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Figure 1: Proactive scanning of a tangled Banana tree. We freely move the scanner around to capture the scene while physically moving
aside occluding leaves to scan the trunk and branches (a). In (b) we zoom on the interactive modification. Our algorithm reconstructs a 3D
scene, including its interior parts (c) and generate a plausible mesh (d).

Abstract

The evolution of 3D scanning technologies have revolutionized the
way real-world object are digitally acquired. Nowadays, high-
definition and high-speed scanners can capture even large scale
scenes with very high accuracy. Nevertheless, the acquisition of
complete 3D objects remains a bottleneck, requiring to careful-
ly sample the whole object’s surface, similar to a coverage pro-
cess. Holes and undersampled regions are common in 3D scans of
complex-shaped objects with self occlusions and hidden interiors.
In this paper we introduce the novel paradigm of proactive scan-
ning, in which the user actively modifies the scene while scanning
it, in order to reveal and access occluded regions. We take a holistic
approach and integrate the user interaction into the continuous scan-
ning process. Our algorithm allows for dynamic modifications of
the scene as part of a global 3D scanning process. We utilize a scan
registration algorithm to compute motion trajectories and separate
between user modifications and other motions such as (hand-held)
camera movements and small deformations. Thus, we reconstruct
together the static parts into a complete unified 3D model. We eval-
uate our technique by scanning and reconstructing 3D objects and
scenes consisting of inaccessible regions such as interiors, entan-
gled plants and clutter.
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1 Introduction

In recent years we observe significant advancements in 3D scan-
ning technologies. With emergence of systems such as Kinectr,
PrimeSenserand Asus Xtionr, scanners have become commer-
cial off-the-shelf products introducing space-time 3D acquisition to
end-users. As scanners continuously evolve, we experience a con-
sistent increase in their resolution, frame-rate and accuracy. Nev-
ertheless, the scanning process is still cumbersome and complex,
requiring some level of expertise and tedious steps.

A major challenge in scanning 3D objects is to capture their com-
plete geometry. Proper sampling of the object’s surface requires the
user to rotate around the object, capturing it from different views.
This is a tedious process as the user is required to repeatedly check
and rescan local parts that were not captured correctly in a stop,
evaluate and rescan manner. This problem arises mainly, due to
scan accessibility as parts in the 3D object are hidden by physical
occlusions and cannot be scanned.

The accessibility problem is especially common in complex object-
s with large concavities, hidden interior parts and self occlusion-
s which are inaccessible to the scanning device. Nowadays, this
problem is handled through a tedious process where parts are s-
canned separately and registered in a post-process step [Brown and
Rusinkiewicz 2007]. While feasible, this is a meticulous job, re-
quiring careful planning and registration of the parts together. In
our case, registration of hidden interior parts with their exterior is
more challenging since typically there is no overlapping between
them.

We present a novel proactive scanning process inspired by the e-
merging trend of robust scanning systems [Li et al. 2013]. We fol-
low the observation that many times inaccessible regions can be
made accessible through a simple and local modification of the
scene. For example, given tangled plant, the user scans its dense
foliage by moving scanner around and interacts with the scene by
locally dragging away leaves to reveal the occluded branches and
scan them (Figure 1). Thus, our method enhances the scanning
process with user interaction (with the scene) allowing to modify
and access inaccessible parts while continuously scanning it. User
modifications are incorporated in a holistic manner, as an integral
part of a 3D scanning process.

At the core of our method is a 3D registration and motion trajec-
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Figure 2: Overview of our algorithm. We initially over-segment scanned frames into piecewise smooth patches(a). Next, we perform
pairwise non-rigid registration of consecutive frames (b) and compute trajectory vectors. We cluster long trajectories (c), belonging to the
user’s interactive modifications, and accurately reconstruct the complete scene (d-e).

tory analysis algorithm. Essentially, our dynamic scene consists of
three distinct motion types: rigid part implied by the camera mo-
tion, small non-rigid local deformation occurring in the 3D scene
and large non-rigid motions due to scene modifications by the user.
The first two motion types are relatively easy to handle and can be
recovered as showed in previous works [Li et al. 2009; Chang and
Zwicker 2011]. However, motion due to user interaction is large,
non-rigid and may locally affect the spatio-temporal neighborhood.
Thus, a clear dichotomy is assumed to exist between the interaction
and non-interaction deformations in the scene.

