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Figure 1: Given a partial 3D scan and a 2D photograph (left), we lift 2D shape structures into 3D yielding a faithful textured
mesh reconstruction (right).

Abstract

We present an algorithm for shape reconstruction from incomplete 3D scans by fusing together two acquisition
modes: 2D photographs and 3D scans. The two modes exhibit complementary characteristics: scans have depth
information, but are often sparse and incomplete; photographs, on the other hand, are dense and have high
resolution, but lack important depth information. In this work we fuse the two modes, taking advantage of their
complementary information, to enhance 3D shape reconstruction from an incomplete scan with a 2D photograph.
We compute geometrical and topological shape properties in 2D photographs and use them to reconstruct a
shape from an incomplete 3D scan in a principled manner. Our key observation is that shape properties such as
boundaries, smooth patches and local connectivity, can be inferred with high confidence from 2D photographs.
Thus, we register the 3D scan with the 2D photograph and use scanned points as 3D depth cues for lifting 2D shape
structures into 3D. Our contribution is an algorithm which significantly regularizes and enhances the problem of
3D reconstruction from partial scans by lifting 2D shape structures into 3D. We evaluate our algorithm on various
shapes which are loosely scanned and photographed from different views, and compare them with state-of-the-art
reconstruction methods.

Categories and Subject Descriptors (according to ACM CCS): 1.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Geometric algorithms, languages, and systems

1. Introduction struction techniques provide effective solutions for comput-

ing the shape from a scan, it remains an open question how
Reconstruction from raw 3D scans remains a challenging to recover the shape faithfully from only a partial scan of the
problem in computer graphics. While state-of-the-art recon- object. Nowadays, the prevalence of commercial scanners
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Figure 2: Multi-modal fusion of 3D scans and 2D photographs is challenging. Rightmost zoom, 3D points projecting onto
the 2D photograph yield ambiguities: seat points projecting onto armrest, leg points projecting onto seat, and points missing
between seat and back. Left zooms, perspective and occlusions yield a disconnected seat patches and distorted legs.

and depth cameras allow end-users to capture 3D objects in
matters of seconds in a non-professional fashion. This trend
generates increasing amounts of 3D scans which are non-
perfect and partial. We observe a growing demand for algo-
rithms that can handle such partial data and reconstruct the
actual 3D shape effectively.

A core problem in 3D digital object acquisition is the
coverage problem: due to various occlusions and material
properties, significant portions of the object are either under-
sampled or completely missing [KMHG13]. If scanned data
is incomplete, the reconstruction of the 3D shape near miss-
ing regions is ill posed as an infinite number of valid surfaces
may pass there. Smoothness and watertight constraints usu-
ally regularize the problem. However, such constraints are
local and low-level, and unable to guide the reconstruction
process towards the expected results. High-level constraints,
such as symmetry, may provide efficient 3D scan enhance-
ment and completion tools [LA11]. When data is highly in-
complete, with large missing parts, it is impossible to infer
a faithful 3D completion and reconstruction even with sym-
metrization (Figure 1 left).

Unlike 3D scans, 2D photographs are easy to acquire and
usually have high resolution, thus providing important com-
plementary information to 3D scans. These characteristics
naturally lend themselves to detection of local shape proper-
ties and suggest the use of a multi-modal acquisition and re-
construction framework. This approach has been investigat-
ed lately with reference to urban reconstruction and model-
ing algorithms [SSS*, KNC*,LZS*11]. Nevertheless, multi-
modal fusion is challenging due to the large imperfections in
each of the individual modes as well as ambiguities in their
fusion together (see Figure 2).

In recent years, the emerging RGB-D sensors (e.g. Kinec-
t) allows simultaneous capturing of depth and color infor-
mation. In this case, depth and color modalities are captured
from nearly the same view point and are inherently regis-

tered together. Such information is not suitable for multi-
modal fusion as both modalities capture the same geome-
try, missing essential complementary traits. From the com-
pletion and reconstruction perspective, the complementary
traits of 3D scanners and 2D photographs are significan-
t when the two sources are obtained from different views.

In our method, we leverage the 3D reconstruction of point
clouds with high-level structures from 2D photographs. We
utilize smooth color fragments, boundaries and connectivity
information in the 2D photograph, and carefully fuse them
with the 3D scan data for reconstruction. In Figure 1 an in-
complete scanned chair is enhanced with a 2D photograph,
resulting in a faithful 3D reconstruction.

