re-
sults obtained for the global objective function (3), which is geared
towards FDM-based fabrication. The fabrication results were pro-
duced by a Fortus 360mc 3D printer. These results can be con-
trasted to those obtained by minimizing height of the packing to
benefit powder-based 3D printing. As expected, the FDM objective
generally leads to larger height values for the packing but smaller
amount of total vertical gap, as indicated in Figure 14; the latter
corresponds to waste material for FDM-based printers.

powder: (7, 5.2, 222) FDM: (5, 13, 60)

powder: (4, 2.5, 50.6) FDM: (2, 6.9, 9.65)

Figure 14: DAP results optimized for powder-based vs. FDM-
based 3D printing. For each example, we show the input shape, the
final (virtual) decompositions and packings with respect to the two
optimization objectives, as well as a photograph of the FDM fab-
rication result. Part counts, heights(cm) and total volume(cm3) of
the vertical gaps are reported as well in vectors to show contrasts.

Comparison to PackMerger. Like Dapper, the PackMerger al-
gorithm of Vanek et al. [2014] considers both decomposition and
packing, and can be toned to optimize for both powder- and FDM-
based fabrication. However, the optimization objectives and search
paradigms of the two methods differ significantly. We obtained the
PackMerger code from the authors and compare Dapper with Pack-
Merger on few models available from Vanek et al. [2014], as well as
on models from our test set, while making an effort to evaluate their
performances under comparable settings. In particular, we evaluate
printing efficiency and execution time (measured on the same ma-
chine) for varying part counts, since part count plays rather differ-
ent roles in the two methods. Unlike Dapper, PackMerger does not
integrate part count into its optimization objectives. However, the
final greedy merging step is able to produce solutions with different
part counts. To allow Dapper to produce results with different part
counts, we must adjust the parameter α.

Figures 15 shows several comparisons between Dapper and Pack-
Merger in terms of printing efficiency, for both powder- and FDM-
based printing. We can observe that Dapper generally outperforms
PackMerger. Note that no matter how we change the parame-
ters, we always obtain the same DAP solution P ∗ for the table
model when optimized for FDM-based 3D printing. The reason
is that this DAP solution P ∗ is already the optimal solution with
GFDM (P ∗) = 0, thus any other solutions will be pruned once we
find P ∗, according to our DAP search. Analyzing the two methods
in terms of their asymptotic time complexity is difficult. Execution
times, on the other hand, are highly dependent on implementation
choices and details. With the two available implementations, Dap-
per generally consumes significantly less optimization time com-
pared to PackMerger. For example, the chair model (top row of
Figure 15) requires between 1 and 80 seconds for Dapper to opti-
mize for powder-based printing over varying part counts, while for
for PackeMerger, the times vary between 55 and 410 seconds. More
results are in the supplementary material.

Overall, it would appear that although the Tetris packing in Pack-
Merger covers arbitrary rotations, its performance is inferior to
Dapper in both speed and printing efficiencies achieved. Thus the
consideration of arbitrary rotations by PackMerger does not seem
to compensate for its decoupling of decomposition and packing or
the greedy nature of its merging scheme.

Comparison to discrete scissors congruence. To our best
knowledge, the only available algorithm which performs a true
decompose-and-pack is the one by Zhou et al. [2012] for solving
the discrete scissors congruence (DSC) problem. DSC differs from



Figure 15: Comparing Dapper with PackMerger (PM) in terms of
printing efficiency (for both powder- and FDM-based printing) over
varying part counts, where fabrication constraints are not imposed.
The first chair model and the table model are from Figure 9, and the
remaining two models were taken from PackMerger.

DAP both in terms of objectives and constraints, hence it is difficult
to fairly compare them. However, it would still be informative to
ask whether their DSC solution could be viable for our problem.
We obtained the DSC code from Zhou et al. [2012] and ran it on
several 2D inputs. For both DAP and DSC, we provide the same
voxelized input and the same container width.

Figure 16: Dapper vs. scissors congruence (DSC). While Dapper
often does not attain the optimal height, it reaches a close enough
solution with fewer parts and in a fraction of the time.