Our algorithm analyzes and registers the raw stream of scanned
frames on-the-fly and classifies the different motions according to
their specific patterns. This in turn allows to accurately reconstruct
the full 3D model and making the following contributions:

• We define a novel proactive scanning method which allows
the user to perform scene modifications while continuously
scanning the 3D scene.

• We present a 3D reconstruction algorithm which registers to-
gether scanned frames on-the-fly by analyzing motion trajec-
tories and segmenting out large motions.

2 Related work

Processing and modeling the dynamic scanned data captured by
3D scanners is a challenging computational problem. In recen-
t years numerous methods have been introduced for dynamic 3D
registration and reconstruction, presenting a wide range of solutions
[Huang et al. 2008; Pekelny and Gotsman 2008; Sharf et al. 2008;
Süssmuth et al. 2008; de Aguiar et al. 2008; Wand et al. 2009; Li
et al. 2009; Chang and Zwicker 2011; Li et al. 2013]. Since at the
core of our method is a dynamic 3D scan modeling algorithm, we
focus our discussion on previous work in this field.

Rigid surface registration is a well known problem which has been
explored for many years. An early solution for this problem is the
classic iterative closest points (ICP) algorithm [Besl and McKay
1992; Chen and Medioni 1992] and its many extensions [Bouaziz
et al. 2013]. With the rising popularity of 3D motion-acquisition
scanners, there has been a renewed interest in the registration prob-
lem for non-rigid 3D surfaces as they move and deform in a scene.
ICP variants for non-rigid registration of surfaces have been pro-
posed in [Chui and Rangarajan 2003; Amberg et al. 2007; Brown
and Rusinkiewicz 2007]. These methods replace the rigid com-
ponent with a non-linear smooth deformation and iteratively align
surfaces together in a global manner.

Mitra et al. [2007] use kinematic properties of the 4D space-time

surface defined by the 3D scan motion in time, to track and reg-
ister multiple frames of a deformable object. Similarly, Wand et
al. [2007] reconstructs both the shape and its trajectories through a
4D shape optimization algorithm and in [Wand et al. 2009] au-
thors formulate surface motion in terms of a displacement field
and compute the common shape that deforms and matches the da-
ta. Süssmuth et al. [2008] and Sharf et al. [2008] explicitly model
and reconstruct a 4D surface from an implicit space-time motion
representation. Nevertheless, these techniques are time consuming,
requiring a dense sampling of the motion. In our work, we detect
and explicitly remove the large non-rigid motions out and perform
reconstruction on the effective data.

Methods that assume a specific motion type or an available template
success in reducing the problem complexity and narrowing down
solution space. Pekelny and Gotsman [2008] present a method
for tracking and registration of piece-wise rigid motions of artic-
ulated bodies. Their method assumes a given segmentation of the
data into rigid parts and an underlying skeletal structure. Similar-
ly, Chang and Zwicker [2008] register scanned pairs of articulated
shapes by searching for an optimal set of piecewise rigid transfor-
mations. The utilization of a deformable template that can regis-
ter scans with missing data was introduced in [Chang and Zwicker
2011]. In their work they optimize a set of parameters controlling
a reduced deformable model to align and register scans together.
In [Li et al. 2009], a smooth template is used to guide the recon-
struction process allowing to recover fine geometric details and in
[Tevs et al. 2012] consistent trajectories are computed by finding
isometrically consistent scene parts in time. Nevertheless, our al-
gorithm does not assume a piecewise rigid motion, nor a predefined
template and local isometries. Instead, we focus on tracking and
reconstructing a general scene where templates are not available.

To perform non-rigid scan registration, Li et al. [2008] utilize a
deformation graph [Sumner et al. 2007]. They compute a graph
from the scan points which controls the registration transformation-
s. Similarly, Huang et al. [2008] utilize a graph approximation of
geodesic distances in order to extract a set of geodesic consistent
correspondences under the assumption of isometric deformations.
Nevertheless, we avoid building such a graph construct on top of
the point cloud as it is not always practical (for example a sparse
scans of a foliage of a plant with many small unconnected parts).

Izadi et al. [2011] use Kinect to explore dynamic user interaction
with a reconstructed 3D static scene. Their method focus on s-
canned motion tracking through foreground/background subtrac-
tion. Our problem is significantly harder, as we integrate together
3D interaction, acquisition and reconstruction on-the-fly.

