
Autoscanning for Coupled Scene Reconstruction and Proactive Object Analysis

Kai Xu1,2 Hui Huang1∗ Yifei Shi2 Hao Li3 Pinxin Long1 Jianong Caichen2,1 Wei Sun1 Baoquan Chen3∗
1Shenzhen VisuCA Key Lab / SIAT 2HPCL, National University of Defense Technology 3Shandong University

(a) (b) (c)
Figure 1: Autonomous scene scanning and reconstruction with object analysis aided by robot pushing. (a): A PR2 robot with one arm
equipped with a depth camera interacts with a cluttered table-top scene, to scan and extract the objects on top of it. (b): The reconstructed
scene with extracted individual objects shown with distinct colors. (c): Zoomed-in views of the room corners.

Abstract
Detailed scanning of indoor scenes is tedious for humans. We pro-
pose autonomous scene scanning by a robot to relieve humans from
such a laborious task. In an autonomous setting, detailed scene ac-
quisition is inevitably coupled with scene analysis at the required
level of detail. We develop a framework for object-level scene re-
construction coupled with object-centric scene analysis. As a result,
the autoscanning and reconstruction will be object-aware, guided
by the object analysis. The analysis is, in turn, gradually improved
with progressively increased object-wise data fidelity. In realiz-
ing such a framework, we drive the robot to execute an iterative
analyze-and-validate algorithm which interleaves between object
analysis and guided validations.
The object analysis incorporates online learning into a robust graph-
cut based segmentation framework, achieving a global update of
object-level segmentation based on the knowledge gained from
robot-operated local validation. Based on the current analysis,
the robot performs proactive validation over the scene with phys-
ical push and scan refinement, aiming at reducing the uncertainty
of both object-level segmentation and object-wise reconstruction.
We propose a joint entropy to measure such uncertainty based on
segmentation confidence and reconstruction quality, and formulate
the selection of validation actions as a maximum information gain
problem. The output of our system is a reconstructed scene with
both object extraction and object-wise geometry fidelity.
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1 Introduction

With an increasing demand for digitized large-scale indoor scenes,
considerable research effort has been directed at improving the scal-
ability and accuracy of scene reconstruction algorithms. In typi-
cal scene acquisition scenarios, a human operator walks through a
scene with a hand-held depth camera to capture scene geometry.
The operator’s scanning effort is assisted by instant visual feed-
back from realtime reconstruction [Newcombe et al. 2011]. How-
ever, detailed scene scanning by humans is laborious, especially
for large indoor scenes containing numerous objects. An attractive
substitution is autonomous scanning, or autoscanning, where a mo-
bile robot holding a depth camera replaces humans in the laborious
scanning task. Consequently, the scanning process becomes more
iterative and exploratory, while under higher-precision controls.

While enjoying the mobility, accuracy, and endurance of a robot,
a significant challenge in autoscanning is how to make the robot
exercise intelligence in executing its task. To enable this, some
level of understanding of the scene being acquired is indispensable.
Thus, scene acquisition is inevitably tied to scene analysis. For ex-
ample, if the robot is to focus its acquisition effort on delineating
objects, it needs to have some awareness of the object composi-
tion in the scene. Such understanding offers essential guidance to a
well-targeted and efficient autoscanning. In return, online analysis
will benefit from a more complete and accurate reconstruction from
higher-quality scanning [Zhang et al. 2014]. Existing work usually
solves scene reconstruction and analysis as separate problems. To
achieve an intelligent autoscanning for quality and detailed scene
reconstruction, we propose solving the two problems in a coupled
manner, with an iterative feedback loop between the two processes.

Figure 2: Visual comparison of robot-operated scene reconstruc-
tion without (left) and with (right) our object-aware framework.
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Figure 3: An overview of the system pipeline.

In developing our framework for coupled indoor scene reconstruc-
tion and analysis, we focus on object extraction, arguably the most
fundamental scene analysis task. The autoscanning and reconstruc-
tion are guided by object-centric analysis. Meanwhile, the analy-
sis is gradually improved with progressively increased data com-
pleteness. The final result is not a holistic reconstruction, as a sin-
gle 3D model, but object-aware scene reconstruction encompassing
both object-level segmentation and object-wise quality reconstruc-
tion; see Figure 1, as well as a visual comparison in Figure 2. To
enable such an approach, the robot executes an iterative analyze-
and-validate algorithm. The algorithm interleaves between scene
analysis for extracting objects and robot conducted validation for
improving the segmentation and object-aware reconstruction.

The basic system setup is a mobile robot holding a depth camera
performing real-time scene reconstruction [Nießner et al. 2013].
With the current reconstruction, we perform object analysis to seg-
ment the scene into a set of hypothetical objects. We then estimate
the joint uncertainty in both object-level segmentation and object-
wise reconstruction, which is used to guide the robot in validating
the object-aware reconstruction through physical push and scan re-
finement. Physical push is intended to verify the local segmenta-
tion, and assist data acquisition through separating close-by objects
to reduce occlusion (Figure 1(a)). Scan refinement is then devoted
to cast more scans around the moved objects to improve their data
completeness. Both validations aim to reduce the joint uncertainty
as much as possible. The gained knowledge about segmentation,
as well as the newly acquired depth data, is incorporated into the
current object-aware reconstruction, which would in turn improve
the analysis in the next round. The whole process repeats until the
overall uncertainty does not decrease significantly.

In summary, our main contributions include:

• A framework for coupled scene reconstruction and object
analysis based on an analyze-and-validate algorithm, leading
to object-aware scene reconstruction.

• An object analysis method integrating a robust graph-cut
based segmentation with online cut cost learning, enabling a
global update of the segmentation based on the knowledge
gained from local proactive validation.

• A joint entropy measure of both object-level segmentation and
object-wise reconstruction, which is, to the best of our knowl-
edge, the first attempt to integrate segmentation confidence
and reconstruction quality within a unified entropy-based for-
mulation, for robot action selection.

Our work focuses on household objects which are rigidly movable
over a supporting plane and separable against its surroundings un-
der a moderate movement. Our method is invasive so it does not
reconstruct the original scene with exact object positions. This is
acceptable for real-life indoor scenes since the exact positioning
of movable objects is usually quite casual and accidental. In this
sense, our method produces a good approximation to the ground

truth scene since the small amount of movement of objects would
not change their mutual relations characteristically.

2 Related work

Scene reconstruction. With the maturation of the techniques
of surface reconstruction from the point cloud of a single ob-
ject [Berger et al. 2014], the interest on 3D scanning and reconstruc-
tion has been shifting toward scenes, especially indoor scenes. The
emergence of commodity depth cameras, such as Microsoft Kinect
and Asus Xtion, together with the recent progress on the depth map
SLAM (Simultaneous Localization and Mapping) technique [Cur-
less and Levoy 1996; Newcombe et al. 2011], have made real-time
scene scanning and reconstruction very popular (e.g., [Roth and
Vona 2012; Whelan et al. 2012; Chen et al. 2013a; Nießner et al.
2013]). Common to these methods is the holistic reconstruction
which results in a single 3D model for the entire scene.

An indoor scene is characterized by the geometry of all objects con-
tained in the scene, as well as their spatial relations [Fisher et al.
2011]. The raw reconstruction results above, however, lose the
structural information and are hardly usable in subsequent appli-
cations, such as retrieval [Fisher et al. 2011] and synthesis [Fisher
et al. 2012]. Therefore, a more useful scene reconstruction should
extract and reconstruct the individual objects and infer their mutual
relations, to reveal the composition and structure of the scene.