Our input consists of an incomplete 3D scan with large
missing parts that provides only a partial coverage of the
shape, and an additional 2D photograph capturing the shape
from a different view. To demonstrate our technique, it is
sufficient to fuse between the 3D scan and a single 2D pho-
tograph. Nevertheless an extension to multiple photographs
would probably further improve the results.

In a preprocessing step, we segment both 3D point-set
and 2D photograph into smooth patches and smooth color
fragments respectively. Usually meaningful segmentation is
challenging using automatic tools, thus we allow user in-
teraction to refine the segmentation. In the photograph, we
detect patch boundaries and compute connectivity informa-
tion across fragments. We register the point-set with the pho-
tograph and fuse depth information together with 2D frag-
ments and boundaries. Utilizing this information, we lift the
2D fragments and boundaries into 3D using depth cues con-
straints.

Our paper makes the following novel contributions:

e a fusion method between a 3D scan and an additional
2D photograph which enhances sparse depth information
with dense 2D fragments and boundaries.
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e a scan to photo overlay analysis method which resolves
ambiguities in the overlay due to perspective and occlu-
sions.

e a constrained 2D to 3D lifting technique which maps 2D
smooth fragments and boundaries onto the 3D scan.

2. Related Work

Given the large volume of work on shape reconstruction, we
mostly focus on works that are related to our approach, in
particular we discuss reconstruction with respect to prior-
based, interactive and 2D-3D multi-modal techniques.

Prior-based surface reconstruction The problem of re-
constructing a surface from scans has been researched exten-
sively for more than two decades [HDD*, LPC*, BLN*13].
Many different techniques have been developed assuming
a good local sampling density [KBH06, LCOLTE, OGGO09].
Our method infers high-level structures from a 2D image to
control the global reconstruction process.

High-level priors have been utilized by Pauly et
al. [PMG™035] to reconstruct a 3D model using a database of
3D shapes that complete missing parts. Gal et al. [GSH*07]
fit a small set of basic shapes at multiple scales via partial
matching which augment the scanned data with noise-free
samples, and sharp features. Schnabel et al. [SDKO09] fill
holes in the input by fitting basic primitives to missing da-
ta. More recently, the analysis of structural and global rela-
tionships in shapes has shown effective for regularization of
surface reconstruction [LWC*11,LA13].

Interactive surface reconstruction Automatic recon-
struction techniques may fail to faithfully reconstruct the 3D
shape if scanned data consists of large missing parts. Inter-
active methods have recently showed the effective power of
incorporating user assistance in the reconstruction loop.

Sharf et al. [SLS™*] allow minimal user interaction to con-
trol a watertight reconstruction. Law and Aliaga [LA11] re-
construct a 3D shape from a single image by letting the user
to define symmetry classes. In Nan et al. [NSZ*], the user
loosely places architectural blocks in 3D space, and the al-
gorithm snaps them to their position to reconstruct an urban
scene. Similarly, Arikan et al. [ASF*13] allow interactive re-
finement of an architectural reconstruction process using 2D
modification strokes. Habbecke and Kobbelt [HK09] present
an interactive image-based modeling tool that allows the us-
er to guide the reconstruction of a 3D model from stereo
images.

2D-3D multi-modal fusion A majority of algorithms that
fuse 2D and 3D modes are aimed at architectural model-
ing and reconstruction. The Facade system by Debevec et
al. [DTM] generates 3D architectural models by manually
building geometry proxies and linking related edges in sev-
eral images.

In the realm of fusion based modeling techniques, Sin-
ha et al. [SSS*] reconstruct piecewise planar 3D structures
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by allowing the user to sketch 2D lines over photograph-
s which are then mapped into 3D. Chen et al. [CKX*08]
identify junctions, edges, and faces in free-hand 2D sketch-
es for reconstructing 2.5D geometry. Xiao et al. [XFZ"] as-
sume planar rectangular facades and compute details as their
2.5D elevations. Jiang et al. [JTC] reconstruct 3D architec-
tural objects from a single image based on reflective symme-
try. Recently, [ZYFY] propose a data-driven approach for
flower petal modeling from partially scanned data. With pri-
ors from Botany, it fits a parametric model to the incomplete
point cloud. At the same time when this work was underway,
few methods were proposed to learn depth information from
a set of 3D models [SHM™] or a set of images with known
depth information [LSH14].