Our work was inspired by the recent work of Li et al. [2013] intro-
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Figure 3: Algorithm flowchart.

ducing an end-to-end solution for dynamic scan reconstruction and
registration. With their system a user can freely capture a 3D scene
in an uncontrolled environment, allowing small deformations and
motions. Our work follows in the same path, further simplifying
the scanning process, allowing greater ease-of-use and leveraging
its methodology and robustness.

3 Overview

Our algorithm process on-the-fly a stream of scanned 3D frames
taken with a hand-held scanner. In the acquisition process, the user
holds the scanning device and moves around to cover the whole
scene from a set of views (denoted as dynamic scanning). Along
this process, the user also interacts with the scene in order to modify
it, remove occlusions and reveal parts that are hidden or completely
inaccessible (see Figure 1(b)).

Initially, we oversegment the scanned frames into smooth patches to
reduce data complexity and remove small outliers and noise (Fig-
ure 2(a)). Pairwise registration between consecutive frames per-
forms by computing a sparse correspondence and deforming the
frames to minimize the distance defined by this correspondence. To
tackle the matching-registration problem, we devise a variant of the
iterative closest (ICP) point algorithm. We control correspondence
density and deformation rigidity and gradually adjust them, while
repeating correspondence and deformation process until scans fully
align (Figure 2(b)).

In the next step, we compute trajectories using the registered frames
and prune out outliers and noisy results. We cluster together tra-
jectories using a trajectory similarity metric and segment out large
trajectories which belong to scene modifications (Figures 2(b-c)).

Modification motion is typically large compared to camera move-
ment and scene deformations, hence it introduces significant noise
and deviation in the scan registration . A key point to our algorithm
is the detection of the user modification interaction and its accurate
segmentation from the 3D scan. We refer to interaction intervals as
periods in which the user performs a large scene modification to re-
veal occluded parts. We analyze characteristic features which allow
to detect and separate the interaction from other dynamic motion-
s. Thus, we remove large trajectory clusters, and repeat the whole
registration process again (Figure 3). This allows us to increase the
accuracy of our registration.

Finally, we register the whole scene together. We use the motion
registration of the modification motion, to guide registration of w-
hole scene. We demonstrate the plausible surface reconstruction of
the fully registered 3D scan (Figures 2(d-e)).

4 Technical Details

Piecewise-smooth segmentation. Given a sequence of scanned
3D frames {f0, f2, ..., fn}, our aim is to robustly register them into
a complete static 3D scene S. In scene completeness we refer to

achieving a sufficiently dense sampling of the whole physical object
including hidden and occluded regions. Our algorithm performs
on-the-fly, processing the stream of frames as they arrive. Thus we
process at each time only a limited number of buffered frames.

For a scanned frame fi we initially cluster points into smooth patch-
es using a hierarchical agglomerative clustering. This step reduces
both data complexity and noise, allowing to remove small outlier-
s. Starting from the whole point set, we group together neigh-
boring points within a close distance and with similar normals.
More specifically, two points (p, q) ∈ fi with normals (np, nq)
are grouped together iff:

‖p− q‖2 < εD , (np · nq) > εA (1)

where ||2 denotes the L2 Euclidean norm and · is the dot product
between two normal vectors. Following our scanner’s precision and
frame-rate specifications we set thresholds to εD = 2cm and εA =
0.8. Our underlying assumption here is that motions in the scene
do not exceed reasonable speeds. We use the Flann library [Muja
and Lowe 2009] to perform fast approximate k-nearest neighbors
searches for each point in the input.

Pairwise frame registration. Given two consecutive frames
fk, fk+1 we compute the deformation D that aligns the two frames
together. The deformation between consecutive frames consists of
a global rigid component DR due to camera movement and a non-
rigid component DE due to local modifications and small scene
motions, e.g. small movement of a plant leaves in Figure 1 .

Our registration algorithm performs iteratively from global to local
by computing an initial global rigid transformation which is refined
by additional local non-rigid deformations. Initially, we compute a
sparse set of point correspondences, as the set of closest points shar-
ing similar normal vectors. Formally a point q ∈ fk+1 corresponds
to p ∈ fk iff:

arg min
q∈fk+1

(‖p− q‖2) s.t. (np · nq) > εA (2)

We use Horn [Horn 1987] to compute the optimal global rigid trans-
formation DR between the two sets of matching points. We ap-
ply the transformation only halfway and recompute correspondence
and rigid transformation iteratively. This rigid ICP steps an approx-
imates the global rigid transformation component in the scene. Nat-
urally, this approximation depends on the non-rigid motions in the
scene which alter our solution.