Scene analysis. Indoor scenes are ubiquitous in graphics and vi-
sion applications such as virtual reality, gaming, and robot explo-
ration. Scene understanding based on images is a long-standing
problem in computer vision (e.g., [Hedau et al. 2010]). With the
availability of depth cameras, depth maps can greatly enhance scene
analysis [Silberman et al. 2012; Gupta et al. 2013]. In computer
graphics, most existing scene analysis techniques use off-the-shelf
3D models with object level segmentation and/or semantic tags,
where the emphasis has been on the structural and contextual re-
lationship between objects [Fisher et al. 2011; Liu et al. 2014].

Our work is more related to scene analysis with a given scanned
point cloud, for which a widely adopted approach is to utilize a
3D model database to assist object extraction and recognition [Nan
et al. 2012; Shao et al. 2012; Chen et al. 2014; Li et al. 2015]. Some
works exploit the object repetition cues in indoor scenes [Kim et al.
2012; Mattausch et al. 2014]. Zhou and Koltun [2013] perform
offline analysis of recorded sensor trajectories to globally distribute
registration error in SLAM. Another notable line of research is to
facilitate semantic scene analysis using humans action data [Jiang
and Saxena 2013; Savva et al. 2014]. Since post-scanning analysis
can not acquire additional information on scene structure, offline
scene analysis has to rely on prior knowledge (prescribed by hu-
man or learned from data) or extra information (e.g. sensor trajec-
tory) recorded during scanning. Our online analysis is enhanced by
powerful proactive validation operated by a robot.



Online analysis during capturing. For real-time scene recon-
struction, structure analysis has been exploited during scanning to
recover structural information. To realize object extraction, ex-
isting methods are either data-driven [Salas-Moreno et al. 2012],
or human-assisted where the user helps in object extraction and
conducts object scanning [Zhang et al. 2014; Herbst et al. 2014;
Valentin et al. 2015]. Besides object extraction and recognition, the
analysis in previous works benefits the reconstruction only in terms
of camera tracking and depth data fusion in SLAM [Zhang et al.
2014], but does not provide guidance for scene scanning which is
key to autonomous reconstruction. Our method complements to
those works in that our scene analysis is tightly coupled with scan-
ning and reconstruction, as a feedback loop in an autonomous sys-
tem, where no model database or human input is required.

Autonomous scanning by robot. The idea of autonomous 3D
scanning by a robot is not new; many prior works have been con-
ducted for single object scanning aiming at complete scanning with
minimal effort [Khalfaoui et al. 2013] and active vision [Chen et al.
2011]. Recently, Wu et al. [2014] propose an autoscanning system
for single objects driven by a Poisson-based reconstruction qual-
ity measure. We employ this measure in evaluating reconstruction
uncertainty, as well as their Next-Best-View (NBV) estimation for
object-targeted scan refinement. Autonomous scene scanning is
also well-studied, but mainly from the robotics point of view, with
the goal of environment capturing and exploration (e.g. [Callieri
et al. 2004; Foster et al. 2011; Wagner et al. 2013]), but not full
reconstruction, especially, object-aware scene reconstruction.

Scene segmentation by robot interaction. There is an im-
mense body of previous works on unknown object extraction from
a scene with robot interaction (e.g. [Allen 1988; Bersch et al. 2012;
Hausman et al. 2013]). Our key difference from the existing works
is that our robot interaction is driven by the uncertainty accounting
for not only segmentation confidence but also reconstruction qual-
ity. To the best of our knowledge, our work is the first to integrate
robot interaction into the problem of full reconstruction of indoor
scenes, with the goal being not only object extraction but more im-
portantly, object-wise quality reconstruction.

3 Overview

Problem statement. The basic setting of our problem is realtime
scene reconstruction using a depth camera. The input is captured
raw depth images of an indoor scene and the output is a full recon-
struction of the scene as a combination of fixed room wall/furniture
and extracted individual objects with relatively high geometry fi-
delity. The core problem is object-aware reconstruction concerning
how to extract unknown objects from the scene being reconstructed
and at the same time, utilize the object analysis result to guide the
robot validation for better object-targeted scanning.

System overview. Our system contains two main components, a
3D scanning system performing realtime 3D acquisition and recon-
struction and a physical interaction mechanism enabling proactive
validation. Both of the two components are delegated to a PR2 from
Willow Garage, a mobile robot with two hands. We mount a Kinect
sensor on one of its hands and drive the other one to physically
interact with the scene. The system pipeline is shown in Figure 3.

Given an indoor room, the robot first navigates the room while scan-
ning for a rough reconstruction of the entire room space. To facil-
itate efficient processing, we take a divide-and-conquer scheme by
decomposing the scene into several regions of interest (ROIs) and
processing them one by one. For each ROI, the system interleaves
object analysis and guided validation.
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Figure 4: Our framework of reconstruction and analysis.

To perform object analysis, we first over-segment the currently re-
constructed ROI and represent it as a patch graph. Then we gener-
ate a set of object hypotheses by partitioning the patch graph using
graph-cut, and build an object graph by contracting the patch graph.
Based on the two graphs, we estimate the uncertainty of object-
aware reconstruction, to guide the proactive validation, including
physical push and object-targeted scan refinement. We adopt hor-
izontal push to verify the local segmentation, as well as to assist
data acquisition by separating close-by objects apart to reduce oc-
clusion. Scan refinement is targeted at the moved objects by push,
to improve their data completeness. The validation results are in-
corporated to update both segmentation and reconstruction, thus re-
ducing the corresponding uncertainty. Such an interleaving process
repeats until the uncertainty stops decreasing.

4 Prerequisite and initialization

Online reconstruction and analysis framework. Our system is
built upon the voxel hashing based KinectFusion [Prisacariu et al.
2014; Nießner et al. 2013]. Figure 4 shows our basic framework
of online reconstruction and analysis. KinectFusion maintains a
global volumetric representation, i.e., Truncated Signed Distance
Field (TSDF), for the geometry of the whole scene. It receives new
frames of depth images captured in realtime and fuses them into the
global volume through updating the TSDF. To accommodate object
level segmentation, we associate each voxel with an object ID, sim-
ilar to [Zhang et al. 2014]. To enable object analysis, we export
all zero-crossing points of the TSDF of the current ROI. The anal-
ysis and validation are iteratively performed based on this 3D point
cloud. In each iteration, new object labels and scans are fused into
the global volume, by updating object ID and TSDF, respectively.

Scene representation. Our system maintains four scene repre-
sentations including global volume, 3D point cloud, patch graph
and object graph. While the global volume is maintained for the en-
tire scene, the latter three are constructed for only the current ROI,
whose geometry and labeling information can be integrated into the
global volume for visualization and output purposes (Figure 4).

Our object analysis is performed over the 3D point cloud, in con-
trast to the method in [Zhang et al. 2014] where object detection is
based on region growing in ray-casted 2D depth images. While 2D
space analysis facilitates instant visual feedback, which is suitable
for human-operated interactive reconstruction, the extraction of 3D
objects is especially useful in the estimation of robot actions.

The analyze-and-validate process is centered around the patch and
object graph. Specifically, object analysis produces an object graph
through partitioning and contracting the patch graph. The two
graphs are then used to estimate the next best push actions for
proactive validation. Segmentation validation updates the patch
graph in both graph topology (local update) and edge cut cost
(global update). In summary, our method interleaves between the



two graphs, to gradually improve the object-aware reconstruction
(see the loop formed by the orange arrows in Figure 4).

Indoor space exploration and decomposition. Entering an in-
door room, the PR2 first explores the entire scene while scanning it
to obtain the overall geometry and a rough spatial layout. To drive
the robot to explore the room, we employ the PR2 navigation pack-
age implemented in ROS (Robot Operating System) [ROS 2014].
We decompose the roughly reconstructed room into several regions
of interest (ROIs) so that the robot can process them one by one. An
ROI is a relatively isolated subscene with intensive object presence
demanding detailed scanning (e.g., standalone tables, cubicles, wall
corners, etc.); see Figure 3. Such isolated regions can be detected
based on spatial isolation or planar surface separation. The output
of the initialization stage is a set of ROIs connected by their inter-
connecting path, similar to [Zhou and Koltun 2013].