Figure 16 compares the performance of the two methods on two
examples, but the trend is representative. In general, DAP does not
attain the optimal height; DSC does, since it computes exact con-
gruence, leaving no gap at all. However, DAP typically reaches
a solution that is close to optimal in terms of height of the pack-
ing, doing so with much fewer parts and in a fraction of the time
compared to DSC. DSC takes hours to compute solutions in 2D
and much longer on 3D inputs. Hence, it is reasonable to conclude
that DSC is not a viable solution to DAP for 3D printing; it likely
produces too many parts and takes too long to run.

6 Discussion, limitation, and future work

Recent advances in 3D printing technologies have piqued the inter-
ests of the computer graphics community, as the desire to improve
efficiency and quality of 3D fabrication is shedding new lights on a
variety of geometric optimization problems. In this work, we pose
the decompose-and-pack (DAP) problem for 3D printing and of-
fer a preliminary solution to one problem instance. Indeed, DAP
represents not one, but a new class of optimization problems. As
the demand for better utilization of printing volume, print mate-
rial, and build time increase, we believe that effective solutions to
DAP can benefit 3D printing in more ways than one. While our
coverage has so far focused on two types of printers, other printing
technologies such as SLA and DLP share similarities as FDM and
powder, respectively, in terms of support requirement and material
consumption; they should benefit from DAP in similar ways.

In this section, we offer discussions on design choices and insights,
current limitations, and possible extensions for future work.

DAP via conventional clustering. The first question we asked
ourselves when developing the DAP solution was whether the prob-
lem could be solved by conventional approaches such as cluster-
ing. In a typical setting for shape decomposition [Shamir 2008],
the goodness of a part is always computable from properties pos-
sessed by the part itself or its boundary. Well-known examples
include convexity, pyramidality [Hu et al. 2014], and the minima
rule [Hoffman and Richards 1984] which offers a means to iden-
tify boundaries between parts. However, one can hardly conclude
whether a part would facilitate packing by studying the part alone.
It would also be difficult to define an affinity measure between parts
(to enable a clustering scheme) based on their packability. Packa-
bility is a global property inferrable only from a set of parts.

Expanding the search. Our current solution search is limited by
the voxelization, which may lead to loose bounds for shape parts
and disallow certain compact packing solutions. Figure 11 illus-
trates this, as well as a limitation of the local refinement step due
to its reliance on local movements. Another limitation of Dapper is
that the pile can only be piled up and not modified to facilitate pack-



(a) Input. (b) With CAX move. (c) Without CAX.

Figure 17: Allowing the pile to be partially flattened by making
a cut, a CAX move, leads to a better DAP solution. Compare re-
sults in the middle and right where the same number of parts are
obtained. With a CAX, we obtain a packing without gap.

ing. An interesting new DAP move, which we may call CAX for
“Cut-and-eXchange”, can be added which would allow the pile to
be partially flattened by cutting off a piece and exchanging in a new
piece. Figure 17 shows that CAX can improve packing. However,
CAX moves are expensive to add since they invalidate the objec-
tive function bounds for depth pruning; recall that these bounds are
based on the fact that the height of the pile cannot decrease. Obvi-
ously, we can also expand the search by removing the voxelization
and directly decompose-and-pack the shape parts.

Ground truth and optimality. It is less than ideal that for most
results shown in the paper, we could not obtain or compare to
ground truth. The DAP problem is extremely difficult and its com-
plexity dictates that only for rather trivial examples, one may man-
ually obtain provably optimal results. The 2D tower and bridge
examples in Figure 8 are simpler than others and the results we ob-
tain are likely close to optimal. However, even in such simple cases,
proving optimality would be hard. Therefore, no optimality claims
we make in the paper imply closeness to the ground truth; all such
claims are confined to the search space defined and explored.

Pyramidal primitives. While pyramidal primitives do offer sev-
eral advantages in our solution framework, they are not suitable for
all types of input geometry. For example, objects with thin struc-
tures, such as the object shells and the ball-and-stick figures fea-
tured in PackMerger [Vanek et al. 2014], do not induce small pyra-
midal decompositions to initialize Dapper. Hence, they are unlikely
to result in efficient DAP solutions using our current algorithm.

Decomposition, assembly, and slicing directions. A common
issue to all decomposition-based fabrication methods is the warping
of cut surfaces due to the printing process, which prevents tight
assembly of the parts. The work by Hildebrand et al. [2013] is
an excellent reminder that choosing the appropriate slicing or cut
directions in a decomposition is important. For example, cuts that
are not well aligned with the direction of fabrication can be jaggy,
especially when printing at a low resolution. Such cuts cannot be
glued properly. While pyramidal primitives are highly desirable for
DAP, more ideal would be parts that are pyramidal and have cut
boundaries aligned with the orthogonal slicing directions derived
from [Hildebrand et al. 2013]. Both properties are preserved by
voxelization and axial cuts over the resulting polycubes.