To compute the non-rigid component of the registration, we take a
local approach. Essentially, our scene consists of a mixture of smal-
l, local deformations together with few large deformations caused
by interactive modifications. This calls for devising a local solution
rather than attempting to globally register scans together. Thus, we
use our piecewise-smooth patch segmentation and compute a set of
local non-rigid transformations which align patches together.
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Figure 4: Registration of two consecutive frames segmented into
three patches (colored shapes). Initially we globally align frames
using a rigid transformationDR, followed by patch-wise rigidDp,qR
and non rigid Dp,qE transformations.

Similar to point correspondence, we first compute a patch-based
dense correspondence. We replace point with patch in equation 2,
taking p as the patch center and np as the average patch normal at p,
(considering the one-ring neighbors). For each pair of correspond-
ing patches p, q we compute a denser correspondence and compute
their rigid transformation in an iterative manner denoted Dp,qR . Fi-
nally, for each pair of patches, we replace the rigid transformation
with a Thin Plate Splines (TPS) deformation denoted Dp,qE and re-
peat the same iterative process to obtain a perfect piecewise patch
alignment (see Figure 4).

Trajectory clustering. Given pairwise registered frames, we
compute their dense correspondences using equation 2 for the
aligned points. Next we generate motion trajectories simply by
aggregating pairwise correspondences together along the scan se-
quence yielding 3D+time polygonal vectors. We formally denote
by 〈φi(0,...n)〉 the ith trajectory in the scene consisting of n+ 1 3D
points, one for each of the n frames (see Figure 5).

Resulting trajectories are noisy since objects are not sampled equal-
ly along time and some shifts typically occur. We smooth trajecto-
ries using a space-time Laplacian operator:

4φi = ∂2φi

∂x2
+
∂2φi

∂t2
(3)

We approximate the discrete Laplacian, by the finite difference
method considering the neighboring vertices in the 4D ring of a
vertex φij

4φij = φij −
1

k

∑
φl
m∈1ring(φi

j)

φlm (4)

We then search for clusters of long trajectories using an agglomer-
ative hierarchical clustering algorithm similar to our patch cluster-
ing. More specifically, we group together long trajectories iff they
are within a close distance and share similarity in their direction.
We define our grouping criteria for two trajectories (φi, φj) as:

‖φk‖2 > εL , ∀k ∈ (i, j)

‖φi − φj‖2 < εD

(φi · φj) > εA (5)

where ‖φk‖2 is the trajectory length defined as the sum of its part
lengths in L2, the distance between two trajectories is measure as
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Figure 5: Trajectories between frames f0 and fn. Scene consists
of small local deformations of red and blue patches and a large
non-rigid deformation of the yellow patch. Our method clusters the
large trajectories corresponding to this motion (red line).

the average distance between their points and their dot product is
the average angle between their segments. We set εL = 7cm and
repeat the trajectory clustering process as long as there remain un-
clustered long trajectories.

Our method is on-the-fly, processing each time only a constan-
t number of buffered frames from the input (in our experiments we
set the buffer size to n = 200). Nevertheless it is possible that the
interactive modification may be longer than n frames. In order to
capture long trajectories as a whole, we adaptively resize the buffer
size once a long cluster is detected. Thus, we rescale the buffer by
powers of 2 until no more long trajectories are existent.

Modification motion removal Given trajectory clusters, we
compute a 4D mask in order to remove long trajectories from the
scene. In the simple case, we compute the 4D convex-hull [Barber
et al. 1996] of the clustered trajectories and remove its contents,
thus removing the modification motion from the scene in a conser-
vative manner.

Figure 6: Illustration of the trajectory convex hull scaling. As a
rotating door becomes orthogonal to the camera (black triangle)
plane, it disappears (and may reappear again). We define the tra-
jectory convex hull (green trapezoid) to search and collect missing
trajectories.

