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Figure 1: Symmetry-driven structural analysis of an irregular facade (a) results in a hierarchical decomposition (b) into regular grids. Our
analysis introduces layering (b), going beyond flat segmentation via splits (c) and allowing more compact and natural structural representa-
tions. The resulting hierarchical model of facades enables applications such as structural editing (d) and retargeting (e).

Abstract

We present an algorithm for hierarchical and layered analysis of ir-
regular facades, seeking a high-level understanding of facade struc-
tures. By introducing layering into the analysis, we no longer view
a facade as a flat structure, but allow it to be structurally sep-
arated into depth layers, enabling more compact and natural in-
terpretations of building facades. Computationally, we perform a
symmetry-driven search for an optimal hierarchical decomposition
defined by split and layering operations applied to an input facade.
The objective is symmetry maximization, i.e., to maximize the sum
of symmetry of the substructures resulting from recursive decom-
position. To this end, we propose a novel integral symmetry mea-
sure, which behaves well at both ends of the symmetry spectrum
by accounting for all partial symmetries in a discrete structure. Our
analysis results in a structural representation, which can be utilized
for structural editing and exploration of building facades.
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1 Introduction

High-level processing of shapes or patterns has been receiving in-
creasing interests in computer graphics. At the core of these ap-
proaches is an analysis to understand the structure of an input. The
understanding leads to an effective reuse of data for structure edit-
ing, synthesis, or exploration. An interesting class of structures that
has received much attention lately is that of building facades [Mu-
sialski et al. 2012]. While the fundamental building blocks of
facades are regular grids of windows or balconies, real-world fa-
cades exhibit an amazing variety of irregular mixtures of grid struc-
tures. The ubiquity of facades, combined with the rich irregularities
therein, makes them useful and intriguing structures to study.
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In this paper, we develop an algorithm for analyzing irregular 2D
facades. Our goal is to obtain a high-level understanding or expla-
nation of the structure, rather than appearance, of a facade. The
fundamental analysis task involves grouping or decomposition of
the basic structural elements of a facade, e.g., windows and bal-
conies. Our structural decomposition is hierarchical and it is built
on two fundamental operations: split and layering; see Figure 1.
By introducing layering into the analysis, we no longer view a fa-
cade as a flat structure, but allow it to be structurally separated into
depth layers. Layering is motivated by cognitive theories of visual
completion [Buffart et al. 1983], positing the mind’s intention to
complete regular patterns. It enables a more compact and natural
interpretation of a frequent pattern in facades, where the regular-
ity of a structure (e.g., a grid of windows) is interrupted by certain
elements (e.g., a door), e.g., see Figure 1(b) vs. 1(c).

Our hierarchical analysis algorithm is symmetry-driven: we recur-
sively decompose facade elements based on measures of symmetry
or repetition. This is inspired by Gestalt Law of Prägnanz, which
emphasizes the prevalence of symmetry and regularity in percep-
tual grouping [Wertheimer 1923]. However, unlike previous works
aimed at regularity detection [Pauly et al. 2008; Wu et al. 2010] or
flat segmentation of facades into regular grids [Chao et al. 2012],
our algorithm focuses on the challenge of analyzing irregularity.
Specifically, we seek a high-level explanation of the irregular ar-
rangements and overlays of the grids.

Law of Good Gestalt and simplest explanation. Computa-
tionally, we pose the analysis problem as that of finding an op-
timal hierarchical decomposition of a facade. The optimization
has a twofold objective. First, we seek the most perceptual de-
composition. Our approach follows the well-known Law of Good
Gestalt [Wertheimer 1923] which stipulates that one should max-
imize the simplicity, regularity, or orderliness of the substructures
resulting from each decomposition. Our second objective is to seek
the best structural explanation which, according to Occam’s Razor,
is often the simplest one. In our work, we equate simplicity to the
minimization of the number of decompositions.

Symmetry maximization. As we quantify regularity by symme-
try, the first objective dictates that we should maximize the symme-
try of the substructures. Interestingly, such a symmetry maximiza-
tion leads to fulfillment of the second objective as well. To explain
a facade, the structural decomposition should naturally stop when
a pattern requires no further explanation. In our setting, this is a
pattern that represents, or is perceived as, a regular grid, which pos-
sesses a high degree of symmetry; see Figure 2(b)-top. In the latter
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Figure 2: Overview of facade analysis and synthesis. Input to the analysis is a box abstraction, with boxes having the same color representing
repeated basic elements of a facade, e.g., a window. Our algorithm computes an optimal hierarchical binary decomposition (b: top) based
on splitting (dark line) and layering (shadowy box) of facade structures enclosed by the boxes. The analysis result defines a structural
representation (b: bottom), which can be altered (c: top) to produce interesting structural variations (c: bottom).

case, the pattern is an incomplete grid of identical elements and
naturally perceived as a completed grid as posited by the Gestalt
Law of Closure. To minimize the number of decompositions, or
equivalently, to reach regular grids as quickly as possible, we seek
symmetry maximization at each decomposition step as well.

Consequently, our optimization problem seeks a hierarchical binary
decomposition, via layering and splits, which maximizes the sum
of symmetry of all the substructures in the obtained hierarchy. The
main challenges of the problem are threefold:

• Symmetry measure: The optimization requires a symmetry
measure to quantify both near-regular and irregular structures.
Existing measures [Kazhdan et al. 2004; Podolak et al. 2006;
Simari et al. 2006; Graham et al. 2010] have been designed
to quantify how close a shape is to possessing a global sym-
metry. We propose a novel integral symmetry measure, which
behaves well at both ends of the symmetry spectrum by ac-
counting for all partial symmetries in a discrete structure.

