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Figure 1: Simplification of a complex cityscape line-drawing obtained using our Gestalt-based abstraction.

Abstract

We present a method for structural summarization and abstraction
of complex spatial arrangements found in architectural drawings.
The method is based on the well-known Gestalt rules, which sum-
marize how forms, patterns, and semantics are perceived by humans
from bits and pieces of geometric information. Although defining a
computational model for each rule alone has been extensively stud-
ied, modeling a conjoint of Gestalt rules remains a challenge. In
this work, we develop a computational framework which models
Gestalt rules and more importantly, their complex interactions. We
apply conjoining rules to line drawings, to detect groups of objects
and repetitions that conform to Gestalt principles. We summarize
and abstract such groups in ways that maintain structural seman-
tics by displaying only a reduced number of repeated elements,
or by replacing them with simpler shapes. We show an applica-
tion of our method to line drawings of architectural models of var-
ious styles, and the potential of extending the technique to other
computer-generated illustrations, and three-dimensional models.
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1 Introduction

Artistic imagery, architectural renderings, cartography and games
often exploit abstraction to clarify, exaggerate, simplify or empha-
size the visual content. Abstraction is a strategy for communicating
information effectively. It allows artists to highlight specific vi-
sual information and thereby direct the viewer to important aspects
of the structure and organization of the scene. In this paper, we
present an approach to the abstraction of 2D shapes, in particular
those of architectural models. Our approach to abstracting shape
directly aims to clarify shape and preserve meaningful structures
using Gestalt principles.

The well-known Gestalt principles by Wertheimer [1923], reflect

strategies of the human visual system to group objects into forms
and create internal representations for them. Whenever groups of
visual element have one or several characteristics in common, they
get grouped and form a new larger visual object - a gestalt. Psychol-
ogists have tried to simulate and model these principles, by finding
computational means to predict what human perceive as gestalts in
images.

The notion of Gestalt is very well-known and widely used in var-
ious fields. In particular, it explains the tendency of the human
visual recognition to form whole shapes and forms just from bits
and pieces of geometric information. Naturally, Gestalt principles
have been used in computer vision, primarily in context with object
recognition and scene understanding. In computer graphics, Gestalt
principles have been applied to a variety of applications, like scene
completion [Drori et al. 2003], image and scene abstraction [Wang
et al. 2004; Mehra et al. 2009], stroke synthesis [Barla et al. 2006;
Ijiri et al. 2008] and emerging images generation [Mitra et al. 2009].
In general, these works rely on discrete Gestalt principles, but none
addresses the complex interactions emerging from the multitude of
Gestalt principles operating simultaneously.

A difficult problem while dealing with gestalts is the conjoined ef-
fect of two or more Gestalt principles operating at the same time
on the same site. Modeling gestalts in such cases is especially
challenging due to the complexity and ambiguity of the scene. Re-
cently, attempts to discover how grouping principles interact were
made in psychology and computer vision [Desolneux et al. 2002;
Feldman 2003; Cao et al. 2007; Kubovy and van den Berg 2008].
These works model limited gestalt interactions, by finding com-
putational means which are physiologically plausible. Kubovy and
van den Berg [2008] explore the quantification of perceptual group-
ings formed conjointly by two grouping principles: similarity and
proximity. Nevertheless, providing general computational means
for modeling the interaction of multiple Gestalt principles remains
a difficult challenge.

In this paper, we take a first step in developing a computational
model for conjoining Gestalt rules. We model a subset of Gestalt
rules and their mutual interaction for abstracting architectural line
drawings. We choose to focus on architectural drawings since typ-
ically their visual elements are of rather low complexity and their
spatial arrangement is strongly biased to the main axes (due to en-
gineering considerations). Hence, architectural drawings consist of
prevalent similarities, proximities and regularities among their el-
ements, forming complex grouping configurations that can be de-
scribed by Gestalt principles and their interaction. These rules de-
fine various perceptual scene groupings, naturally lending them-
selves to simplification and abstraction of architectural drawings.
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Figure 2: Conjoining gestalts (from Kanizsa [1980]). Overlapping (a): white dots are elements of the grid (regularity) and simultaneously
belong to a curve (continuity). Conflicting (b): continuity principle of two closed curves (b-left) conflicts with the symmetry principle (b-right).
Masking (c): the basis of the triangle becomes invisible as it is embedded in a group of regularly parallel lines.