Nevertheless, since modification motion is large, it may introduce
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Figure 7: Modification motion guides registration between exterior and interior parts. Given an exterior (a), an interior (c) and a modification
(b) frame, we demonstrate incorrect registration of (a)+(c) in (d) vs. correctly registering (a)+(b)+(c) in (e). Note that in (b), motion of the
doors is segmented out by our algorithm, leaving only static parts to guide full registration.

additional deformations in its spatio-temporal neighborhood and
may not be accurately scanned. Furthermore, the moving part may
completely disappear while becoming orthogonal to the camera
plane. In Figure 6, the rotating door (blue) is not captured while
aligning with the camera direction (red).

To overcome these problems, we scale the spatio-temporal 4D
convex-hull to capture the full modification trajectories. This op-
eration defines a larger space in which we search for similar trajec-
tories that can additionally cluster together. In spatial domain, we
scale the convex-hull vertices in outward direction by 10% of the
bounding box. In temporal domain, we scale the 4D convex hull by
10% following its principal direction.

In the final step, we remove long trajectory clusters belonging to
modification motions. Next, we recompute pairwise frame registra-
tion yielding a more accurate global registration. By removing the
large modification motions, we now faster converge to the optimal
frame registration, since handling mainly globally rigid and small
local deformations.

The remaining spatio-temporal neighborhood of the modification
provides an important guidance for the registration of exterior and
interior parts. Due to little and even no overlap between these re-
gions, their registration is hard. In Figure 7 (d), we demonstrate
incorrect registration of an exterior (a) and interior (c) where no
overlap exist. A frame belonging to the modification interaction (b)
bridges between the exterior and interior by providing an overlap,
thus guiding towards the correct registration (e).

Motion processing robustness Our motion removal may not be
perfect. Since our piecewise-smooth patches are not be compatible
with motion trajectories, the tracked geometry may be discontinu-
ous. E.g. a patch in frame fk may split in two different patches
in frame fk+1 and vice versa (Figure 8(b)). Thus, static parts near
interaction regions may be classified as moving points and mov-
ing points near static regions may be classified as static. We show
that this phenomena is rare, of small scale and does not affect our
motion removal correctness.

• Piece-wise smooth patches are used for non-rigid registration
of adjacent frames, while trajectories are computed indepen-
dently at point level. Therefore, even if patches and motion
are not coherent, it can affect only the registration step.

• Deformations between adjacent frames are assumed to be s-
mall and therefore local registration error cannot be large
(Figure 8(a-b)).

• Interaction motions are typically few, while patch resolution
is typically higher than motion clusters. Hence, they may only
introduce very local misalignment errors (Figure 8(c-d)).

• Static points are robust. Static regions are naturally scanned
multiple times from different views, as the scanner moves
around. Thus, if points are incorrectly labeled as dynamic
and removed, points covering the same region in other frames
will fill in.

• Motion removal is robust. If points are incorrectly labeled
as static, the trajectory convex hull scaling removes the full
interaction motion in a non-conservative manner.

5 Results and discussion

We demonstrate our proactive scanning technique on various scan-
ning scenarios and with a wide range of objects and scenes. In order
to demonstrate the effectiveness of our method, we allow the user
to scan around the scene and freely interact with it by modifying
movable parts (see accompanying video). In all our experiments
we kept the same parameter values as specified in the paper.

We used a MantisVisionTMmid-range active-light scanner with 1−
6 meters range, below 1mm accuracy, at 15 − 20 fps, capturing
roughly 40−70k points per frame. We have also experimented with
an Artec EvaTMshort range scanner with similar accuracy and frame
rates, and a Kinectrscanner with lower resolution and accuracy.

The stream of frames is sent from the scanner to a PC through a
firewire connection as they are being scanned. The method was
implemented in C++ without any GPU optimizations, running on a
Lenovo IntelrCore i5-3210M CPU, 2.5GHz with 8GB RAM. Our
processing time is nearly real-time with 2 fps on average. Since our
camera typically performs at 15 − 20 fps, we use a large buffer to
store streaming data.

In our experiments we proactively scanned piecewise rigid objects
such as furniture, household items and cars. In these scenes, mod-
ification interaction consisted of moving occluding parts through
rigid transformations. In Figure 9 we demonstrate our algorithm on
four different piecewise rigid scenes. In Figure 9(a) we proactive-
ly scan the back of a car, then lift its trunk and acquire its interior.
In 9(b), we scan a full car and its interior. In this process, we freely
open and close the front and back doors while scanning the car. Fig-
ure 9(c) shows a kitchenette with occluded interior. The interactive
modification consists of opening two doors one after the another
and reconstructing the full scene. Finally, in 9(d) we move two s-
liding doors of a cabinet through a translational motion and capture
the interior.