• Layering: Existing structural analyses of facades are mainly
based on procedural models, notably split grammars [Wonka
et al. 2003; Teboul et al. 2011]. Such models only produce hi-
erarchical flat subdivisions of a facade. Layering substantially
extends the search space. It also poses the structure comple-
tion problem resulting from removing a top layer.

• Hierarchy optimization: The optimization turns out to be a
computationally intensive problem. To this end, we develop
a genetic algorithm where evolution of the solutions is driven
by the integral symmetry measure.

Structural representation. The result of our analysis implies a
structural representation. We view the decompositions as being ap-
plied to the blank bounding boxes of the facade elements; see Fig-
ure 2(b)-bottom vs. 2(b)-top. Specifically, the box which bounds
the input facade is recursively transformed into more and more
boxes. The representation contains no image content; it defines a
structure. Combining the representation with an instantiation of the
finest-level boxes by image content, we obtain a generative model
for the input facade — it offers an explanation of how the input
facade was seemingly generated; see Figure 2(c).

Contributions. The main contributions of our work are:

• Hierarchical structural analysis of irregular facades via sym-
metry maximization.

• Introduction of layered analysis, which leads to simpler ex-
planation of facade structures.

• An integral symmetry measure designed to be applicable to
both near-regular and irregular discrete structures.

• A structural representation for facade structures, which de-
fines a generative model.

An immediate application of the structural representation is facade
variation, which is achieved by altering the split and layering op-
erations, as shown in Figure 2(c). We demonstrate this with an
interactive editing tool. We also develop a few other applications
which utilize the hierarchical structural representation we obtain,
including facade retargeting, retrieval, and exploration. Interactive
demonstrations can be found in the accompanying video.

2 Related work

Symmetry analysis has received much attention lately [Mitra et al.
2012]. Most earlier works on structural symmetry detection [Pauly
et al. 2008; Wu et al. 2010] extract repeated patterns without orga-
nization. It is widely believed that human perception operates in a
hierarchical manner [Palmer 1977; Hochstein and Ahissar 2002],
motivating hierarchical analysis. Simari et al. [2006] compute a
folding mesh hierarchy by recursively computing the dominant re-
flectional symmetry in a sub-shape. Martinet [2007] constructs a
structural hierarchy to discover congruent scene components and
obtain a compact scene representation. The symmetry hierarchy of
Wang et al. [2011] results from a bottom-up analysis via recursive
symmetry grouping and part assembly, which are guided by heuris-
tic rules without an objective function. None of the works above
define or utilize a symmetry measure for discrete structures.

Existing works on facade analysis mostly focus on regularity de-
tection [Pauly et al. 2008; Wu et al. 2010] or flat segmentation of
facades [Wonka et al. 2003; Teboul et al. 2011; Shen et al. 2011;
Chao et al. 2012]. Hierarchical subdivisions of facades can be ob-
tained but only through split operations. Computation of the splits
is guided either by rules from split grammars [Wonka et al. 2003;
Teboul et al. 2011] or user interaction [Shen et al. 2011]. Our con-
sideration of layering is motivated by concepts from visual comple-
tion. Most global theories are modifications of the Gestalt laws of
grouping in which symmetry plays an important role [Wertheimer
1923]. In the context of facade analysis, the globally predicted per-
cepts would point to completion that achieves the highest degree
of symmetry possible [Buffart et al. 1983]. Besides introducing
layering into the analysis, our work focuses on understanding the
generally irregular organization of detected regular grids.

Recent works on inverse procedural modeling also aim to recover
generative models for a shape or structure. Stava et al. [2010]
generate a parametric L-system which reproduces a given 2D line
art. Bokeloh et al. [2010] perform local similarity and symmetry
search to decompose a 3D model and synthesize new shapes pro-
cedurally via insertion, deletion, and replacement of structural ele-
ments. Similar to the construction of a symmetry hierarchy [Mar-



Figure 3: Box abstraction and decomposition candidates. A facade image (a) is converted into a box abstraction (b), where the boxes
represent the atomic elements. Element groups (c) formed by repeated elements (boxes in same color) in rectangular grids are identified.
The four groups on the left are incomplete and those on the right are complete. Decomposition candidates are selected (d) and incomplete
element groups undergo structural completion (partially revealed by slightly moving the top layer box to the side).

tinet 2007; Wang et al. 2011], their analyses take into account de-
tected symmetries but are not guided by a structural symmetry mea-
sure. Also, these analyses do not consider layering which consid-
erably increases the search complexity and at the same time, sim-
plifies the explanation of certain structures. The recovered shape
grammar only consists of rewriting rules which re-generates and
re-distributes structural elements in a single layer.

Many works on symmetry analysis rely on a symmetry measure.
When detecting prominent reflectional symmetries in a shape, one
often measures the extent a given shape is reflectionally symmet-
ric with respect to a given axis by the extent of overlap between
the shape and its reflection [Kazhdan et al. 2004; Simari et al.
2006; Podolak et al. 2006]. To the best of our knowledge, exist-
ing symmetry or asymmetry measures, like the one above, only
apply to an individual shape. In contrast, our integral symme-
try measure applies to a set of elements and integrates inter- and
intra-element symmetries. Moreover, existing continuous symme-
try measures [Graham et al. 2010] focus on computing the “effort”
it takes to bring a shape into perfect symmetry and as such, they are
more suited to shapes that are close to being symmetric.