Interacting gestalts rules cast a difficult problem since they oper-
ate simultaneously on common sites. They can compete, conflict,
overlap, and mask with each other yielding complex visual phe-
nomena. Up to now, psychologists are still studying how exactly
multiple Gestalt principles interact. It is not in our scope to study
the human visual system under these complex phenomena. Our
goal is to quantitatively model and apply conjoining rules with re-
spect to a specific type of data. Specifically, we propose a com-
putational framework to facilitate the integration of five principal
Gestalt rules, namely similarity, proximity, continuity, closure, and
regularity, and then apply it to the abstraction of architectural line
drawings. Due to the grouping nature of Gestalt rules, we formulate
abstraction as a grouping optimization problem. The additive nature
of Gestalt principles interactions (i.e., gestalts combine additively
as showed in [Elder and Goldberg 2002; Feldman 2003; Kubovy
and van den Berg 2008]) is modeled by a multi-label normalized
graph cut formulation.

We apply conjoining Gestalt grouping rules, inspired by the com-
putational model of Kubovy and van den Berg [2008]. We develop
a global energy function that relates grouping strength, number of
disjoint groups and inter-part characteristics to Gestalt principles.
The minimal energy defines a global segmentation into disjoint
groups while accounting for metrics that measure grouping in terms
of Gestalt rules. The set of elements grouped is then abstracted by
means of replacing them with simplified or abstract representatives.
Our method computes a progressive series of abstractions from the
finest, most detailed drawing, up to the coarsest most abstracted one
(see Figure 1).

Our framework naturally lends itself to efficient abstraction of ar-
chitectural line drawings conforming to perceptual grouping con-
cepts. We demonstrate that our method succeeds in generating ab-
stractions of architectural drawings which mimic the work of skill-
ful artists. We also extend our method and show some basic results
on mosaics and 3D buildings which are other families of objects
that consist of discrete elements. The effectiveness of our method
is evaluated by representing drawings in a range of scales, compar-
isons with previous methods and a user study.

2 Related Work

Perceptual Gestalt Grouping. Gestalt psychology is a theory on
how humans perceive forms (figures or objects) instead of a collec-
tion of simple lines and curves. Wertheimer [1923] establishes the
well-known Gestalt principles that describe strategies how human
vision groups objects into forms. While early psychological stud-
ies focused mainly on qualitative and empirical studies, more recent
psychological works study quantitative aspects of Gestalt principles
and their conjoining. Desolneux et al. [2002] and Cao et al. [2007]
formulate probabilistic quantities for distinctive Gestalt rules and
utilize them for detecting collinearity, regularity and proximity in

images. In his work, Feldman [2003] suggests a hierarchical rep-
resentation for modeling proximity and collinearity grouping prin-
ciples. He applies a minimal model theory for selecting the best
grouping interpretation, preferring a maximally explained group.
Kubovy and van den Berg [2008] present a probabilistic model for
measuring proximity and similarity grouping quantities. Similar to
us, they analyze and model the conjoint effect of grouping princi-
ples operating simultaneously. Nevertheless, their work focuses on
interaction of only two principles performing on simple dot lattice
configurations, while our goal is to provide a generic framework for
resolving conjoining gestalts in the context of architectural abstrac-
tion. Claessens and Wagemans [2008] present a Bayesian model
for contour detection using proximity and collinearity grouping. In
contrast to ours, their method handles simplified interactions be-
tween two gestalts that perform as independent variables on dot
lattices. In recent work by Cole et al. [2008; 2009], the authors
study the correlation between shape conveying hand drawn lines
and specific 3D shape features. Their work quantifies the strength
of different line drawings at depicting shape.