5 Object analysis

Analysis overview. We first over-segment the scene point cloud,
using the method described in [Papon et al. 2013]. We then build
an adjacency graph for the over-segmented patches, denoted with
Gp = (Vp, Ep), with nodes representing patches and edges indicat-
ing patch adjacency relation. Based on the patch graph, we compute
a set of candidate object hypotheses, using binary graph cuts with
the foreground corresponding to a candidate hypothesis [Golovin-
skiy et al. 2009]. We then select the most prominent hypotheses
using a voting-based scheme in a multi-class segmentation.

Our method has several advantages. First, the binary segmentation
is performed many times, using every patch as foreground seed,
while the final set of objects are extracted using a hypothesis se-
lection mechanism. This avoids the use of any heuristic seeding
scheme. Second, our method produces a coherent segmentation of
the input scene, instead of outputting a set of hypotheses which may
be in conflict with each other. Finally, by dealing with patches, in-
stead of points, local geometric entities can be robustly estimated.
All these features make our method especially robust.

To enable the robot to accumulate knowledge about scene compo-
sition and improve the segmentation as the proactive reconstruction
proceeds, we propose integrating online learning into the graph-cut
segmentation framework, through learning the graph-cut cost with
on-the-fly obtained training examples.

Object hypothesis generation. In generating object hypotheses
using binary graph cuts, we select one patch as foreground seed,
but do not prescribe any seed for background. This is achieved by
introducing a background penalty for each non-seed patch. Specif-
ically, we select one patch, denoted by Ps, labeling it as fore-
ground xs = 1, and minimize over binary patch labels X =
[x1, . . . , xn], xi ∈ {0, 1}, with n being the number of patches,
the following parametric energy function:

Eλ(X) =
∑
u∈Vp

Eλd (xu) +
∑

(u,v)∈Ep

Es(xu, xv), (1)

where the data term is defined as:

Eλd (xu) =

 ∞, if xu = 0 and u = s,
fu, if xu = 1 and u 6= s,
0, otherwise.

fu =

{
k(d(Ps, Pu)− λ), if d(Ps, Pu) > λ,
0, otherwise.

fu is the background penalty which penalizes a non-seed patch that
is distant from the seed being labeled as foreground. d(Ps, Pu) is
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Figure 5: Our hypothesis selection can overcome false segmenta-
tion through consensus voting from hypothesis clusters. The labels
on each patch corresponds to the hypothesis generated by seed-
ing with that patch. Left: The hypothesis Hc, representing a false
under-segmentation, is generated by seeding with a patch in the
middle. It will not be selected since its corresponding cluster Cc is
much smaller than the other two. Right: Suppose a single patch
hypothesis Hb is generated by noisy cuts, indicating a false over-
segmentation. It will also be discarded due to its small cluster size.

the Euclidean distance between the patch centers of Ps and Pu. We
use k = 2.0 for a steep penalty to quickly prevent those patches,
whose distance to Ps is larger than λ, from being labeled as fore-
ground. The parameter λ controls the range, centered around the
seed patch, within which we seek for foreground patches. Instead
of using a hard threshold on this range, we slide λ from 0 to `d
(the diagonal length of the bounding box of the entire scene) and
find the first point where the total cut cost drops significantly (up to
50%) and take the cuts as the segmentation result.

The smooth term, or cut cost, is defined as the probability of two ad-
jacent patches belonging to the same object, which will be learned
based on the results of robot proactive validation. The learning of
cut cost is discussed at the end of this section.

The remaining issue is how to select foreground seeds. Instead of
relying on heuristic rules, we opt to use every patch as seed and
perform binary graph cuts multiple times, leading to many candi-
date foregrounds with redundancy. Next, we cluster the foreground
segments using mean-shift. The similarity between two segments,
e.g., S and T , is measured by the Jaccard index [Levandowsky and
Winter 1971], s(S, T ) = |S ∩ T |/|S ∪ T |. For each foreground
cluster, we select the cluster center as the representative object hy-
pothesis for that cluster. This results in a pool of k hypothetical
objects,H = {Hi}ki=1, each corresponding to a cluster.

Object hypothesis selection. The hypothesis set is not neces-
sarily a partition of the patch graph. Some hypotheses would over-
lap with each other, making the labeling of patches within the over-
lapping regions ambiguous. Existing methods either filter the hy-
potheses based on some heuristic rules, or rank them with a model
learned from training data. To select good hypotheses without re-
lying on any heuristics, we propose to let the hypotheses compete
with each other in producing a partition of the patch graph. This is
formulated as a multi-class Markov random field (MRF) segmen-
tation with object label selection. Specifically, we minimize the
following energy function:

E(L) =
∑
u∈Vp

Ed(lu;Pu) +
∑

(u,v)∈Ep

Es(lu, lv), (2)

over the labeling for all patches: L = [l1, . . . , ln], lu ∈ {1, . . . , k}.

The data term Ed(lu;Pu) is defined as the log-likelihood that the
patch Pu belongs to a particular object hypothesis. In particular, for
patch Pu and the i-th object hypothesis Hi, the data term is defined
based on the ratio between the times of Pu being covered by the
members in the foreground cluster corresponding to Hi, denoted
by Ci, over the times it is covered by all clusters:

Ed(lu = i;Pu) = − ln
(
t(Pu, Ci)/

∑
j t(Pu, Cj)

)
, (3)
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Figure 6: Object extraction from the point cloud of a highly clut-
tered scene (a) by using our method (b) and RANSAC based prim-
itive fitting (c). In the input data, close-by objects merge together
due to low scan resolution and the back view is not scanned, mak-
ing the segmentation quite challenging. Our method can segment
out most objects accurately. In (c), some points are discarded by
the original algorithm due to large fitting error. For both methods,
the table plane has been detected and removed, via plane fitting.

where t(Pu, Ci) = |{Pu ⊂ Hj |Hj ∈ Ci}| is the presence times of
patch Pu in cluster Ci. The smoothness term is the same as the one
used in the binary graph cuts.

In essence, the data term selects a label for each patch based on a
consensus voting from all foreground clusters. The rationale of this
voting scheme is that the larger a foreground cluster is, the more
probable its corresponding object hypothesis represents an inde-
pendent object, since the object has been proposed by the binary
segmentations seeded from many patches. Figure 5 illustrates how
our method can discriminate false object hypotheses, in two typical
cases, i.e., under- and over-segmentation. Figure 6 demonstrates the
segmentation results over a highly cluttered scene. A quantitative
evaluation against ground-truth data is presented in Section 7.2.

Online learning of the cut cost. 3D scene segmentation is af-
fected by many factors, such as geometry, color, texture, and even
high level structural information. It is difficult to combine all of
these factors into a cut cost due to the weighting difficulty. There-
fore, we opt to learn the cut cost from the robot proactive validation
as the probability that two adjacent patches are labeled differently:

Es(lu, lv) = 1− p(lu 6= lv|x(Pu, Pv)), (4)

where x(·) ∈ Rn is the feature vector extracted for a pair of
patches. Specifically, we train a Support Vector Machine (SVM)
prediction function over the feature vector:

p(lu 6= lv|x(Pu, Pv)) = g(f(x)) , pc(euv), (5)

where f is the prediction function returning a positive value if patch
Pu and Pv are labeled differently (the patch graph edge euv con-
necting them is cut), and negative otherwise. g(t) = 1/(1 + e−t)
is the logistic sigmoid function used to convert the prediction value
into a probability, which we refer to as the cut probability of an
edge euv , denoted by pc(euv). To train the SVM, we collect a
set of examples from physical validation: {x(Pi, Pj), yij}, with
yij ∈ {−1,+1} indicating whether edge eij is cut. The way that
physical validation provides training examples will be discussed in
Section 6.3. An important benefit of cut cost learning is that the
learned cost can be used to improve the segmentation of the entire
patch graph in a global manner, instead of locally updating only the
subgraph affected by robot validation.