An increasing number of works modify or generate new man-made
structures from exemplars where efforts are invested to preserve the
input structures, in particular the symmetries or nearly perfect grid
structures therein [Harada et al. 1995; Aliaga et al. 2007; Wu et al.
2010; Bokeloh et al. 2012]. Early work by Harada et al. [1995] ex-
plores design spaces specified by a given shape grammar based on a
mixed continuous-discrete model. Most recent work of Bokeloh et
al. [2012] develops an editing tool which adapts the structure of the
input, while dealing with translational repeated patterns only. The
work of Lin et al. [2011] demonstrates the importance of hierarchi-
cal models in structure-aware retargeting of irregular architecture.
However, their hierarchical model was constructed manually. Even
layered facade synthesis had appeared before, e.g., in Parisk and
Müller [2001], via semi-automatic composition of texture layers.
Our work allows automated structural analysis of irregular facades
of a much richer variety and the analysis results facilitate several
applications including retargeting.

3 Structural analysis

In this section, we describe our structural facade analysis algorithm
via symmetry maximization. The symmetry measure which defines
the objective of the optimization is described in Section 4.

3.1 Overview

Input. With a focus on structural analysis, our algorithm oper-
ates on a structural abstraction of facade images. We call it a box
abstraction as it consists of a set of axis-aligned 2D boxes tightly

enclosing the basic structural elements of a facade; see, e.g., Fig-
ures 2(a) and 3(b). We develop a semi-automatic tool to obtain the
initial set of boxes from a facade image; see Section 3.2.

Element groups. An element group is formed by a set of well-
aligned boxes whose content repeats. Such a group is either a com-
plete or partial regular grid, but it must be maximal, i.e., one cannot
extend the group using an extra box; see Figure 3(c). In this paper,
we only consider element groups conforming to regular rectangular
grids. Element groups are identified by the interactive tool.

Candidate selection. Even for an input with a moderate number
of boxes, the total number of all possible split and layering opera-
tions is very large. We reduce the cost of optimization by producing
a restricted set of candidate decompositions which form the search
space. Candidate selection follows the law of grouping by regu-
larity. Constraints are defined based on the element groups; see
Figure 3(c)-(d). More details are provided in Section 3.3.

Hierarchy optimization. Starting from the input box abstraction,
we recursively decompose its bounding box together with the set
of boxes therein. The box abstraction within each resulting box is
referred to as a substructure. Our objective is to find a hierarchical
binary decomposition which maximizes the sum of symmetry of
the substructures in the hierarchy. Even after restricting the search
to only the candidate decompositions, the total number of decom-
position trees is still very large, making the optimization problem
computationally intensive. In our work, we pursue a heuristic solu-
tion and resort to genetic algorithms. We evolve the solution space
by top-down probabilistic generation of decomposition hierarchies,
where a sampling bias is introduced by our symmetry measure. The
fitness function is defined by the optimization objective. Section 3.4
provides more details on structural decomposition.

3.2 Interactive box abstraction

Given a facade image, we construct an axis-aligned box abstrac-
tion. Each box tightly encloses an atomic element of the facade,
e.g., a window or balcony, which is indivisible throughout the anal-
ysis. Restricting the analysis to axis-aligned structures simplifies
low-level feature analysis, while still allowing a large variety of fa-
cades to be studied. Computing the abstraction requires detection
of atomic elements and their repetitions. We had experimented with
existing schemes for automatic facade segmentation, e.g., [Teboul
et al. 2011; Shen et al. 2011], but found the results on irregular fa-
cades to be less than satisfactory. Hence, we have developed an
interactive tool for box abstraction.

In iterative fashion, the user draws a tight bounding box over a seed
(atomic) element. The box is then slid horizontally to interactively
search for similar enclosed content as the seed over the entire input
image. Automatic matching relies on normalized pixel-wise square



Figure 4: Examples of invalid decompositions becoming valid af-
ter other decompositions (a-c). (d)-top: two incomplete element
groups partially cover each other. (d)-bottom: two complete groups
without any partial coverage. Both cases in (d) show interleaving
groups and either group can be a top layer candidate. (e): no valid
splits can explain the structure as five grids as shown.

difference to measure box-to-box (content) similarity. To tolerate
a higher degree of appearance variation among repeated elements,
we allow the user to draw scribbles over these elements to localize
the search: the matching window must contain the scribbles. At the
end, the user has the option to further adjust the abstraction results.
All the boxes that are deemed to be repetitions of each other are
shown in the same color, e.g., see Figure 3(b). The accompanying
video demonstrates the interactive tool.

3.3 Decomposition candidate selection

Given a box abstraction, we first identify the element groups. If
a group represents an incomplete grid, we apply structure com-
pletion so that the completed grid is evaluated during symmetry-
driven hierarchy optimization. The spatial arrangement of the ele-
ment groups determines where box splits and layering may occur,
resulting in a set of decomposition candidates; see Figure 3(d).

Element groups. With the atomic elements at the lowest level,
element groups are the next higher-level structural primitives. In
our analysis, repetition detection is executed entirely in the inter-
active box abstraction step. If an atomic element does not have a
sufficiently similar counterpart, it forms an element group by itself.
In most cases, a set of repeated boxes detected via box abstrac-
tion already form an element group. The user also has the option
of specifying new box groupings interactively by drawing virtual
boxes on top of the facade image. Of course, automatic scheme for
grid detection, e.g., [Pauly et al. 2008], can also be employed.

Structure completion. Given an incomplete element group, i.e.,
a rectangular partial grid, it is fairly straightforward to fill in the
missing elements to form a complete and approximately regular
grid. The regularity is only approximate since in general, the empty
space for fill-ins does not allow a perfectly regular spacing between
all elements in the group. We insert new elements in a way to en-
sure alignment (if needed) and minimize the discrepancies in the
spacings, similarly to schemes for distributing repeated elements in
retargeting applications [Wu et al. 2010; Lin et al. 2011].