Abstraction and Simplification of 2D Content. Gestalt effect is
highly related to abstraction and simplification. By understanding
how a collection of details aggregates, we can replace this collec-
tion with a simpler, coarser or abstract representation, while pre-
serving the original semantics. In computer graphics and vision,
Gestalt principles have been studied in the context of simplification
and abstraction in several works. We focus here on works which
address simplification using perceptual principles.

In an early work, DeCarlo and Santella [2002] compute image ab-
straction by preserving meaningful structures using an eye tracker
to assist their image analysis. In their work, Mi et al. [2009] com-
pute a decomposition of 2D shapes into parts using shape symme-
tries. Abstraction is achieved by removing parts according to their
size.

A large amount of work exists on abstraction of line drawings.
In the context of perceptual abstraction, Grabli et al. [2004] sim-
plify line drawings using a complexity measure which accounts for
stroke density and regularity variations. Nevertheless, the interre-
lations between density and regularity is not addressed. Barla et
al. [2005; 2006], present algorithms for line drawing simplifica-
tion and synthesis based on perceptual line grouping, accounting
for proximity, color and continuation principles. Nevertheless, line
stroke pairs are clustered greedily by selecting line pairs that satisfy
one or more principles. Shesh and Chen [2008] present an efficient
proximity measure for dynamic line grouping and simplification.

Perceptual grouping for synthesis purposes has been investigated
recently. Ijiri et al. [2008] study element arrangement patterns by
analyzing the relations between neighboring elements for the pur-
pose of texture synthesis. Hurtut et al. [2009] perform analysis
of element appearance for synthesizing 2D arrangements of stroke-



based vectors. In their work, they measure the appearance of ele-
ment qualitatively using a statistical model for finding meaningful
appearance features.

Besides abstraction of 2D image content, one can also perform ab-
straction and simplification in other domains. Wang et al. [2004]
perform abstraction of video sequences by semi-automatic segmen-
tation of semantical contiguous volumes. In a recent work Mehra et
al. [2009] create envelope shapes for complex 3D objects to guide
their simplification.

Although these works address perceptual principles for simplifica-
tion, they do not address the complex interrelations emerging from
conjoining Gestalt principles using a computational model.

Abstraction of Architectural Drawings. Our motivation of uti-
lizing conjoining Gestalt rules is for simplification of architectural
drawings. Several works deal with abstraction and simplification of
buildings and urban scenes for improving, clarifying and emphasiz-
ing the urban data. They play an important role in many location-
based services, navigation and map generation applications (e.g.,
tourist maps).

Sidiropoulos and Vasilakos [2006] explore visualization methods
for digital city representations. In their work they discuss var-
ious symbolic and realistic representations for urban visualiza-
tion. Grabler et al. [2008] simplifies building appearance to de-
emphasize less important buildings and reduce the complexity of
tourist maps. Building complexity is measured using rectangular-
ity and normals variation while simplification is performed using
proximity of facets. Adabala et al. [2007; 2009] compute stylized
maps and abstractions by straightening edges and modeling a fa-
cade detail variation (i.e., windows) using a combination of peri-
odic “facade waveforms”. Similarly, Loya et al. [2008] compute
periodic features of building facades using Fourier series and ren-
der a reduced pattern to obtain simplification. In our work we uti-
lize similar periodic waveform for modeling regular groups in the
input. Finally, to improve perception of complex city areas, Glan-
der et al. [2008; 2009] present a hierarchical abstraction in which
buildings and streets are merged and removed by their proximity
and size.