To reconstruct high-resolution range data, Diebel and
Thrun [DTO05] combine low-resolution range images and
photos using Markov random fields. Stamos et al. [SLC*08]
register 2D images with 3D range scans by matching linear
features. Images are augmented with 3D information in the
work of DeepPhoto [KNC*]. Recently, Li et al. [LZS*11]
fused 2D photographs and 3D scans, for enhanced depth-
layer decomposition, repetition detection and denoising.
Similarly, Shen et al. [SFCH] utilize depth and RGB infor-
mation for object reconstruction, by inferring structure infor-
mation from the 2D image. Following in this path, we fuse
arbitrary 2D photos and 3D scans, to infer smooth geometry,
edges, and topological structures.

3. Overview

Our input consists of a sparse 3D point-set sampling of a
physical object. We are given in addition a 2D photograph
acquired from a different view.

In a preprocessing step, we segment the 3D point cloud
into patches of smoothly varying normals, and segment the
2D photograph into smooth color fragments. The dense na-
ture of 2D photographs allows us to efficiently extract 2D
contours and build the fragments connectivity graph (see
Figure 3 left). Typically, meaningful segmentation is chal-
lenging using automatic tools. Therefore, we allow user
to iteratively refine the segmentation by strokes connect-
ing/disconnecting nodes in a graph built on the initial patch-
es.

We project the 3D point cloud onto 2D by trying to match
the camera view of the 2D photograph. We register the pro-
jected point set and photograph using non-linear Gaussian
mixture model matching that is robust to missing data.

We analyze the overlaid points and photograph and ex-
ploit mutual information to resolve ambiguities due to oc-
clusions, missing parts, and perspective projection. Thus, we
refine the segmentations and the connectivity graph (see Fig-
ure 3 middle). This provides with geometrical and topologi-
cal properties which will constrain the 2D-3D lifting proce-
dure.
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Figure 3: Left-to-right: Given an incomplete partial 3D scan (top) and a 2D photo of a chair (bottom), we initially segment them
into smooth patches. In 2D we also extract boundaries and compute an adjacency graph. We compute a non-rigid registration
between the projected 3D scan and 2D photograph yielding an overlay (middle). In mid-right, the transparent overlay are the
3D points and the colored patches are the lifted 2D segments. We lift 2D structures into 3D using a constrained transformation
resulting in a faithful reconstruction (right). Texture is also transferred from the non-rigid registration.

We define the 2D-3D lifting as a transform of fragments
and boundaries from the 2D plane into 3D. This transforma-
tion is obviously underconstrained and therefore, we regular-
ize it using 3D points as depth constraints and 2D connec-
tivity as topological constraints. Our assumption is that the
object’s underling geometry is piecewise smooth. Thus, 3D
points projecting onto 2D boundaries and fragments serve
as depth constraints in the piecewise smooth transformation.
We triangulate the 2D fragments and use a Thin Plate Spline
deformation to lift the planar fragment into 3D. Additional-
ly, our connectivity graph forces adjacent 2D fragments to
stay connected in 3D. The result is a reconstruction of the
3D scan with consistent polygonal boundary edges and tri-
angulated interiors.

4. Technical Details
4.1. Preprocessing

Given a raw 3D point cloud, denote P as the uniformly
down-sampled input, and {p;(x,y,z),n;(dx,dy,0z)} € P as
the 3D point’s position and orientation. / denotes the 2D
photograph, where a pixel {g;(u,v),ci(r,g,b)} € I is defined
by its position and color.

We initially oversegment the scan P into a set of piece-
wise smooth patches S = |J;(sx) with smooth varying nor-
mals by propagating k-closest neighbors for each point. We
use a normal variation threshold of n;-n; > 0.8 and k =7
under a distance threshold d < lem. To extract smooth col-
or patches with consistent polygonal boundaries in the 2D
photograph, we apply the watershed algorithm using a non-
parametric marker-based segmentation [Mey92]. We use a
stroke thickness of 6 pixels in all our examples.

\/
1¢ém
Figure 4: User draws strokes (left) which further merge (by

green strokes) or split (by red strokes) 3D patches resulting
in a meaningful segmentation (right).