Coverage between groups and depth order. The incomplete-
ness of an element group G1 is caused by some elements from an-
other group G2 interrupting the regularity of G1 as a complete reg-
ular grid. In other words, some element of G1 is “occluded” by
some element of G2. In this case, we say that G2 partially covers
G1. IfG1 is partially covered byG2 but not vice versa, then we say
that G2 (completely) covers G1. In this case, there is a clear depth
order between the two groups: G2 is in front of G1. Coverage
relations induce layering and help us select layering candidates.

Principles of candidate selection. There are two key principles
behind our selection of valid decomposition candidates:

P-1: An element group, which is perceived as a whole by Gestalt
law of perceptual grouping, cannot be divided into two com-
ponents by a valid decomposition.

P-2: Candidate selection is carried out recursively.

Hence the selection of validity decompositions is confined to the
substructure being analyzed. The selection is made among all pos-
sible decompositions appropriate for the substructure, following
principle P-1. Note that a decomposition may be invalid in the cur-
rent substructure but becomes valid further down in the decompo-
sition hierarchy, as shown in Figures 4(a)-(b).

Layering candidates. A layering operation splits a flat substruc-
ture, along the depth direction, into two overlapping layers. Fol-
lowing principle P-1, given a substructure T , any subset of element
groups belonging to T can form a layering candidate for T . How-
ever, this results in an exponential number of layering candidates.
We reduce the candidate set by examining the coverage relation be-
tween element groups. Given two element groups G1 and G2, we
consider the following cases:

1. G1 coversG2 orG2 coversG1, e.g., Figures 4(a-2) and (c-2).

2. G1 partially covers G2 and vice versa;

3. neither element group partially covers the other, but the
bounding boxes of G1 and G2 intersect.

Clearly, in all other cases, the bounding boxes of G1 and G2 do
not intersect, thus no layering between them should happen. Case
2 implies that G1 and G2 are both incomplete groups; see Fig-
ure 4(d)-top. This case is quite rare in real-world facades; in fact,
we have not found any real-world examples in our dataset. Case 3
implies that both G1 and G2 are complete groups; see Figure 4(d)-
bottom. Cases 2 and 3 are both examples of interleaving element
groups and a coverage relation between the groups cannot be de-
termined — it is a “tie”. When selecting layering candidates, we
only consider element groups that either cover or interleave other
groups. Any subset of such groups can form a layering candidate.

Split candidates. A split divides the current substructure into
two non-empty and non-overlapping substructures. In our analysis,
we require each split to go across the horizontal of vertical extent
of the bounding box. Principle P-1 above implies that splits should
only serve to separate different element groups without dividing
any other group. Hence, a split on a substructure T is valid if it
does not intersect the bounding box of any element group belong-
ing to T . Figure 3(d) and Figures 4(a)-(c) show a few characteristic
examples of valid and invalid decompositions.

3.4 Optimal hierarchical decomposition

Given a box abstraction, we search for the optimal hierarchical bi-
nary decomposition via symmetry maximization. Construction of
a hierarchy is top-down and the search at each node is restricted to
the set of decomposition candidates appropriate for the substructure
at that node. The decomposition stops when the substructure needs
no further explanation, i.e., it is an element group.

The key measure in the optimization is a symmetry score defined
for each decomposition; this is defined in Section 4. The objective
function is the sum of symmetry scores of all interior nodes of a
decomposition hierarchy. Hence the optimization problem is:

argmax
T : a hierarchy

∑
n : an interior node of T

SymScore(n). (1)



Figure 5: Resolving depth among multiple overlapping element
groups where evaluation layering operations. Four groups (ab-
stracted as boxes) with L0 as the top layer for a decomposition (a).
Removing L0 leaves a gap (b). Structure completion after tempo-
rary depth resolution, which is based on a simple heuristic: element
groups with smaller areas go in front.

The most straightforward approach to symmetry maximization is
greedy optimization, where at each node, we seek the decomposi-
tion which maximizes the symmetry score. However, to alleviate
the local minima problem, we employ a genetic algorithm.

Genetic algorithm. The genetic algorithm operates on an evolv-
ing population composed of decomposition hierarchies (trees). To
start, we sample s = 30 trees to form the initial population.
Stochastic construction of a sample tree is preformed top-down.
Starting at the root and recursively down the tree, we apply impor-
tance sampling at each node based on the symmetry scores defined
for all the candidate decompositions — higher probabilities are as-
signed to candidates with higher symmetry scores.

Tree mutation occurs at a random node and replaces the current de-
composition by another randomly chosen candidate. Once a node is
mutated, its subtree is updated via top-down importance sampling.
Crossover is performed between two trees by exchanging two sub-
trees rooted at identical substructures. To evaluate the fitness of a
tree, we use the objective function of our optimization. We execute
a steady-state genetic algorithm to evolve the tree population for
g = 25 generations, where the top 50% most fit trees are migrated
from the current generation to the next. The remaining population
is filled with newly created trees via mutation and crossover.

Lazy structure completion. While structure completion for an
individual element group is straightforward, the problem of how
to structurally complete the “occluded” space left after a top layer
is removed is generally quite difficult. The difficulty arises only
when three or more element groups are overlapping each other. Fig-
ure 5(a) shows an example with four such groups, where L0 repre-
sents the top layer for a decomposition n. To evaluate the symme-
try of the bottom layer, we need to fill in the “gap” by resolving the
depth order among L1, L2, and L3. One could formulate the prob-
lem as finding the order leading to the most symmetric completion.
This is however a global optimization problem.