Although the above works consider implicitly, perceptual principles
for architecture abstraction, our work is the first attempt to explic-
itly employ conjoining Gestalt rules for architecture abstraction. In
the next section we describe our method in detail. Section 3 defines
the Gestalt principles and their conjoining interactions. In section
4, we define quantitative measures for grouping elements to one
or more gestalts. Section 5 describes our graph-cut formulation
for modeling conjoining gestalts and Section 6 presents our sim-
plification procedures for abstraction of Gestalt groups. Finally, in
Section 7, we present our results, perform a user study and con-
clude.

3 Gestalt Basics and Interrelations

Gestalt principles describe how humans recognize a group of fine
elements as a larger aggregate entity. This suggests that we can for-
mulate the Gestalt phenomenon as a grouping problem and solve
for an optimal grouping. We choose to model in this work a subset
of Gestalt principles common in architectural drawings: similarity,
proximity, continuity, closure, and regularity. These grouping prin-
ciples are defined qualitatively in psychology as follows:

• Similarity - parts which share visual characteristics such as
shape, size or orientation can form a perceptive group.

• Proximity - parts which are closer together can be regarded as
one group.

Figure 3: Conflicting case 1: vertical (left) vs. horizontal (right)
regularity gestalts. In top-left subfigure, vertical regularity is mask-
ing the horizontal one due to higher density. In top-right subfigure,
horizontal regularity overrules the vertical due to an equal den-
sity although a larger group. Bottom row shows our grouping re-
sults(blue).

Figure 4: Conflicting case 2: vertical regularity (left) vs. proximity
(right) gestalts. In top-left subfigure, vertical regularity is masking
proximity due to its strong regularity. In top-right, proximity over-
rules vertical regularity due to the stronger proximity. Bottom row
shows our grouping results (blue).

Figure 5: Conflicting case 3: proximity (left) vs. shape similarity
(right) gestalts. Top-right, shape similarity is masking proximity
due to two groups of very similar shapes. Bottom row shows our
grouping results (blue).

• Regularity - parts which are regularly spaced are seen as be-
longing together.

• Continuity - preference for continuous shapes, thus seeing
aligned disjoint elements as one group.

• Closure - if enough shape is indicated, the whole is obtained
by filling missing data, thus closing simple figures.



Figure 6: Progressive abstraction of a complex facade based on conjoining gestalts. Zoom-ins of two different regions demonstrate our
preservation of meaningful structures.

Gestalt principles are stated as independent grouping rules as they
start from the same building elements. When interactions be-
tween grouping rules occur (denoted as conjoining gestalts), the
same scene might have different interpretations, which can lead
to perception of sometimes incompatible groups in a given figure.
The challenging phenomena of conjoining Gestalt principles were
studied in the seminal work of Kanizsa [1980], where conjoining
gestalts are described as gestalt principles in an equilibrium, strug-
gling to give the final figure its organization (see Figure 2). The
three cases psychology mentions are:

1. Overlapping: Two grouping principles act simultaneously on
the same elements and give rise to two overlapping groups.

2. Conflicting: Both grouping principles are potentially active,
but groups cannot exist simultaneously. Therefore, none of
the grouping principles wins clearly leading to ambiguity as
viewers can see both groupings.

3. Masking: Two conflicting grouping pricniples compete and
one of them wins. The other one is inhibited.

There are many empirical studies on Gestalt behavior, but not many
quantitative ones exist. Quantitative study on the interaction among
multiple Gestalt principles is even scarce [Kubovy and van den
Berg 2008]. Note that different rules may act at different levels
and may interfere with each other. In our work, we quantify the
affinity of an element to a gestalt according to quantitative mea-
sures. The conjoining gestalts interactions are modeled by formu-
lating the spatial relationship among elements as a graph. Our com-
putational model accounts for conflicting and masking interactions
and resolves them by finding an optimal consistent grouping using
a weighted energy minimization scheme. We currently do not han-
dle overlapping since computationally it is difficult to differentiate
from masking and conflicting phenomena.