User Interaction. Since automatic segmentation cannot
guarantee separation into high-level meaningful parts, we al-
low manual user refinement in our preprocessing. In 2D, we
utilize Grabcut [RKB], where the user draws strokes over the
2D patches to further split and merge them. In 3D, the user
iteratively refines the segmentation by drawing two types of
strokes over the 3D point cloud that merge and split the 3D
patches (see Figure 4). For more detail about the segmenta-
tion of a 3D point cloud, please refer to the accompanying
video.

4.2. 2D-3D registration

We register the 3D points and the 2D photograph by search-
ing for the 2D perspective projection which best aligns the
two data sets. This involves searching for the perspective
transformation that corresponds to the photograph’s camer-
a view. Finding the exact solution to this problem is diffi-
cult since the search space is highly dimensional, and data
is incomplete. Nevertheless, we only require an approximate
registration between the two data sets.

To reduce the search space, we allow the user to coarsely
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Figure 5: 2D-3D registration. 2D edges (blue) and 3D
boundary points (red) are registered (mid), resulting in an
overlay of the projected scan onto the image (right).

pre-align the 3D scan and 2D image simply by positioning
them close together. Note the alignment is not necessary to
be accurate as we refine the registration by a following step.
We refine the coarse alignment between the projected point
set and photograph by performing a non-linear registration
of mixture of Gaussians. We represent both data sets with
GMMs and compute their non-linear registration by finding
the alignment between the two mixtures [JV11]. The L, dis-
tance between registered GMMs measures their registration
quality. This approach handles our problem well as it is ro-
bust to large missing parts and non-linear deformations in
the data (see Figure 5).

To speed up the search process, we reduce the data size
by considering only object boundaries in the 2D photo-
graph and 3D scan. Boundaries in the 3D scan are computed
by analyzing the covariance matrix of the neighborhood of
each point. Specifically, given a point p; and its k neighbors
N(p;), the covariance matrix of N(p;) is formed:

v="Y A{(pj—o)@(pj—oi}
PiEN(pi)

where ® denotes the outer product of two vectors. AY < A} <
7»,2 denote the eigenvalues of CV, then p; is regarded as a
boundary point if A} /A? < u [GWMO1]. k and u are not sen-
sitive to noise since we uniformly down-sampled the scan.
In our implementation, we choose k = 30 and u = 0.4.

Note that the computed perspective projection is not accu-
rate nor it is required to be. We define our lifting method in
a robust manner to account for the approximate registration
as well as noise, outliers, and missing regions.

4.3. 2D-3D overlay analysis

We analyze the overlay between the 2D segmented photo-
graph and the projected 3D point cloud. The goal of this step
is to resolve ambiguities and inconsistencies in the mutual
2D and 3D information and compute a mapping between 2D
and 3D patches.

We observe the following inconsistencies and resolve

(© 2014 The Author(s)
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them: a 2D patch can be distorted or partial due to perspec-
tive projection, a 3D patch can project incorrectly due to
occlusions and 3D points may be completely missing (see
Figure 2). Using our points-to-photograph overlay, we re-
solve these inconsistencies through analysis of mutual infor-
mation, and computing a consistent correspondence between
depth and photograph patches.

Patch Voting. Our goal is having consistent depth values
projecting per 2D patch. Since color and normal variation
typically correlate, we aim at finding a surjective mapping
from 2D to 3D patches. Nevertheless, 3D points can project
incorrectly onto 2D. Specifically, multiple 3D patches may
project together onto a single 2D patch, resulting in depth
ambiguities per 2D patch. In Figure 2 (right), armrest and
seat 3D points project together onto the armrest patch.

We compute a surjective mapping using a voting scheme.
For each 2D patch r;, each 3D patch s; projecting onto it
yields a voting calculated as the percentage of 3D points
projecting inside the 2D patch Proj(s;,r;)). Thus for giv-
en image patch r;, its best matching 3D patch is defined as
s(r;) such that:

Proj(s(ri),r;) = max{Proj(s;,r;)}
S;ES

2D photographs are typically dense, with accurate local
connectivity information between patches. Thus, we build a
connectivity graph G(V, E) with nodes v; € V corresponding
to segmented patches r; € R and edges E connecting adjacent
patches.