We have also tested our proactive scanning method with non-rigid
objects. Thus, modifications consisted of non-rigid motions to re-
veal occluded regions in the scene. In Figures 1 and 10(a) we scan
two plants with dense foliage which occludes the interior branch-



es and trunks. We proactively move leaves and branches aside to
access the interior. In Figure 10(b) we scan a table completely cov-
ered by a table-cloth which we move aside to capture the legs un-
derneath the table. Similarly, in Figure 10(c) we interactively lift
(one-by-one) the two cloth parts covering the entrance of a tent and
reveal its interior. (See supplemental material for many other re-
sults).

Our method was able to capture and reconstruct a significan-
t amount of detail by interacting with the scene, moving parts and
accessing hidden interiors. as can be seen in the accompanying
video, proactive scanning allows to continuously capture and ac-
cess hidden regions in a straightforward manner.

For visual purposes, we reconstruct the mesh from the point-cloud
using Poisson surface reconstruction [Kazhdan et al. 2006]. In rare
cases when the global Poisson did not provide a plausible recon-
struction, we manually separated the interior and exterior and then
we reconstruct them independently and stitch them together (in our
experiments, the full car and kitchenette in Figure 9(b,d))

Limitations. Our patch-based scan segmentation is coupled with
motion analysis. Thus, a segmentation which is incompatible with
the motion may yield inaccurate trajectories and clusters. Neverthe-
less, motions generated by user interactions are typically few and
thus trajectory clusters are of much lower resolution than patches.

Our motion analysis technique was designed to handle a specific
interaction of occluder removal, characterized by piecewise rigid
or non-rigid deformations that are local in the static scene. In Fig-
ure 11(a), the interior of a drawer is moving as the drawer is pulled
(left) and thus, is classified as part of the modification motion and
removed (right).

To correctly compute motion trajectories we register adjacen-
t frames together assuming a small deformation between them. In
this case, a simple global-to-local non-rigid ICP approach can cor-
rectly register frames together. Thus, a quick modification motion
will not be tracked correctly yielding incorrect registration. In Fig-
ure 11(b), the quick lifting of the table cloth from the table (mid) is
not correctly tracked and clustered yielding an inaccurate registra-
tion (right).

Finally, our method assumes a discrepancy between modification,
camera and scene motions, allowing to separate the modification
from other motions in the scene. In cases where camera moves
abruptly or scene consisting of large self deformations (e.g. high
wind in a tree, and etc.) our method fails to segment and classi-
fy the modification motion. In Figure 11(c), the scanner moves
abruptly while opening the bottom doors of a cabinet. Hence, parts
of the static scene are clustered and classified as modification mo-
tion and removed. This yields a partial and incorrect registration
(rightmost).

6 Conclusion and future work

In this paper we presented the proactive scanning paradigm. Its
novelty is that it allows the user actively modify the scene while
scanning it, in order to reveal and access occluded regions. This
presents a holistic approach where both the 3D acquisition of the
static scene as well as the modification motion are integrated into
one continuous scanning process.

Our results show a progress over traditional acquisition pipeline.
Our method allows to capture, register and reconstruct complete
scenes revealing their hidden interiors. Furthermore, our accompa-
nying video demonstrates that hidden interiors and occluded parts

Figure 8: Segmentation to registration relation. Rows (top-to-
bottom) show the effect of increasing the number of segments s-
tarting from 1 (topmost) on registration accuracy. Columns (left-
to-right) show initial segmentation of two frames and their mutual
registration (rightmost) colored black and green respectively.

in the scene can be captured by our method in a relatively simple
and straight-forward process.

In the future, we plan to further expand the proactive scanning
paradigm and investigate additional interaction possibilities. One
immediate direction is incorporating a richer set of gestures to allow
an extended control on the scanning process. In fact, the user may
guide the acquisition and reconstruction processes on-the-fly. An-
other interesting venue is in the field of robotics where our proactive
scanning can join forces with an autonomous robot creating an en-
hanced process where the robot scans and interacts with the scene
while our method robustly registers the data together.
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