We take a lazy approach (as in lazy evaluation) by relying on a sim-
ple heuristic: the group whose bounding box has the smaller size
is always in front; see Figure 5(c). The resulting depth order leads
to a temporary completion so that the symmetry score at n can be
computed. Importantly, once a full tree is constructed, the depth or-
der among all groups, including L1, L2, and L3, is resolved based
on symmetry maximization. Now we re-compute all the symmetry
scores based on the actual depth order and the structural comple-
tions implied from it. The genetic algorithm then uses the accurate
fitness score for the solution search. This shows another advantage
of using genetic algorithm over greedy optimization.

Simplest explanation. Recall that our explanation of a facade
structure goes no further than a regular grid. Since each decom-
position tree T considered in our optimization terminates at a set
of maximal regular grids (they are the element groups), it is not
difficult to show that T would terminate the “fastest” in that it re-

Figure 6: Plots of symmetry profiles. (a-b) Profiles of intra-, inter-
box symmetries, and their integration with centricity, for two simple
box patterns of the types “AHA” (top) and “AAH” (bottom). (b) A
more complex pattern and its symmetry profile.

quires the minimum number of decompositions. In other words,
T always provides the simplest explanation in our terminology. In
fact, all the trees considered in our search contain the number of
nodes, 2g − 1, where g is the number of element groups. In this
case, symmetry maximization works exclusively for the objective
of finding the most perceptual decomposition. However, without
restricting our optimization to the candidate decompositions based
on the element groups, the search space would contain trees of dif-
ferent sizes. Symmetry maximization would then work for both of
our objectives: most perceptual and simplest explanation. In Sec-
tion 6, we show findings from such an “optimization alternative.”

4 Symmetry measure

In this section, we first define integral symmetry, a continuous sym-
metry measure applicable to a standalone box abstraction. We then
define the symmetry score which forms the objective function of
our hierarchical decomposition; see Section 3.4. The symmetry
score evaluates the symmetry of two substructures resulting from
a structural decomposition; it combines the integral symmetries of
the two substructures, with proper normalization.

4.1 Integral symmetry of box abstraction

The basic idea of integral symmetry is to sum up intra- and inter-
box symmetries in a box abstraction. It is not measuring global
symmetry but takes into account all partial symmetries. Since any
two vertically or horizontally translated (empty) boxes are reflec-
tionally symmetric, there is a strong coupling between the transla-
tion and reflection symmetries between the boxes. In our work, we
consider reflection symmetries only, as they allow for a parameter-
ization over the extent of a box abstraction. Taking into account
facade content, we note that in most cases, the atomic elements,
e.g., a window or balcony, have reflectional symmetries as well,
justifying our exclusive focus on reflection symmetries.

To characterize intra- and inter-box symmetries, we define symme-
try profile, a continuous 1D function defined over the horizontal or
vertical extent of the boxes involved. In the following, we only
define the horizontal version; the vertical version is similar.

Intra-box symmetry profile. Let B be an axis-aligned box with
horizontal extent [0, w], where w is the width of B. We define
the symmetry profile, pB(x), of B, x ∈ [0, w], as the area overlap
betweenB and the reflection ofB about the vertical line at position
x. It is easy to see that pB(x) = 2xh if x ≤ w/2 and pB(x) =
2(w − x)h if x > w/2, where h is the height of B. The plot of
pB(x) is a hat function; see Figures 6(a-1) and (b-1).

Inter-box symmetry profile. Consider two repeated boxes B1

andB2, where we recall that only repeated boxes can be symmetric



Figure 7: Ranking between split and layering decompositions
based on NIS sums. Top: split wins. Bottom: layering wins. (a-
3) and (b-3): splits to maximize global reflectional symmetry. Note
differences to the best splits as judged by NIS sum.

to each other. We define the inter-box symmetry profile pB1,B2(x)
between B1 and B2 as the area overlap between B1 and the reflec-
tion of B2 about the vertical line at position x; see Figures 6(a-2)
and (b-2). pB1,B2(x) is parameterized over the horizontal extent of
the two boxes. Clearly, the order between B1 and B2 here does not
matter. We define pB1,B2(x) = 0 if B1 is not a repetition of B2.

Integral symmetry (Int-Sym). Given a box abstraction (a sub-
structure) S, its integrated symmetry profile is simply the sum:

pS(x) =
∑

B1,B2∈S

pB1,B2(x) +
∑
B∈S

pB(x),

where x is over the horizontal extent of S. Figures 6(a-3), (b-3),
and (d) show a few examples.

To measure the integral symmetry of S, we compute a weighted
integral where the weight is a Gaussian function centered at the
mid-point of S. The weight serves to incorporate centricity into
the symmetry measure. Specifically, assuming that the horizontal
extent of S has been translated into the interval [−wS/2,+wS/2]
where wS is the width of S, then the integral symmetry (IS) is

I(S) =
∫ +wS/2

−wS/2

pS(x)g(x)dx,where g(x) = e
− x

(wS/3)2 . (2)

With a fixed bounding box, IS takes on the maximum value when S
is a single (blank) box. Note that (2) is only the horizontal version
of IS definition. We compute a weighted sum of the horizontal and
vertical versions of IS to obtain the IS of a box abstraction.