Connectivity Refinement Occlusions in perspective pro-
jection yield holes and possibly an incorrect connectivity
graph. We define three automatic operations to consolidate
the graph structure using mutual 2D-3D information.

o Connect: given two disconnected 2D patches {r;,r;}
whose corresponding 3D patches {s;,s;} are close:
dmin(si,5j) < € we connect them by an edge e € E. Here
dpin(+) is the minimum distance between all point pairs of
the two patches.

e Merge: In the case that a single 3D patch is mapped to
several 2D patches, we merge them into one 2D patch
and update the graph nodes respectively. The result of this
step is a mapping where each 3D patch is assigned to one
patches.

e Disconnect: given two image patches {r;,r;} connect-
ed by an edge e € E, we analyze their corresponding
patches in the 3D scan {s;,s;}. If the closest Euclidean
distance between the two patches is above a threshold
dmin(si,5j) > €, we disconnect this edge.

In all our experiments, € is set to 10cm. Thus, our graph
structure will be consistent with the 3D information in the s-
can. Note that since the scan is relatively sparse, it is possible
that some parts are completely missing. We utilize the graph
structure, to infer 3D values and constraints in the 2D-to-3D
transformation following.
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Figure 6: Reconstruction of a 3D chair with completely missing seat and back connector that is automatically inferred from
the 2D photograph. From left to right: the input photograph and partial scan, 2D patch triangulation, reconstructed mesh, and

textured model.

4.4. 2D-3D lifting transform

We transform planar 2D patches into 3D by computing a
non-linear transformation optimization. We initially triangu-
late the 2D patches thus when lifted, they generate an explic-
it 3D mesh reconstruction.

Given a 2D patch, we compute its Delaunay triangula-
tion by subsampling the patch boundary and inner part. Fur-
thermore, for each triangulated 2D patch, we extract its 2D
boundary polyline separating it from other patches. We use
resolution of 5 pixels and 3 pixels to sample image patches
and their boundaries respectively (see Figure 6 mid-left).

Given a 2D patch triangulation, computing its texture
mapping is straightforward by mapping each vertex to its
corresponding pixel in the photograph (see Figure 6 right)

Since lifting from 2D to 3D is underconstrained, we in-
troduce three types of constrains with which we compute
the transformation optimization.

e Boundary constraints 3D points projecting onto 2D im-
age edges are used as boundary constraints. We analyze
the 3D-to-2D registration and collect 3D points that regis-
ter within an ® radius from the polyline L. We use a point
to line segment distance in 2D d,pinLine2p(-) to find the
corresponding 3D points as follows:

{pl/' eEP| dpointLineZD (p;,L) < o}

For depth consistency reasons, we analyze the adjacency
graph and select both patches sharing polyline L (if not
on the shape boundary). Similarly, we select all 3D points
projecting within ® from the polyline L and add them to
the boundary constraints. Note that boundary constraints
are sufficient for transforming a 2D patch when other in-
formation is not available. In Figure 6, the yellow patch
connecting the back and seat is completely missing in the
3D scan. Nevertheless, it is lifted using boundary con-
straints from adjacent back and seat patches.

e Inner constraints Similar to boundary constraints we de-
fine also inner constraints. Given a triangulated 2D patch
t;, the projected 3D points registering with the vertices V
of t; are defined as inner constraints:

{pl/' EP| dpointPoianD (p;,V) <o}

 is set to 2 pixels in all our experiments.

o Topological constraints We infer topological constraints
from boundary polylines and patch triangulation. Specif-
ically, two adjacent 2D patches in the graph, sharing a
boundary polyline will be lifted into 3D sharing the same
boundary constraints for their mutual polyline. To resolve
depth ambiguities, we only choose to use the boundaries
that are connected in the scan. Thus, connectivity relation-
s in 2D will be transferred into 3D, restricting connected
patches to stay connected. Similarly, the 2D patch triangu-
lation yields additional local connectivity constraints, re-
stricting adjacent 2D vertices to transfer smoothly in 3D.

With the above constraints { pf7i =1,2,...,k} as control
points, we compute a 3D Thin Plate Spline (TPS) [Boo89]
constrained transformation for each triangulated 2D patch 7;.

k
fx) = ;Ci'q)(”x_l’z,'”)

where @(p) = p? logp is the radial basis kernel. The TPS fits
a mapping function f(x) between constraint pairs {y;} and
{x;} defined as:

k
fips = argmin(Y. [lyi— f ) |* +

i=1
Pfo o f 2, Pf o
A / / = 2 =5 ) ]dxd
(G + 25, + (5l deay)

where A is the regularization term for TPS deformation. We
set A = 0.3 to make the deformation smooth enough against
noise in the scan (see Figure 7 right). The transformed 2D
patches gives us the reconstruction of the 3D surfaces.