Figures 3 – 5 demonstrate six scenarios in which one Gestalt rule
masks another. Readers are encouraged to hide the bottom rows,
and look at the top rows for a while to observe the forming of
gestalts. In each input configuration (two for each case), there are
at least two potential gestalts that can be observed, but at the same
time, they compete with each other and the gestalt with stronger
affinity masks the other. We pair into three cases, to accentuate
turning-points, where a small change in the configuration results in
a completely different gestalt. The illustrations aim to emphasize
that the decisions taken can be quite complex, involving proximity,
regularity and similarity. Our graph-cut solution resolves conflicts
(colored bottom rows in Figures 3-5) and mimics the gestalts as
perceived by human. In Figure 7 we show a similar scenario of
conflicting gestalts in a detailed window drawing.

4 Quantifying Gestalt Principles

Our input consists of 2D vector drawings of architectural scenes,
thus we define shape-elements in the drawing as closed connected
polylines. We first compute the spatial relationship among ele-
ments, so as to construct an associated graph. An element corre-
sponds to a node in the graph while edges correspond to the spatial
relationship among elements. We formulate Gestalt principles as
probability functions and compute the probabilities of each element
belonging to one or more gestalts.

The gestalts (hence groups) are the labels that are assigned to the
nodes. We employ a multi-label graph cut (in Section 5) to parti-
tion this highly connected graph structure into optimal and consis-
tent gestalts (groups of elements). Once the set of Gestalt-based
groups is computed, the input detail drawing is simplified by ab-
stracting/simplifying elements in the same gestalt and render them
in various styles (Section 6).

Proximity Graph Structure. Our input is a vector drawing P
consisting of polylines denoted p. Although they can be disjoint,
intersect, or include each other (see Figure 6), we assume that a
polyline represents a unique shape element. We first compute a
proximity graph Gp, with each element corresponding to a node in
the graph. For each element pi, we find its k-closest neighbors in
the drawing and connect the corresponding nodes in the graph with
edges eij , associated with the Hausdorff-distance between pi and
pj , defined as:

d(pi, pj) = max{dH(pi, pj), dH(pj , pi)},

and
dH(pi, pj) = max

∀vi∈pi

{ min
vj∈pj

{‖vi − vj‖2}},

where vi and vj are vertices in pi and pj , respectively. This distance
is assigned as a weight of the edge, i.e. wij = d(pi, pj). Figure 8
shows a simple example of our graph construction.

(a) (b) (c) (d)

Figure 7: In a window (a) from Figure 6 conjoining gestalts com-
pete by: similarity (b), vertical regularity (c) and horizontal regu-
larity (d) which is the winning gestalt.



Figure 8: A simple illustration of our graph construction. An ele-
ment p is connected to its neighbor q by edges defining the smooth-
ness term Vp,q . We compute potential gestalts denoted here by
fR
1 , fR

2 , fP
1 where fR

∗ denotes regularity type gestalt and fP
∗ , prox-

imity. An element is assigned to potential gestalts using a data cost
D(q, f), measuring the penalty of assigning label f to element q.

Quantifying Affinity. Initially, we loosely define potential group-
ings based on Gestalt rules, which will serve as graph labels in our
graph-cut formulation. For each potential group, we quantify the
affinity of an element pi to it by computing a data term that mea-
sures the probability of pi to belong to a gestalt (i.e. being assigned
with that label). Additionally, we prioritize labels and assign each
label a cost by its grouping strength measuring the affinity in met-
rics we define below. Next, we define the potential groups.

Proximity gestalts are computed by detecting groups of connected
elements in Gp with edge lengths below a threshold tp. Thus, a
proximity group is defined as:

LP =
⋃

{pi, pj} | d(pi, pj) < tp.

We observe that elements may intersect or enclose each other (for
example, a small window inside a door). Since proximity relations
are undefined in such cases, we avoid considering such elements in
one proximity gestalt. I.e., for enclosed elements, we do not con-
sider proximity outside their enclosing element. We enforce this by
checking and storing intersection and inclusion relations between
shape elements in the drawing.