The use of a weight function is to incorporate spatial information
into the perception of symmetry. With a constant weight, the IS is
unable to differentiate between an AHA pattern and an AAH pat-
tern; it is merely an aggregation of the self-symmetries of the A’s
and H’s and the symmetry between the two A’s. Other factors being
equal, the visual attention tends to be focused on the center of a vi-
sual stimuli [Findlay 1995]. We employ the centricity Gaussian as
the weight function to assign more weights to reflection axes closer
to the center. This way, AHA would be perceived as more symmet-
ric than AAH; see Figure 6. However, the centricity Gaussian is
only one possible way to model visual attention, other factors such
as density, color, etc., may also be considered.

4.2 Symmetry score of decomposition

Suppose that a structure decomposition n produces two substruc-
tures S1 and S2. A first attempt at defining the symmetry score at n
is to take the sum I(S1)+I(S2). However, this measure has a bias
towards a trivial decomposition, e.g., with S1 being a single box for
layering or a narrow strip for split. This is easy to see on a blank
box with dimension w×h. For simplicity, we ignore centricity and
vertical symmetry, then the sum of IS for a split w → w1 + w2 is
(w2

1 + w2
2)h/2, which is maximized when w1 = w.

Normalization. The bias is due to a lack of proper normalization
in the IS. Let us denote the tight bounding box of a substructure S
by β(S). For a split operation resulting in substructures S1 and S2,
we define the following normalized version of the IS sum:

Ns(S1, S2) =
1

2

[
I(S1)

I(β(S1))
+
I(S2)

I(β(S2))

]
. (3)

We call Ns a normalized IS sum or NIS sum. Since for any sub-
structure S, I(S) ≤ I(β(S)),Ns lies in the interval [0, 1].

For a layering operation resulting in top layer S2 and bottom layer
S1, we define a slightly different NIS sum:

Nl(S1, S2) =
I(S∗1 ) + I(S2)

I(β(S1)) + I(β(S2))
, (4)

where S∗1 is the box abstraction obtained from S1 after structure
completion (see Section 3.4). The difference to the normalization
in (3) is due to the imbalanced roles played by the two layers: β(S1)
always contains β(S2). The normalization in (4) also putsNl in the
interval [0, 1]. Both NIS sums alleviate the bias issue with the IS
sum mentioned above. For example, the NIS sum for any split or
layering applied to a blank box is the constant 1.

Figure 7 compares Ns, Nl, and a split strategy based on maximiz-
ing normalized global symmetry (NGS). We replace IS in (3) by a
GS measure where the GS of a box abstraction S is the area over-
lap between S and its reflection about the center line, horizontal or
vertical. The final GS measure takes the maximum of the two.

Symmetry score. We define the symmetry score at node n in
a decomposition hierarchy T by scaling its NIS sum by I(β(S)),
where S is the substructure stored at node n. Such a scaling assigns
more weights to nodes higher up in T during symmetry maximiza-
tion. Let S1 and S2 be the children of S in T , then

SymScore(n) = SymScore(S) = N (S1, S2) · I(β(S)), (5)

whereN = Ns orNl, depending on the decomposition type.

5 Applications

A structural understanding enables applications which process or
manipulate facade images at a higher and more semantic level than
appearance-based approaches. This capability is further strength-
ened by a hierarchical model. In this section, we develop three
applications which strongly utilize our analysis results.

5.1 Structural facade editing

Our structural editing strategy for 2D facades is straightforward.
The user is provided with a few options to alter the structural repre-
sentation we obtain, resulting in structural and geometric changes
to the box abstraction. The facade content is retargeted based on the
dimensional changes of the boxes. Finally, a facade image is gener-
ated via instantiation. The user is free to choose any hierarchy level
of the structural representation for structural editing.

Editing operations. The structural editing application we de-
velop is not meant to be even close to a full-fledged facade editor;
that is beyond the scope of this paper. Our goal is to demonstrate the
utility of our analysis results. With this spirit, we only implement
two editing operations (see Figure 8):

• Moving a box split line: This leads to resizing of the two sub-
structures about the split line, thus two retargeting operations.
We describe the retargeting application in Section 5.2.



Figure 8: Two structural editing operations. Editing of structural
representation and instantiated output facades are shown.

• Moving a layered box: A top layer may be translated within
the confines of the bounding box of the bottom layer. Such a
translation would leave holes on the bottom layer that need to
be filed. We achieve this by structure completion which relies
on the depth order implied by the result of our analysis. Any
facade element occluded by a top-layer box is simply deleted,
where occlusion relations are determined by the depth order.

Instantiation. To better illustrate the editing results visually, we
instantiate all the boxes as well as the the wall with image content.
First, we instantiate the final wall box by cutting off all the fore-
ground boxes and filling the holes. In our implementation, we ex-
ecute user-assisted hole filling by copy-and-pasting image patches.
Note that this semi-automatic step is performed only once. Instan-
tiation of the foreground boxes is automatic. To achieve that, recall
that each foreground box B in the input box abstraction encloses a
rectangular patch of the input facade image. The image content in
B may be slightly scaled or duplicated (during retargeting). After
editing, the image content of all the foreground boxes are simply
painted onto the wall in back-to-front order. To obtain such an or-
der, we again rely on the structural representation.

5.2 Facade retargeting

We only consider axis-aligned resizing of boxes and focus on ef-
fects of structure retargeting without attempting to resolve all finer-
level artifacts that are common to image retargeting. Starting from
the root and recursively, as a box is resized, its two child boxes are
resized to retain their relative positioning and proportions. Thus
facade retargeting reduces to the resizing of leaf boxes that con-
tain element groups. Since each element group corresponds to a
rectangular grid, retargeting only involves readjusting spacing, box
counts, and dimensions to best fit a new grid. To this end, we fol-
low a scheme that is similar to that of [Wu et al. 2010]. Occlusions
between layers are handled in the same way as in editing.