A major issue with such learning, however, is that the features ex-
tracted for different factors are heterogeneous and have different
notions of similarity, thus requiring different kernels in SVM train-
ing. To this end, we employ the Multiple Kernel Learning (MKL)
method [Bach et al. 2004], which learns an optimal kernel for each
type of feature from a predefined pool of base kernels. Another
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Figure 7: An overview of the two robot-conducted validations:
physical interaction and scan refinement. For each validation, we
list the possible consequences, underlying causes, as well as bene-
fits, associated by grey links.

concern is that since the training examples arrive sequentially as
the process of analyze-and-validate proceeds, it is more efficient to
achieve online learning, to incrementally update the predictor with
progressively gathered examples. To realize online learning with
MKL, we adapt the passive-aggressive algorithm [Crammer et al.
2006], which is originally designed for SVM, to the MKL setting.
The details about online cut cost learning, along with the kernels
and features that we employ, can be found in the Appendix in the
supplemental material.

In the initial stage, when no training data is available, we bootstrap
the segmentation simply by defining the cut probability based on
local geometric concavity:

pc(euv) = η(1− cos θuv), (6)

where θuv is the angle between the average normals of patchPu and
Pv . For η, we take 0.01 (a small value) if the two adjacent patches
form a convex dihedral angle and 1 otherwise, to encourage cuts
around a concave region [Katz and Tal 2003].

6 Entropy-based proactive validation

Validation overview. To improve the object-level segmentation
and object-wise reconstruction, the robot performs proactive valida-
tion over the current ROI using physical push and scan refinement,
driven by the next best push (NBP) and next best view (NBV),
respectively. Both NBP and NBV are estimated based on the re-
sult of the current object analysis. Physically interacting with the
scene can verify and/or correct the segmentation with the gained
knowledge from moved objects. Different from existing works, our
proactive push is also designed for spatially separating close-by ob-
jects and resolving their mutual occlusion, to better the condition
for object-targeted scan refinement.

A physical push may cause three consequences for the moved hy-
pothetical objects: (1) An object may move independently, sug-
gesting a correct segmentation of the object; (2) An object may
split into multiple ones, indicating an under-segmentation of multi-
ple objects; (3) An object may be attached with its adjacent objects
during moving, which means an over-segmentation of a single ob-
ject. While the latter two lead to corrections over the segmentation,
the first could unveil the unobserved regions of the object occluded
by its surrounding objects, by separating it clear against them. Fig-
ure 7 summarizes the motivation and benefit of the validations.

6.1 Information gain maximization for NBP selection

Based on segmentation, the patch graph Gp is contracted into an
object graph, denoted as Go = (Vo, Eo). Our NBP selection is
based on the two graphs (Figure 8). Since our system aims for both
object-level segmentation and object-wise reconstruction, the NBP
should account for both aspects. Firstly, the push should maximally
reduce the uncertainty in scene segmentation. On the other hand,
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to increase the data completeness, the robot should act to expose
the possibly unobserved region as much as possible, via separat-
ing mutually occluding objects. While segmentation uncertainty is
measured based on the cut probability defined in Equation (5), the
uncertainty of reconstruction is defined based on the Poisson-based
reconstruction quality measure proposed in [Wu et al. 2014].

Joint entropy of segmentation and reconstruction. We use
the Shannon entropy [Cover and Thomas 1991] to jointly measure
the uncertainty in both segmentation and reconstruction:

H = H(S,R), (7)

where S and R are the random variables describing the possi-
ble segmentation and reconstruction of the current ROI, respec-
tively. This joint entropy measures the uncertainty, or amount of
information, possessed in the random variables. Since we have
H(S,R) = H(S) + H(R|S), the estimation of the joint entropy
H(S,R) breaks down into two parts: the segmentation entropy,
H(S), and the conditional entropy of reconstruction over segmen-
tation, H(R|S). Next, we explain the estimation of both in detail.

For segmentation, we discretize S with the set of possible partitions
of the patch graph Gp, denoted as S(Gp). Thus, a segmentation
Si ∈ S(Gp) can be expressed as the joint cut probability of all
edges ofGp. Assuming that the cuts of different edges are mutually
independent, we have p(Si) =

∏
e/∈Si pc(e)

∏
e∈Si (1− pc(e)),

where pc(e) is the cut probability defined in (5). Therefore, we can
estimate H(S) as the entropy in partitioning the patch graph:

H(S)=−
∑

Si∈S(Gp)

p(Si)log p(Si)=−2
∑
e∈Ep

pc(e)log pc(e) , HS(Ep).

(8)

To estimate the uncertainty, or data fidelity, in reconstruction, we
first compute a Poisson field for each object in the ROI using its
point cloud and extract the zero-crossing iso-surface. The iso-
surface is uniformly sampled into a set of iso-points, denoted by
Ω. According to [Wu et al. 2014], the local data fidelity at an iso-
point s ∈ Ω can be measured based on the Poisson field gradient:

c(s) = Γ(s) · ns, (9)

where Γ(s) is the gradient of the Poisson field at s with its normal
being ns. Based on this measure, we evaluate the entropy of object-
aware reconstruction using the iso-points of all objects:

H(R) = −
∑
s∈Ω

g(c(s)) log g(c(s)), (10)

where g is the logistic sigmoid function, the same as before.

Self and mutual occlusion are two main factors affecting the scan-
ning visibility, and hence the data completeness for reconstruction.
While self-occlusion depends only on the geometry of an object it-
self and can mostly be resolved by moving the scanner according

(a) (b) (c) (d) occluded 
iso-points 

mutual occlusion 

iso-points 
to be exposed 

iso-points 
cannot be exposed 

push push 

Figure 9: (a): Mutual occlusion (red interface) given the segmen-
tation in Figure 8. (b): Iso-points (orange dots) sampled on the
Poisson iso-surface reconstructed at the occluded regions on every
object (objects are slightly moved apart for better visualization).
(c): The push on the green object can potentially expose the green
iso-points on the object. (d): The push on the red object cannot ex-
pose the red iso-points (with normal along the pushing direction).

to estimated NBVs [Khalfaoui et al. 2013], mutual occlusion, on
the other hand, is neighborhood sensitive and can only be sorted
out by moving the objects apart. Therefore, mutual occlusion is
directly related to the reconstruction uncertainty that could be re-
duced by NBPs. Given a scene where the objects are unknown,
the object-level segmentation is the only information we have for
finding potential mutual occlusion; see Figure 9(a). Thus, it is nat-
ural to estimate the reconstruction entropy conditioned on segmen-
tation, through parameterizing the entropy over the edges of the
object graph Eo(S) corresponding to segmentation S:

H(R|S) = −
∑

e∈Eo(S)

pe(e)
∑
s∈Ω̄(e)

g(c(s)) log g(c(s)) , HR|S(Eo(S)),

(11)
where the existence probability pe of an edge in Eo(S) can be es-
timated as the joint cut probability of the related edges in Ep; see
Figure 8(c). Ω̄(e) is the set of iso-points on the interface between
the two objects connected by e (Figure 9(b)). Since these iso-points
lie in the occluded region, they introduce significant uncertainty in
reconstruction. This conditional entropy measures the uncertainty
of reconstruction that is due to the mutual occlusion between neigh-
boring objects extracted by the segmentation. Note that we do not
consider the occlusion between an object and its supporting plane,
which can not be resolved by horizontal push.