Future work. Aside from addressing limitations and possible ex-
tensions mentioned above, performance improvements can be ex-
pected if we incorporate efficient inexact string matching algo-
rithms into the docking scheme. Additional fabrication constraints,
such as those related to stress analysis and aesthetics (e.g., symmet-
ric cuts or cuts over concave regions for less visibility), can also be
considered. We would also look into applications of DAP beyond
3D printing, e.g., for furniture disassembly and packing where con-
tainer dimensions would play a critical role. Finally, it may be inter-
esting to see whether the search paradigm developed in this paper
can be adjusted to solve scissors congruence.

Acknowledgments. We thank all the reviewers for their in-
sightful comments and valuable suggestions. We also acknowl-
edge help from Sha He on video editing and early discus-
sion with Ilya Baran on DAP. This work is supported in part
by grants from National 973 Program (2015CB352500), NSFC
(61232011, 61202147, 61332015), NSERC Canada (No. 611370),
Guangdong Science and Technology Program (2015A030312015,
2014B050502009, 2014TX01X033), Shenzhen VisuCA Key Lab
(CXB201104220029A), Israeli Science Foundation (No. 1790/12),
and U.S.-Israel Bi-National Science Foundation (No. 2012376).

References

AHO, A. V., AND CORASICK, M. J. 1975. Efficient string match-
ing: An aid to bibliographic search. Communications of the ACM
18, 6, 333–340.

CAGAN, J., SHIMADA, K., AND YIN, S. 2002. A survey of
computational approaches to three-dimensional layout problems.
Computer-Aided Design 34, 597–611.

CHEN, Y., AND MEDIONI, G. 1992. Object modelling by regis-
tration of multiple range images. Image Vision Comput. 10, 3,
145–155.

CRAINIC, T. G., PERBOLI, G., AND TADEI, R. 2012. Recent
Advances in Multi-Dimensional Packing Problems. New Tech-
nologies - Trends, Innovations and Research.

DICKINSON, J. K., AND KNOPF, G. K. 2002. Packing subsets
of 3D parts for layered manufacturing. International Journal of
Smart Engineering System Design 4, 3, 147–161.

GOGATE, A. S., AND PANDE, S. S. 2008. Intelligent layout plan-
ning for rapid prototyping. International Journal of Production
Research 46, 20, 560–563.

HILDEBRAND, K., BICKEL, B., AND ALEXA, M. 2013. Orthog-
onal slicing for additive manufacturing. Computer & Graphics
37, 6, 669–675.

HOFFMAN, D. D., AND RICHARDS, W. A. 1984. Parts of recog-
nition. Cognition 18, 65–96.

HU, R., LI, H., ZHANG, H., AND COHEN-OR, D. 2014. Approx-
imate pyramidal shape decomposition. ACM Trans. on Graph
33, 6, 213:1–213:12.

LOWERRE, B. T. 1976. The harpy speech recognition system. PhD
thesis, Carnegie Mellon University.

LUO, L., BARAN, I., RUSINKIEWICZ, S., AND MATUSIK, W.
2012. Chopper: Partitioning models into 3D-printable parts.
ACM Trans. on Graph 31, 6, 129:1–129:9.

SHAMIR, A. 2008. A survey on mesh segmentation techniques.
Computer Graphics Forum 27, 6, 1539–1556.

VANEK, J., GARCIA, J., BENES, B., MECH, R., CARR, N.,
STAVA, O., AND MILLER, G. 2014. PackMerger: A 3D print
volume optimizer. Computer Graphics Forum 33, 6, 322–332.

WIKIPEDIA, 2014. 3D printing — wikipedia, the free encyclope-
dia. [Online; accessed 6-November-2014].

ZHOU, Y., AND WANG, R. 2012. An algorithm for creating geo-
metric dissection puzzles. In Proc. of Bridges Conf., 49–58.

ZHOU, Y., SUEDA, S., MATUSIK, W., AND SHAMIR, A. 2014.
Boxelization: Folding 3D objects into boxes. ACM Trans. on
Graph 33, 4, 71:1–71:8.