Similarity gestalts are computed by detecting groups which share
a high shape similarity. Since we mainly focus on architectural
elements, it was sufficient to measure similarity by comparing the
aspect ratio of bounding boxes of elements. If required, complex
shape similarity metrics such as the transformation-invariant shape
context [Belongie et al. 2002] can be employed. A similarity group
is defined as:

LS =
⋃

{pi, pj} |
R(Hi, Hj) + R(Wi, Wj)

2
> ts,

where Wi and Hi are width and heights of element pi; and

R(a, b) =

{
a/b if a < b,
b/a otherwise.

Regularity gestalts are computed by detecting regular structures in
the scene. We define the regularity as a group of elements (larger
than 2) which are positioned at regular intervals along a certain di-
rection. Although sophisticated symmetry analysis [Liu et al. 2004]

Figure 9: An example of closure and continuity gestalts. RANSAC
detects a circle fitted to the fish eye and defining a strong closure
gestalt. Similarly, continuity gestalts occur at the tail defining con-
tinuous lines.

can be employed, we reduce our search space to 1D regularities
along X and Y axes following the Manhattan-world assumption,
commonly applied to architectural models. We perform a 2D fre-
quency decomposition of the input scene into axis aligned verti-
cal and horizontal dominant frequencies similar to [Adabala 2009].
Specifically, we subdivide the 2D image into a set of horizontal
and vertical non-overlapping tiles and compute the 1D FFT for
each tile. We filter low magnitude frequencies thus obtaining a set
of dominant vertical and horizontal regular candidates correspond-
ing to high magnitude frequencies. We define regularity potential
gestalts as:

LR =
⋃

{pi} | ξ(pi) > tr,

where ξ(pi) is a detected dominant horizontal or vertical frequency
magnitude of element pi.

Closure gestalts refers to a group of elements that forms a simple
shape. Continuity is a special case in which elements lie on a line
or curve. We compute closure potential groups by fitting simple ge-
ometric primitives θ, such as straight lines (for continuity), circles
and squares to the scene using RANSAC. We form element groups
for elements with high fitting scores as:

LC =
⋃

{pi} | fit(pi, θ) > tc,

where fit() measures the fitting quality of pi to θ by counting the
number of points which are within an ε distance from θ. See Figure
9 for an example of closure and continuity gestalts by fitting a circle
and curve respectively.

With the above definitions, we form many potential groups
(gestalts) from the input drawing, each corresponding to a distinct
label. Obviously, an element may belong to several gestalts (labels)
even by the same Gestalt rule (in Figure 8 labels fR

1 , fR
2 ). Thus,

the scene is over-segmented into groups which possibly interact.
We use graph-cut to resolve interactions and achieve a consistent
segmentation of the scene into groups with minimal energy. Dur-
ing our graph cut optimization, potential groupings may break into
separate parts due to conflicts.

5 Conjoining Gestalts via Graph Cut

Resolving conjoining gestalts in a scene is equivalent to finding a
consistent segmentation of elements into groups which comply with
Gestalt rules. We formulate the problem as a multi-label normalized
graph cut minimization. As an element p can potentially belong to
many gestalts, it gets assigned data cost for different gestalt labels



Figure 10: A sequence of abstraction steps. We color-code corresponding element groupings to visualize the computed gestalts. Two
abstraction operations are performed, (a) summarization by reducing railings number in fences, and (b) embracing by replacing window
elements with enclosing object. Although railings and doors overlap, their interaction is solved as railings are grouped together by regularity
gestalt.

(colored nodes in Figure 8). Given n elements, k labels and n · k
costs, finding the minimal assignment is a combinatorial problem
and typically NP-hard. Instead, we follow Delong et al. [2010] and
use an approximate multi-label graph-cut energy minimization.