Maximum information gain. An informative push action should
aim to maximally reduce the joint uncertainty in segmentation and
reconstruction, thus gaining the maximum amount of information
for both aspects. Sampling the reconstructed surface of the cur-
rent ROI, we obtain a set of push candidates, P = {〈pu,du〉}u,
each characterized by its position and anti-normal direction. The
information gain of a push u is measured as the Kullback-Leibler
divergence of the joint entropy before and after u is performed:

I(S,R|〈pu,du〉) = H(S,R)−H ′(S,R|〈pu,du〉), (12)

where H ′(S,R|〈pu,du〉) is the posterior entropy given push u,
whose estimation is discussed below. The NBP is selected from the
candidate set as the one which maximizes the information gain:

u∗ = arg max
u

I(S,R|〈pu,du〉). (13)

Posterior entropy. To estimate the posterior entropy caused by a
push action, we need to compute the posterior probability of seg-
mentation and reconstruction after the push. This requires reason-
ing about the objects affected by the push, which are unknown be-
fore the push action is taken. To simplify the estimation, we make
the two key assumptions, based on the current object extraction re-
sult. Given a push u, let us denote Ou as the object containing
the push point pu and Eo(Ou) the set of object graph edges inci-
dent to Op. First, we assume that the cut status of the edges in
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Figure 10: Plot of push information gain for all points (c) scanned
for the input scene (a), based on the segmentation in (b). In (d),
physically infeasible pushing points are filtered out, by zeroing their
information gain values. The NBP can be selected from the remain-
ing non-zero points.

Eo(Ou) will be determined by push u. Thus, the cut uncertainty
of these edges will become zero. Second, it is assumed that the
interface between Ou and its adjacent object Oj will be exposed,
if the averaged normal of the interface, nuj , does not agree with
the push direction (nuj · du < 0.8); see Figure 9(c,d). Denote
by Eo(Ou,du) ⊂ Eo(Ou) the set of object graph edges whose
corresponding interface satisfies the above requirement. Conse-
quently, the reconstruction uncertainty in these occluded regions
can be eliminated by the push, supposing that sufficient scans will
be devoted afterwards (by scan refinement in Section 6.3).

The rationale of these assumptions is that, the current object analy-
sis provides the only, yet informative, cues for reasoning about the
unknown configuration of the scene after push. It is reasonable to
minimize the entropy as much as possible, while assuming the ob-
ject extracting is trustable. This is a standard scheme in interleaving
optimization. Based on the assumptions, the posterior entropy, after
a push u is executed, can be estimated by zeroing the uncertainty
corresponding to the determined edges and the exposed iso-points
due to u. Thus, the information gain, before and after u is per-
formed, is simply the joint entropy over these edges and iso-points:

I(S,R|〈pu,du〉) = HS(Ep(Ou)) +HR|S(Eo(Ou,du)). (14)

See the denotation of HS(·) and HR|S(·) in Equation (8) and (11),
respectively. Figure 10(c) plots the values of information gain for
all points in a table-top scene.

6.2 Physically feasible NBP

The NBP selected based on information gain could be physically
infeasible due to various physical limitations. Therefore, we need
to filter out those infeasible push candidates to select a physically
feasible NBP. Designing a sophisticated method for efficient filter-
ing while handling various physical constraints is out of the scope
of this work. We instead propose a heuristic method to select a
feasible yet effective pushing action.

For efficiency, we down-sample the point cloud and take the sam-
ples as candidate pushing points, among which we first filter out the
physically infeasible ones using a series of heuristic rules. These fil-
tering rules are object-aware, meaning that they are designed with
respect to the object that the push point lies in, based on the current
object extraction result. Figure 10(d) shows the result of pushing
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Figure 11: (a-e): Invalid push candidates (red arrows) or clear-
ance regions (blue boxes) illustrated for the filtering rules. (f):
Clearance region used for detecting neighborhood separation.

point filtering. From the remaining push candidates, we select the
NBP by comparing their information gain.

The set of five filtering rules are meant to quickly reject those push
candidates which either may have a damaging consequence, such
as falling or dropping (R1-R3), or can not be executed by the robot
(R4); see Figure 11 for illustrations. We also prefer a translational
move (R5) of the pushed object to ease the movement detection
(Section 6.3). For each candidate, the five filters are applied in order
based on their computational cost. Figure 19 shows a sequence of
selected NBPs for a virtual scene.

R1 (Lower push): We filter out the pushes whose pushing point
is above the 2/3 height of the object being pushed, to reduce the
possibility of falling.

R2 (Block & boundary): We reject the pushes along whose direc-
tion the object is too close (less than 5cm) to other objects, or the
boundary of its supporting plane (Figure 11(a)).

R3 (Horizontal push): We remove the pushes whose direction
points toward or away from the supporting plane, i.e., |dk · n| >
0.2, with n being the normal of the supporting plane, to ensure hor-
izontal pushing over the supporting plane (11(b)).

R4 (Accessibility): We remove those pushes whose pushing point
can not be accessed by the robot hand. We make a cuboid clearance
region around each pushing point (11(d)). If there is any other ob-
ject (including the supporting plane) intersecting with the clearance
region, the pushing point is marked as inaccessible (11(c)).

R5 (Translational move): To reduce rotational motion of the
pushed object, we avoid the pushes whose direction deflects sig-
nificantly from the vertical line passing through the object’s center
of mass (11(e)): dk ·p < 0.8, where p is the normalized projection
of vector q = co − pk onto the horizontal plane, with co being the
center of mass of the object being pushed.

Once the NBP is selected, we drive the robot to touch the pushing
point and slowly increase the pushing force along the pushing di-
rection. The pushing distance is determined by two factors. First,
along the pushing direction, if there are other objects ahead of the
object being pushed, we should avoid touching those objects. Oth-
erwise, if there are neighboring objects beside it, we push the object
as far as to separate it clear from the neighbors, given enough space
ahead. Such separation can be determined with the help of a clear-
ance region (Figure 11(f)). These cases can be easily detected with
simple geometric test. If none of the above cases applies, we push
for a small distance (e.g., 5cm) which is sufficient for movement
detection (see details below).

Note that our scheme for physically feasible push selection is very
preliminary and many situations are not handled, especially for ob-



jects with very complex shape and scenes with complicated object
clutter. More advanced methods can be employed. Currently, the
rules are designed to be as conservative as possible, trying to avoid
dangerous actions while accounting for feasibility and effective-
ness. Moreover, our selection scheme is prioritized for easily exe-
cuted pushes. For a given push candidate, if any condition can not
be evaluated due to occlusion, we simply filter it out. Therefore, if
an object is severely occluded by its surroundings, the push against
it would be deferred until its neighbors have been pushed.

Movement tracking. During push, we track the movement of the
affected objects using a method combining the algorithms for both
textured [Bersch et al. 2012] and textureless [Hausman et al. 2013]
object tracking. For textured tracking, visual features are extracted
from the RGB images captured by Kinect and tracked by optical
flow. For textureless cases, geometric features are extracted from
depth images and tracked using the particle filtering technique. Fi-
nally, we cluster the tracked trajectories of all the feature points and
then assign the features back to their corresponding objects in the
original configuration before push (cf. [Hausman et al. 2013]). We
have tested that such a combination leads to rather robust tracking
and meets our requirement for segmentation validation.

Based on the tracking result, we can easily identify the three cases
for segmentation verification (see Figure 12): (1) If the tracked fea-
ture points, originally from a single hypothetical object according to
the assignment, move jointly according to their trajectories, the ob-
ject moves independently, implying that it was correctly segmented;
(2) If the feature points from a single hypothetical object are clus-
tered into multiple trajectory clusters, then the hypothetical object
was under-segmented; (3) If the feature points from multiple hy-
pothetical objects move jointly, it indicates the hypothetical objects
together constitute an over-segmentation of a single object. Note
that some objects may fall over unexpectedly due to push where our
system may lose the tracking of falling objects. In such cases, we
simply discard the corresponding segments being tracked and con-
tinue to capture the new configuration with following depth frames.