Retargeting of irregular facades would not have been possible with-
out a hierarchical organization of the facade elements. Compared to
the structure-aware retargeting of Lin et al. [2011], our scheme op-
erates on rectangular grids rather than 1D structures with heavy use
of box-to-box alignment. General alignment detection and enforce-
ment during retargeting are both beyond the scope of this paper.
Currently, we require the user to specify pairs of elements that need
to be aligned. This is propagated to their element groups. Group-
to-group alignment and then box-to-box alignment then follow the
scheme described in Lin et al. [2011].

Finally, we allow a group of elements to be locked so that they are
not scaled. For example, when vertically elongating a facade the
user may not want to stretch the first floor with a door. The user
scribbles over elements to be locked (see Figure 11). The locking

constraints are propagated to the element groups. If both children
of a node are locked, the node is locked and the locking constraint
is passed up the tree. For a node with only one child locked, retar-
geting is applied to the unlocked child only.

5.3 Structural facade exploration and retrieval

The facade exploration tool we develop is based on structural rep-
resentations obtained from our analysis. We pre-analyze a given
database of facades to obtain their structural representations. The
user sketches a query facade structure, a box abstraction, which is
analyzed using our algorithm on-the-fly, producing a query struc-
tural representation. The user is allowed to create a global bound-
ing box and other boxes therein (layering), to split a box, to move a
split line, and to move a top-layer box. The query is compared to all
the stored representations using a tree-to-tree similarity distance.

The tree-to-tree distance is adopted from [Torsello et al. 2005],
which is computed recursively based on a node-to-node distance for
only the leaf nodes. In our case, the leaves correspond to element
groups. To compare two element groups, we first normalize their
bounding boxes and then measure the Hausdorff distance between
the two sets of boxes.

6 Results and evaluations

Our experiments are conducted on a database of 600 facade images
collected from various sources (mostly online photos). Each image
is properly cropped and processed into a box abstraction using our
interactive tool. It took about 8 hours to process the whole database.
The facades vary greatly in structural complexity and irregularity.
The whole collection can be viewed in the supplementary mate-
rial and all data will be made publicly available. This section only
presents a sampler of results. For many more results and demon-
strations, e.g., on facade editing and interactive exploration, please
refer to the video and supplementary material.

Analysis results. A few representative results can be found in
Figure 9, where we show the real-world facade, box abstraction,
and optimal hierarchical decomposition found. Our analysis is seen
to obtain succinct explanations of the underlying facade structures
in most cases, especially with the possibility of layering. Results
in (a), (b), (d), and (f) are all on globally asymmetric facades with
varying degrees of irregularity. Figure (e) shows that symmetry
plays the dominant role by grouping seemingly distance elements.
Some editing and retargeting results based on these analyses are
shown in Figures 10 and 11, respectively.

Parameters. All the analysis results were obtained using the
same parameter setting. Weights for horizontal and vertical com-
ponents of the IS measure are both 0.5. Key parameters for the
genetic algorithm can be found in Section 3.4, while the others all
take the default setting from the available C++ library GAlib.

Statistics and timing. Our analysis algorithm operates on the
box abstractions and the optimization is restricted to the candidate
decompositions. A typical building facade contains between 5 and
20 element groups. The root node of a tree contains the largest
number of candidate decompositions, which is between 8 and 40,
for our dataset. The time consuming aspect of the analysis is the
evolution of the tree population. The total analysis time ranges be-
tween 20 to 160 seconds over all tests. Structural editing and facade
exploration are both performed in real time.

Evaluation of integral symmetry. The integral symmetry (IS)
measure plays a key role in our analysis. It is difficult to objectively



Figure 9: Analysis results on real-world irregular facades (left). The right most image in each set is a collapsed view of the resulting
structural representation. The middle sequence shows the optimal hierarchical decomposition obtained. A current split line is shown in red
and layered box in light blue border; both colors turn to black in the next level of the hierarchy.

Figure 10: Some facade editing results. Alteration of structural
representations and instantiated facade images are both shown.

evaluate the measure — the ultimate goal is to mimic human per-
ception. To this end, we conducted a user study. We prepared a set
of symmetry ranking tests. In each test, a user is presented with a
pair of box abstractions. The user is asked to tell which one of the
two patterns is more symmetric and provide a confidence value, on
a scale of 1 to 5 (high confidence), for the judgement. All the user
study materials can be found in the supplementary material.

We measure the confidence-weighted accuracy score as the percent-
age of winning pattern pairs on which the IS ranking agrees with
the user symmetry ranking. One winning pair contributes c/5 to

Figure 11: Retargeting results with locking constraints (blue scrib-
ble: vertical locking; red scribble: horizontal locking).

the computation of the score, where c is the user-reported confi-
dence value for that pair. We collected ranking results on 46 pairs of
box patterns from 15 users. The accuracy score obtained is 88.4%,
which positively demonstrates the potential of the measure.

Evaluation of symmetry-driven decomposition. Objectively
evaluating our symmetry-driven analysis is also difficult. Hence
we rely on user feedback again. We had considered asking partici-
pants to examine full trees which represent the decompositions, but
the task proved to be too demanding. The current study breaks the
problem down and asks the user to examine individual decomposi-



Figure 12: Facade retrieval results on two queries using three dif-
ferent methods. Top three returns are displayed. Note that our tree-
to-tree distance is invariant to left-right switching.

tions and compare our algorithm to two other alternatives. The first
is to find the split which maximizes the normalized global (reflec-
tional) symmetry measure (NGS), as described in Section 4.2. The
second scheme is an adaptation of graph-cut segmentation (GCS)
to box abstractions. It is important to note that in this comparison,
we allow arbitrary splits beyond the candidates selected based on
element groups, for all three methods. Detailed explanation of NGS
and GCS schemes can be found in the supplementary material.