(© 2014 The Author(s)
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5. Results and Discussion

We have experimented with several data sets representing
objects of different properties. Each data set is a point cloud
and image pair, where the image is taken from a different
view. Furthermore, we loosely scanned the objects in a nat-
ural manner, allowing gaps and occlusions to occur.

Reconstruction results Our results show plausible and
faithful reconstructions even when the scanned data is high-
ly incomplete. In Figure 6 we show a stool with a completely
missing connector between back and seat. Our connectivity
constraints lift the corresponding 2D patch (in zoom), gener-
ating a complete 3D chair. Note the distortion in the recon-
structed legs. Since the scan is completely missing there, 3D
lifting of the leg patch was not sufficiently constrained.

To further evaluate our method, we demonstrate our re-
construction algorithm on several objects in Figure 10. Left-
to-right, are the input 2D photograph and its segmentation,
input and segmented 3D scan, lifted mesh, and textured re-
construction respectively.

Figure 1 and Figure 10 (a) demonstrate two chairs with
large missing parts in the back and seat. Note the lack of
connectivity between scanned parts. We transfer boundaries
and patches from the photograph using 3D constrains, thus
completing the missing part and reconstructing a connected
chair.

Figure 10 (b) shows a cart with thin wheel rims and spokes
which are sparsely captured. Since missing parts are large, it
is impossible to infer them with additional knowledge or pri-
ors as in our method. We lift thin spoke patches and complete
wheel rims with their connectivity from 2D to 3D resulting
in a complete and detailed wheel and cart reconstruction.

Figure 10 (c-e) show our technique on a set of challenging
scans of mechanical objects with large holes and significant
missing parts. From (c) to (e), a set of pipes which exhibit
holes at important junctions and bifurcations, a car engine
with missing important connectors and another T-shape pipe
with holes. We infer high-level structures from the 2D photo
which in turn generate shape completion and faithful recon-
struction of parts and their connectivity.

In Figure 7 we show an evaluation of the reconstructed
model. As can be seen from the figure, the surfaces of the
reconstructed model are accurate with respect to the input
scan.

In Figure 8 we evaluate the robustness of our photo-scan
registration algorithm by varying the initial viewpoints of the
scan. Although the initial alignment varies, our registration
and reconstruction is robust to such misalignments.

Performance We have run our experiment on a PC with
Windows 7, 3.1GHz processor and 64GB RAM. Table 1
summarizes the performance of our algorithm showing s-
can sizes and reconstruction times for all our objects. As
can be seen from the table, our 2D-3D lifting process is
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Figure 7: Evaluation of the reconstructed mesh model with
respect to original 3D scan. Coloring denotes distance of
3D mesh to closest scan point. Right are zooms of the recon-
structed mesh passing close by the 3D points.
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Figure 8: Robustness of our algorithm to 2D-3D misalign-
ment. Top-to-bottom, are five cases showing initial coarse
2D-3D alignment, their fine registration, and reconstruction.

faster than the preprocessing segmentation step. The high
efficiency of the 2D-3D lifting benefits from the segmen-
tation of the two inputs. In our reconstruction pipeline,
the most computation-intensive process is the TPS fitting,
which involves an LU factorization of a large matrix of size
(n+d+1)x (n+d+1), where n is the number of con-
trol points and d = 3 is the dimension of the problem. By
segmenting the object into meaningful parts, the size of the
matrix is significantly reduced, yielding efficient reconstruc-
tion. In addition to the efficiency gain, the boundary and
topological constraints discovered from the segmentation of
the 2D photograph enable us to recover sharp features of an
object. Figure 9 shows the reconstruction of a synthetic me-
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chanical part. Note how well the sharp features are preserved
using the 2D image structure and segmentation.

Comparison We also conduct a comparison with state-of-
the-art automatic reconstruction methods. Figure 11 shows
several data set reconstructed using Algebraic Point Set
Surfaces (APSS) [GGO7] (2nd row), Poisson Reconstruc-
tion [KBHO6] (3rd row), and our 2D-3D lifting method (last
row). Since the APSS method is defined based on Moving
Least Squares fitting, it can not handle severe data missing.
Similarly, although [KBHO6] can obtain very impressive re-
construction in smooth regions where adequate sampling of
the object’s surface is available, it usually connects distinct
parts (e.g. the region between the legs of the chair) or fills in
real holes (e.g. the windows of the car). While our method,
by using additional topological constraints inferred from im-
ages, successfully completes large missing regions and gen-
erates the most faithful results.