6.3 Scan refinement and validation incorporation

Object-targeted scan refinement. To improve the data com-
pleteness of the moved objects by push, we compute a serial of
NBVs for the Kinect sensor based on the union of their point clouds,
using the method in [Wu et al. 2014]. To adapt the method for our
setting, we remove inaccessible NBVs, similar to the accessibility
filtering R4, with a clearance region suitable for the Kinect sensor.
The computed NBVs can reduce track-
ing drift in KinectFusion significantly,
since the NBV transformations can
serve as a good initial guess for
the ICP-based camera pose estima-
tion. This leads to high quality object-
targeted scanning with loop closure,
which is difficult for KinectFusion. The inserted figure shows a
comparison of loop closure scanning without (left) and with (right)
NBV-assisted depth fusion. Note that after every push, KinectFu-
sion has to rebuild the TDSF volume for the moved objects. There-
fore, scan refinement can not reuse the previous scans. This is fine
for our problem setting since every object is supposed to be pushed
at most once. We leave the dynamic update of TDSF for the future.

Incorporating validation results. This involves the incorpora-
tion of the information on both segmentation and reconstruction
gained from validation. The new data from scan refinement is fused
into the global volume by KinectFusion. For segmentation, based
on the movement tracking results, we support both a local update

correct segmentation under-segmentation over-segmentation 

(a) (b) (c)

Figure 12: Three cases in segmentation validation by push. In each
case, we show the case identification by movement tracking (left),
the hypothetical segmentation (top-right), and the positive/negative
example edges (red/blue) offered by the validation (bottom-right).

to the patch graph and a global update of the graph-cut cost. For a
correctly segmented object, we simply merge its patches into a sin-
gle one and update the patch graph by contracting the correspond-
ing nodes. For wrongly segmented objects, since scan refinement
will update their surface reconstruction afterwards, we choose to
redo the patch-level segmentation for the moved objects after scan
refinement, and then plug the new patches into the patch graph, re-
placing those corresponding to the original object hypotheses.

A push action, verifying the object-level segmentation, would con-
sequently determine the cut of the related patch graph edges, which
provides both positive and negative cut examples for online train-
ing of the graph-cut cost. For example, a correctly segmented object
will contribute positive cut examples, corresponding to its outgoing
patch graph edges, as well as negative ones with its internal edges.
Figure 12 illustrates the three cases of segmentation verification and
the corresponding training examples extracted.

Termination conditions. The iterative process of analyze-and-
validate terminates when the information gain of the next best push
is below a pre-defined threshold. However, our method can not
guarantee a convergence after finite iterations. This is because our
proactive validation by physical push does not guarantee to reduce
the uncertainty of both segmentation and reconstruction. For exam-
ple, a push may sometimes introduce new object clutter, for some
complicated object configurations (see the failure cases summa-
rized in Section 7). The scan refinement, on the other hand, can
always reduce the uncertainty in reconstruction with improved data
completeness. Therefore, our termination conditions are three-
fold: (1) The maximum information gain of the NBP is less than 5%
of the initial joint entropy: I(S,R|〈pu∗ ,du∗〉) < 0.05H0(S,R),
(2) There is no more feasible push that can be executed and (3) The
maximum number (30) of pushes per ROI has been reached.

7 Results and evaluation

We test our system in scanning several real-life scenes. To quantita-
tively evaluate our method, we build several test scenes with ground
truth data for both segmentation and reconstruction, and propose a
quality measure for object-aware reconstruction. We also evaluate
the performance of the various algorithmic components in object
analysis and proactive validation. Finally, we compare our object-
aware physical validation with two alternative methods.

Experimental setting. Our system runs with a PR2 robot. PR2
has a built-in computer running ROS system which provides tools
for realizing standard robot behavior such as navigation and hand
actions. A Microsoft Kinect is mounted on its left hand, leaving its
right hand (optionally holding a rod) for physical push. The depth
fusion and analysis algorithms run on a laptop PC with an Intel I7-
3740QM CPU (dual core, 2.7GHz), 16GB RAM, and an Nvidia
Quadro K2000M graphics card. The laptop is carried by PR2. The
Kinect sensor is powered by the carried-on battery of PR2. Thus,



Scene #ROI #Obj. #Push Recall Precision t (min.)
Office 9 ~80 40 79% 90% 43
Meeting 1 28 12 66% 95% 16
Kitchen 2 24 13 80% 92% 29
Lab 7 ~60 23 68% 88% 51
Cafe 6 ~140 71 63% 91% 87
Apart. 9 ~120 78 50% 83% 96

Table 1: Statistics and timings over six real scenes. For each scene,
we give the number of ROIs (#ROI), the number of movable objects
(#Obj.) in the real scene, the total number of pushes/iterations re-
quired (#Push). We also report recall and precision rates of object
extraction, as well as the total time cost for scanning and recon-
structing the whole scene.

the whole system is self-contained and cableless, making it flexible
for moving. Note that we do not use the pre-installed Kinect or
camera of PR2. See the picture of our system in Figure 1(a).

Parameters and complexity. Most of the parameters have been
given along with the algorithms. Here we provide the settings for
the remaining ones: patch size (diameter): ~6cm; Poisson iso-point
sampling density (point spacing): ~2cm; point sampling rate (spac-
ing) for NBP selection: ~2cm; number of scan refinement NBVs
per iteration: 4. We use same parameter settings for all our exper-
iments. We give the complexity of two key algorithmic compo-
nents. The complexity is O(n4) for object analysis, with n being
the number of patches, and O(pmk) for entropy estimation, where
p is the number of sample points for NBP selection, m the aver-
age number of neighbors per object, and k the average number of
iso-points in the interface between two adjacent objects.

7.1 Results on real-life indoor scenes

We run our system to scan and reconstruct six real-life indoor
scenes: an office, a meeting room, a kitchen, a computer lab, a cafe,
as well as an apartment with three rooms. These real-life scenes
contain a variety of object clutters so that a holistic scanning and
reconstruction without object delineation can not express the rich
details of the content and structure. Figures 1 and 20 demonstrate
the object-aware reconstruction results for the six scenes. See the
accompanying video for our system at work.

Table 1 reports timing and some related statistics of our system run-
ning over different scenes. For each scene, we report the number
of pushes required, the recall/precision rate of object extraction, as

Figure 13: Push vectors (direction and displacement) of all pushed
objects on the table (a subscene of the office scene in Figure 1) are
depicted by arrows. This figure shows the final configuration of the
objects. Color-coding of objects indicates pushing order.

Subscene #Point #Patch #Obj. to te tp
S4 11K 101 9 1.9 5.2 0.3
Fig. 3 66K 376 11 2.1 7.8 0.3
Fig. 10 98K 572 14 3.5 9.3 0.6

Table 2: Running time (in sec.) of the various components of our
algorithm over three subscenes. For each subscene, we report the
number of points, segmented patches and extracted objects, as well
as the average computation time of object extraction (to), entropy
computation (te) and push selection (tp), per iteration.

well as the total time required to finish reconstructing the entire
scene. Table 2 lists the computation time for the key components of
our algorithm over three different subscenes (ROIs). Based on the
experiments, we make the following conclusions:

• Efficiency bottleneck: The major portion of time was spent
on robot actions, including navigation, pushing and scanning,
while the various computational steps are relatively efficient.
90% of the time on entropy estimation was due to the compu-
tation of Poisson iso-points.

• Recall/precision rate of object extraction: For the six scenes,
our method correctly extracts about 50%~80% (recall rate)
of the visible and movable objects in the scenes, depending
on spatial accessibility and object clutteredness, etc. The per-
centages of correctly extracted objects over all extracted ones
range from 83%~95% (precision rate). The correctness of the
extracted objects is assessed by humans after reconstruction.