In the study, each user is presented with a series of binary-choice
questions. Each question asks the user to choose one of two decom-
positions of a query facade substructure (randomly chosen from
those tested in our experiments) that represents the “best high-level
explanation” of the substructure. One of the two choices is the de-
composition based on our symmetry score and the other is the result
from either GCS or NGS. The study starts with a detailed introduc-
tion to structural decomposition and the two operations, split and
layering, with examples. We measure the success of our approach
by counting the percentage of user returns where the user chose our
decomposition — this counts as a “win” for our symmetry score.

The study collected data from 45 participants. They returned an-
swers to a total of 600 questions each comparing our method to
GCS and NGS, respectively. Against GCS, we obtain a winning
percentage of 73.2% and against NGS, we obtain 79.4%. In our
studies, 75% of the participants are computer science teachers and
graduate students, between 20 and 50 years of age. Some had ex-
periences with image processing research. The others are frequent
computer users with varying careers and backgrounds.

Facade retrieval. We use our structural representations as
queries for structure-driven facade retrieval. Figure 12 shows a
sampler of results, compared with results using two state-of-the-
art appearance-driven retrieval algorithms that had been applied to
facade images: one based on SIFT [Lazebnik et al. 2006] and one
based on micro-structure descriptor (MSD) [Liu et al. 2011]. Evi-
dently, our representation is able to retrieve structurally similar re-
sults which may differ in finer-level image attributes.

Unnatural result. Some unnatural results, such as the split in Fig-
ure 13(b), may be produced by our analysis. Placing more emphasis
on horizontal symmetry, 0.8 vs. the default 0.5, leads to what may

Figure 13: A unnatural split (b) from our analysis on an irregular
facade (a). A more natural split (c) can be obtained by placing
more emphasis on horizontal symmetry or altering the input (d).

be perceived as a more natural split in (c). Also, altering the input
slightly by expanding the grid on the right results in the more nat-
ural split. Note that our current IS measure accounts for area over-
laps computed for foreground boxes only. Hence, a box abstraction
having more white space tends to have a lower IS value. A care-
ful perceptual study is needed to understand the interplay between
foreground and background on symmetry perception.

Optimization alternatives. As one of the final tests, we check
whether restricting our search to the candidate decompositions pre-
vents us from finding a better hierarchy. On 200 randomly chosen
inputs, we run the same optimization but allow arbitrary splits —
this violates principle P-1 (Section 3.3) and increases the search
space. Then we compare the value of the objective function (1) for
two solutions. The results show that in 87% of the cases, identical
results are obtained, which strongly indicates that the perceptual
law of grouping is reinforced by our symmetry measure. The re-
maining 13% of cases all show minor differences only in the lower
tree levels. Note also that genetic algorithms are stochastic and do
not always find global optima. Running the algorithm for more it-
erations improves on the 87%. Finally, we examine improvements
made by the genetic algorithm over greedy optimization. On the
above 200 inputs, the results show that genetic algorithm obtains
higher value of the objective function (1) in 96% of the cases.

7 Conclusion, limitations, and future work

We develop an algorithm for hierarchical and layered analysis of
irregular facades, seeking a high-level understanding of the facade
structure. The computational approach is a symmetry-driven search
for the optimal binary decomposition hierarchy via a genetic algo-
rithm. The analysis result defines a structural representation, which
can be utilized for facade structure editing and exploration.

Our work is still only a preliminary attempt at the general analy-
sis problem. Currently, low-level analyses including box abstrac-
tion and element grouping are carried out with user assistance. Our
analysis is limited to axis-aligned structures and recursive binary
decompositions. In cases where a multi-way partitioning is the best
explanation, any ordering of a series of binary partitions is likely to
be an artificial one. To consider all possible multi-way decomposi-
tions would increase the search space significantly, thus additional
criteria must be considered to narrow down the search.

Semantics beyond symmetry. We are only utilizing symmetry
cues to drive the structural analysis, while being fully aware that
symmetry alone does not reveal all the semantic information to dis-
ambiguate the search. For example, our symmetry measure charac-
terizes an aggregation while there ought to be cases where promi-
nent local features draw the most attention.

Learning symmetry measures. While the results from our eval-
uations are quite encouraging, the symmetry measures presented
are admittedly still quite limited. For one, the IS measure is only
a single numerical value and one piece of information that can be
extracted from a symmetry profile. Moreover, the normalization



schemes are somewhat ad-hoc without rigorous justification. In re-
ality, there may be a multitude of perceptual factors that affect the
perceived symmetry of a structure or goodness of a decomposition.
Except for our consideration of centricity, the current definition of
IS is quite limited in terms of perceptual considerations; after all,
the ultimate symmetry measure is one that best conforms to human
perception. We believe that an interesting future work would be to
collect the various factors as features and rely on supervised learn-
ing to discover their effects on symmetry perception.

Future work. The most desirable pursuit would be to incorporate
repetition detection and element grouping into the current optimiza-
tion framework. Our analysis is not restricted to 2D facades. We
would like to apply it to document layouts or 3D architectures. Fi-
nally, our approach is purely symmetry-driven and designed to an-
alyze facade structures, not decorative or ornamental architectural
styles. Investigations into how to model generic architectural styles
and incorporate domain knowledge from architects into the analysis
are both interesting avenues for future work.
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