Symmetry An efficient scan enhancement and comple-
tion tool is symmetrization, where missing data is inferred
from symmetric parts in the shape. In Figure 10 (a), we pre-

Table 1: Detailed summary of input scan sizes and recon-
struction times (seconds) for our experiments.

| )~ I e e
Model !M% S Q‘)\ jj “: q m/?: a:\gfi.
\ \¢ [
# Points | 20.5K 16.5K 12K 55.2K 342.7K 140.2K | 138K
Symmetry 3.2 3.7 1.5 28.4 - -
Register 6 5 7 18 38 22 34
2D Segment. 62 38 49 175 325 158 274
3D Segment 12 15 13 19 124 32 118
Overlay 1.9 14 1.5 5.9 10.2 3.1 111
Lifting 62 53 31 12 284 267 105
Total time| 147.1 116.1 103 229.9 809.6 482.1 | 542.1

Figure 9: The reconstruction of a synthetic mechanical ob-
Jject consisting of a free-form surface and a few cylinders
and planes. Left to right: input point cloud, segmented im-
age, and our result.
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Figure 11: Comparison with state-of-the-art reconstruction
methods. Left-to-right, are the input, the results of Algebra-
ic Point Set Surfaces [GGO07], Poisson Reconstruction [KB-
HO06], and our 2D-3D lifting method.

process the scan using a similar symmetrization algorithm
of Mitra et al. [MGP]. Nevertheless, the symmetrized data is
still incomplete with holes in the seat and unconnected legs.
Similarly, scans in Figures 1, 6 and 10 (b) were symmetrized,
but holes and imperfections persist and remain noticeable.

6. Limitations and Conclusions

Lifting a 2D patch into 3D is essentially an ill-posed prob-
lem. Our multi-modal approach fuses between 2D pho-
tographs and 3D scans and generates a 2D-3D constrained
lifting optimization. Nevertheless, if data is completely
missing, i.e. no 3D points mapping to a 2D patch nor to its
neighbors, the transformation optimization may become un-
der constrained. For example, in Figure 6, a large part of
the chair legs is missing, thus legs patch deforms during 3D
lifting. Similarly, lifting may be incorrect if the 2D and 3D
patch matching is incorrect. This may occur when the per-
spective projection yields large occlusions, thus finding a
consistent 2D to 3D patch mapping is ambiguous (see Fig-
ure 2).

Due to the smooth nature of our TPS fitting, our only as-
sumption is that the object’s underling geometry is piecewise
smooth. To recover sharp features of the object, we require
the object is segmented into piecewise patches in the seg-
mentation step. By doing this, sharp edges are given as the
pathes boundaries and are preserved during the 2D-3D lift-
ing step.

In this work we focused on fusing a 3D scan with a sin-
gle 2D photograph. Thus, it provides with scan enhancement
only from the photograph view. For example, the chair legs
in Figure 1 and Figure 10 (a) are thin sheets instead of round

(© 2014 The Author(s)
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Figure 10: 2D-3D lifting reconstruction algorithm demonstrated on various objects. Left-to-right: input photograph, segmented
photograph, input partial scan, segmented scan, reconstructed mesh, and textured model.

cylinders. In future work we plan to further develop the 2D-
3D multi-modal framework by incorporating multiple im-
ages fusing 2D structures from different views together.

To conclude, we present an algorithm for 3D shape re-
construction from a partial 3D scan utilizing 2D structures
from a corresponding photograph. We do not require strict
photo-to-scan correspondence, thus they can be in arbitrar-
ily different views. We fuse the 3D and 2D modes taking
advantage of their complementary characteristics. Our key
observation is that with a registration, we can transfer 2D
structures into 3D in a principled way. We utilize depth cues,
local and patch-wise adjacency information to constrain 2D-
to-3D lifting and transfer shape structures such as geometry
and connectivity (i.e. topology). We reason that 2D bound-
ary and connectivity regularize and significantly reduce the
complexity of reconstruction problem. Using our method,
we were able to reconstruct a variety 3D objects from partial
scans with large missing parts in a plausible manner.

(© 2014 The Author(s)
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