• Push efficiency: Over all scenes, our system extracts 1.4 ob-
jects per push on average. There are two cases when an object
will not be pushed: (1) It is unpushable and (2) It is isolated
(no mutual occlusion) with low segmentation uncertainty so
that the information gain is too small (see termination condi-
tion (1)). Figure 13 shows the pushing directions (arrows)
for all pushed objects over the office table in Figure 1, where
the color-coding of objects indicates the order of pushes.

• Termination: Among all 34 ROIs the robot has processed, 14
was terminated by the condition (1), and the rest by (2); see
the conditions in Section 6.3. The majority terminating sta-
tus is no push executable (condition (2)), which is mainly due
to our conservative push selection. For the scenes we have
tested, we did not encounter a case where the maximum num-
ber of pushes per ROI has to be executed (condition (3)).

7.2 Quantitative evaluation and comparison

Test scenes with pseudo-ground truth. To quantitatively eval-
uate our system, we physically construct several test scenes and
build for each a ground truth reconstruction with object-level seg-
mentation and per-object geometry fidelity. To do so, we first re-
construct a ground-truth 3D model for each of the objects used in
building the test scenes, via detailed scanning. For each test scene,
we create a pseudo-ground truth via manually placing the object
models in 3D, to reproduce their spatial layout in the real scene.
Since our reconstruction is invasive, such ground truth should be
built for the final scene configuration after running the test.

Using a set of nine objects with the ground-truth model, we con-
struct six table-top scenes (S1~S6) with an increasing degree of ob-
ject clutter (Figure 15). Clutteredness is measured by object com-
pactness, i.e., the ratio of the sum of bounding box volume for all
objects over that of the whole set of objects. For each scene, after
running a test over it, we put markers on the table, aligning to the
markers on the bottom of the objects, to record object placement
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Figure 14: Quality measure of object-aware reconstruction. (a):
The reconstruction is imperfect; the red points on the ground truth
can not find support from the reconstructed surface due to severe
geometric deviation. (b): The reconstructed surface represents an
under-segmentation of the ground truth; many ground truth points
are not covered by the reconstructed surface. (c): The ground truth
model is over-segmented, resulting in two reconstructed surfaces.
In both reconstructions, the Poisson iso-surface will be estimated
to fill the “missing regions” inside the ground truth. The iso-points
on such regions are not supported by the ground truth.

(position and rotation). We then remove the objects and scan the
table-top along with the markers. Finally, over the reconstructed
table-top, we manually place the ground-truth 3D models based on
their respective markers. See Figure 18(a) for the test scene S4, as
well as the corresponding ground truth built for its initial configura-
tion. All test scenes and associated ground-truth data can be found
in the supplemental material.

A measure for object-aware reconstruction. To evaluate the
quality of object-aware reconstruction against ground truth, we pro-
pose a unified measure for both object extraction and object-wise
reconstruction, via computing the mutual data support between the
reconstructed and ground-truth scene. Suppose T = {(pj ,nj)}
is the set of surface points (with normal) of the ground-truth scene
and S = {(pi,ni)} that of Poisson iso-points of the reconstructed
scene, we measure the mutual support between the two point sets:

Π(S, T ) =

∑
(pi,ni)∈T π(pi,ni, S)

|T | +

∑
(pj ,nj)∈S π(pj ,nj , T )

|S| ,

(15)
where π(pi,ni, S) measures how well a point pi in T is supported
by the points in S, and vice versa. The data support is defined with
a normalized bilateral weighted sum:

π(pi,ni, S) =

 ∑
(qk,nk)∈ΩTi

e
− ‖pi−qk‖

2

(σ/2)2 e
− ‖1−ni·nk‖

2

(θ/2)2

 /|ΩTi |,

where ΩTi ⊂ T is point pi’s K-nearest neighbor points on T (K =
100). σ = 0.5cm is the support radius for distance and θ = 0.2 for
normal difference. ‖ · ‖ denotes `2-norm. By definition, a higher
value of π(pi,ni, S) indicates pi in T receives more support from
the points in S which are close to pi in terms of both Euclidean
distance and normal direction. π(pj ,nj , T ) is defined similarly.

A notable feature of such a mutual support measure is that it ac-
counts for not only reconstruction quality, by penalizing missing
data in reconstruction with respect to the ground truth (the first term
in Equation (15)), but also object extraction accuracy, by penalizing
both over- (the second term) and under-segmentation (the first one).
See Figure 14 for a 2D illustrative explanation.

Performance of object-aware reconstruction. With the quanti-
tative measure, we evaluate the quality of object-aware reconstruc-
tion of our system. We run our system (with both analysis and val-
idation) on the test scenes S1~S6 and output the final point clouds,
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Figure 15: Left: Comparison of reconstruction quality between our
method and a baseline method adapted from [Zhang et al. 2014],
over the six test scenes with varying clutteredness (indicated by the
yellow curve). Right: Results by turning off each of the two valida-
tions, in comparison with our full method.

with the extracted objects represented as different segments. Fig-
ure 15(left) plots the quality measure for the point clouds w.r.t. their
corresponding ground truth data. For comparison, we also plot the
reconstruction results of a baseline method adapted from [Zhang
et al. 2014], where the supporting planes are first identified and ob-
jects are detected as the isolated non-planar regions over the planes.
For this method, we run autoscanning over the non-planar objects to
acquire as complete as possible point cloud data, but do not further
segment them. As shown in the plots, when objects are not clut-
tered, both methods obtain reasonably good reconstruction qual-
ity. When object clutter becomes severe, however, the data qual-
ity by the baseline method decreases significantly due to occlusion
and mis-segmentation. In contrast, our method produces good per-
object reconstruction even for highly cluttered scenes.

Performance of object analysis without learning. To test the
robustness of our voting-based graph-cut segmentation algorithm,
we run a method with the fixed cut cost in Equation 6, on scenes
with varying data completeness and object clutteredness. For test
scene S4, we run KinectFusion with NBVs [Wu et al. 2014] esti-
mated for the entire scene and output six point clouds with increas-
ing number of NBVs (1~6). Then for each scene of S1~S6, we scan
it with 6 NBVs, generating another six point clouds. For each point
cloud, we estimate the ground truth segmentation through transfer-
ring the object labels from the corresponding ground truth scene to
that point cloud, using closest point matching. Figure 16 plots the
Rand Index [Chen et al. 2013b] of our segmentation over the differ-
ent data configurations. As a comparison, we also plot the results
by RANSAC primitive fitting for point cloud segmentation [Schn-
abel et al. 2007]. Our segmentation method is robust against data
incompleteness and object clutter, making it particularly effective
for generating object hypotheses in our problem setting.

Performance of object analysis with online learning. The
performance of our segmentation method can be significantly en-
hanced by online learning. Figure 17(top) plots the segmentation
accuracy over the scene in Figure 10 with an increasing number of
pushes. As the proactive validation progresses, our system gains
training examples from the pushes in a sequential manner, to incre-
mentally improve the segmentation model by updating the cut cost
therein. The plots show that our online learning with MKL not only
improves the segmentation over our method without learning, but
also supersedes SVM-based online learning. In Figure 17(bottom),
we show how the learned segmentation model can benefit the sub-
sequent analysis of a similar subscene (another cubicle in the same
lab), where our method achieves higher accuracy and faster conver-
gence. Such accurate segmentation greatly improves the efficiency
in scanning a large scene containing many objects, especially repli-
cated ones. We have also tested the scanning of the computer lab
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Figure 16: Comparison of segmentation accuracy (Rand Index)
between our method and RANSAC based primitive fitting [Schn-
abel et al. 2007] with increasing object clutteredness (left, with test
scenes S1~S6) and data completeness (right, on test scene S4).

and the apartment scenes, for with and without online segmenta-
tion learning. With online learning, our system saves 30% and 20%
pushes for the two scenes, respectively, over without learning.

Effect of validations. To assess the effect of physical push and
object-targeted scan refinement, we evaluate our method with each
one of them turned off. Using the test scenes S1~S6, we evaluate
the quality of object-aware reconstruction for our method without
physical push, where scanning is driven by the NBVs estimated for
the entire scene. This basically boils down to an extension of the
autoscanning method by Wu et al. [2014], from object- to scene-
oriented. Over the same set of scenes, we also evaluate our method
without objected-targeted scan refinement. Figure 15(right) plots
the quality measure for the two methods. The autoscanning method
in [Wu et al. 2014] can not achieve quality reconstruction for clut-
tered scenes due to the severe mutual occlusions between objects,
which needs to be addressed by physical interaction.

To demonstrate the actual effect of the NBPs selected in each itera-
tion step, we plot in the inserted figure the change of joint entropy
and object-aware reconstruction quality over the number of itera-
tions executed, over three scenes: test scene S5 and the two scenes
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from Figure 3 and Figure 10, re-

spectively. The initial point (0-
th iteration) is marked with a cir-
cle. From the plots, it is clear
that the selected NBPs are effec-
tive in reducing the joint entropy,
as well as in improving the recon-
struction quality. The curves also
confirm that our object-aware re-
construction quality measure is consistent with our measure of joint
uncertainty of segmentation and reconstruction.

Comparison of NBP selection. We compare our push selection
with two alternative methods for textured [Bersch et al. 2012] and
textureless [Hausman et al. 2013] objects, respectively. In these
methods, the pushes are directed to corner points detected from a
top-view of the scene. The goal is to discern independent objects
rather than to separate them out of clutter for better scanning. Both
methods stop when either a prescribed number of objects are de-
tected or the maximum number of pushes is reached. Over test
scene S4, we run each method for 10 pushes and measure the qual-
ity of object-aware reconstruction after each push. To conduct a
fair comparison against their methods, we run scan refinement af-
ter each push, targeted at the pushed object, with the same number
of NBVs as we use. The plots in Figure 18 demonstrate that our
method is more effective in achieving object-aware reconstruction,
since our physical interaction is designed not only for segmenting
objects, but also for exposing occluded regions to assist scanning.
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Figure 17: Top: We plot the segmentation accuracy over a scene
with MKL-based online learning of the segmentation model from
proactive validation. As a comparison, the accuracy by SVM-based
online learning and the non-learning method are also plotted. Bot-
tom: The trained models (both by MKL and SVM) are then applied
to segment another similar scene, achieving good accuracy even
from the beginning, with fast convergence.

Simulation on virtual scenes. As a complementary approach to
quantitative evaluation, we have implemented a simulation of our
system with virtual scanning and pushing, and tested it over 3D
scene models. The advantage of virtual scanning is that the accurate
ground truth is available. However, a full-fledged simulation is ex-
tremely difficult especially for physical pushing. In our simulation,
push is simply treated as translation over a supporting plane without
considering rigid body dynamics. Figure 19 shows the progressive
reconstructions produced by our simulated system in all iteration
steps. The final result demonstrates good quality object-aware re-
construction, in contrast to the initial reconstruction.

7.3 Failure cases and limitations

Failure cases. The failure cases of our system stem mainly from
the proactive validation. We summarize a few typical cases below:

• Object stack: If two vertically stacked objects are recognized
as a single object due to under-segmentation, our method may
fail to separate them, since they will move together if the
pushing point is selected on the bottom object.

• Interlocking object placement: Some highly complicated ob-
ject configurations, such as interlocking objects, may require
more sophisticated scheduling of pushes, or even extra robot
actions such as grasping, to resolve.

• Non-rigid objects: Due to the rigid object assumption, our
method can not correctly extract non-rigid or articulated ob-
jects, such as a piece of cloth placed on a table.

Limitations. The main limitations of our method include:

• Extraction rate: Our current system extracts only a limited
portion of the large number of objects in a real-life scene. This
is due to many factors, such as the accessibility of room space,
flexibility of the robot, the capability of pushing action, and
the scanning resolution of Kinect, among others.

• Under-segmentation penalization: Unlike over-segmentation,
which is penalized by entropy of both segmentation (Equation
(8)) and reconstruction (Equation (11)), under-segmentation
cannot be penalized by the latter since there is no segmenta-
tion interface. In an extreme case, when two identical cubes
are tightly huddled and perfectly aligned so that they can eas-
ily be treated as a single object, the uncertainty of this under-
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Figure 18: The plots compare object-aware reconstruction be-
tween our method and those with the pushing scheme in [Haus-
man et al. 2013] and [Bersch et al. 2012], respectively, over test
scene S4. Their methods do not aim at object-wise reconstruction,
so their reconstruction quality does not increase as prominently as
ours with more pushes exerted. (a): Test scene S4 with ground truth
data. (b) and (c): The reconstruction results of the final object con-
figurations for our method and [Hausman et al. 2013], respectively.
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Figure 19: Simulation of our system with virtual scanning and
pushing. Starting from an initial reconstruction (top-left), the sim-
ulation iteratively performs object analysis and validation. Object
to be validated is marked with pushing direction (orange arrow).
The numbers are the quality values of object-aware reconstruction
at each step, measured w.r.t. the respective ground truth scenes.

segmentation can be very low (Equation (8) also fails). In this
case, our method would fail to identify and correct this case,
unless some random pushes are issued intermittently.

• Vertical support: Our physical validation supports only hori-
zontal push which cannot deal with vertical support, such as
objects hanging on the wall (see Figure 20). Our segmen-
tation method can extract some of these objects, over which
scan refinement can be still performed. Currently, there is no
push validation for these objects, since they not are pushable
according to our NBP selection method.

• Robot platform: The efficiency bottleneck of our system is
mainly on the moving and acting speed of the robot. Thus, it
takes quite a long time for our system to scan a large scene.
Besides that, the current system is quite costly due to the PR2
robot. Nevertheless, our core algorithms are general and can
be easily extended to other robot platforms.

8 Conclusion and future work

We develop a framework for autonomous scanning and reconstruc-
tion of indoor scenes, through closing the loop of reconstruction
and analysis. The idea is that the scanning, guided by the on-the-
fly analysis, would progressively improve data fidelity, to benefit
reconstruction and in turn, further analysis. Specifically, we em-
ploy a robot to perform both data acquisition and analysis, allowing
the analysis to provide immediate feedback to the acquisition pro-
cess and to obtain data on demand, while the scene is being recon-
structed. Moreover, we leverage the mobility of the robot to phys-
ically interact with the scene, to make the scene more discernible,
thus improving the condition for scanning and reconstruction.

In realizing such a framework, we propose an analyze-and-validate
approach covering two major components: object analysis with on-
line learning and entropy-guided proactive validation. They are
built on top of a flexible scene representation, i.e., the interleav-
ing patch and object graph, making the analysis particularly robust
and the validation results easily incorporated. The output is object-
aware scene reconstruction, including both object-level segmenta-
tion and object-wise quality reconstruction.

Future work. Our coupled reconstruction and analysis frame-
work has exemplified a general closed loop approach that would
facilitate active object analysis for scene reconstruction. With the
ever increasing popularity of robots and their maneuvering capa-
bility, we plan to resort to more aggressive probing and thus more
active analysis, to handle scenes with significant clutter, where in-
dividual objects are still indiscernible by simple prodding. We also
plan to harness 3D shape databases and data-driven shape analysis
to endow the robot with higher level intelligence, with structural
or semantic analysis, to support more powerful autonomous scan-
ning and reconstruction. As a natural follow-up, we are interested
in having multiple robots working together in a collaborative man-
ner, for indoor scene reconstruction. Another interesting direction
is to exploit flying robots, which are more agile, in the exploration
and reconstruction of large scale scenes. All these directions pose
challenging computer graphics problems for future research.
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