We compute an assignment of labels fp to elements p ∈ P such
that the joint labeling f minimizes an objective function E(f). Our
function consists of three terms: data, smoothness, and label costs.
Kubovy and van den Berg [2008] showed that proximity group-
ing strength decays exponentially with Euclidean distance. We ex-
plored several metrics for quantifying gestalts and have found them
to behave very similar in presence of conjoining gestalts. We select
simplified gestalt metrics which improve our energy minimization
convergence. Without loss of generality, we assume all label costs
to be normalized and bounded.

Label Cost. Label cost penalizes overly-complex models and fa-
vors the explanation of the input scene with fewest and cheapest
labels. The label cost function is defined as:

Fcost =
∑
l∈L

hl · δl(f)

with L being the set of labels, hl a non-negative label cost of label
l and δl() an indicator function:

δl(f) =

{
1 ∃p : fp = l,

0 otherwise

We define hl as the label cost measuring the gestalt affinity for each
specific Gestalt rule normalized to 0− 1 as follows:

• For proximity gestalts, label cost is measured by the inverse
density defined as the area difference between the union of
shapes and their convex hull: hl =p∈LP CH(p)−

⋃
(p)

• For similarity gestalts, label cost is defined by shape simi-
larity variance against an arbitrary shape within the gestalt:
hl =(pi,pj)∈LS

var(R(Hi, Hj) + R(Wi, Wj))

• Regularity label cost is measured as the inverse density mul-
tiplied by the elements distance variance from the perfect fre-
quency pattern and inverse number of elements: hl =p∈LR

(CH(p)−
⋃

(p))× var(p, ξ)× ‖LR‖−1

• Continuity and closure label cost is measured by the fitting
quality, defined as the distance variance of group members to
fitted geometric primitive: hl =p∈LC var(fit(pi, θ))

Smoothness Cost. Smoothness term measures the spatial cor-
relation of neighboring elements. Elements with a smaller dis-
tance have a much higher probability to belong to the same gestalt

than those distant ones. This is defined in our energy minimiza-
tion scheme as the smoothness term. Between two neighboring ele-
ments p and q, the smoothness energy term is defined by the inverse
Euclidean Hausdorff-distance between p and q normalized to 0−1:

Vpq = d(p, q)−1

Data Cost. Data cost D(p, fp) measures how well an element p
fits to a gestalt fp, normalized to 0− 1. We define the data cost for
each Gestalt type as follows:

Proximity data cost is simply defined as the closest distance of the
element p from the proximity group LP defined as:

D(p, fp) = min
q∈LP

d(p, q)

Similarity data cost is defined as the average shape similarity dis-
tance of p to elements in the similarity group LS ,

D(p, fp) =
1

|LS |
∑

q∈LS

{R(Hp, Hq) + R(Wp, Wq)}

Regularity data cost is defined as the distance from the regular pat-
tern defined by LR. Given a regular pattern, we compute the dis-
tance d(p, p′) of p from the ideal element p′ that perfectly aligns
with the regular pattern.

D(p, fp) = d(p, p′)

Continuity (closure) data cost is measured as the closest distance
of an element to the fitted geometric primitive. Given a continuity
group LC which defines a fitted geometric primitive, d′(p, ∗) is the
closest distance of p to the primitive defined by LC .

D(p, fp) = d′(p, ∗)

Optimization. Hence, the overall energy function is:

E(f) =
∑
p∈P

D(p, f) +
∑

p,q∈N

Vp,q +
∑
l∈L

hl · δl(f)

Finding a solution to this labeling problem is optimized using a
multi-label normalized graph-cut algorithm as proposed by Delong
et al. [2010]. Theoretically, we can compute data costs D(p, f) for
each p and l, using the complete set of possible groupings. How-
ever, this would be too large and instead use the thresholding of the
formed gestalts (tp, ts, tr) to limit data cost computation to only
group members.



Iterative Conflict Resolution. As mentioned in Section 3, con-
flicts in a scene occur when partial gestalts are hidden by other par-
tial gestalts and give equivalent or better explanation of the scene.
The natural outcome of our graph-cut minimization is a segmen-
tation into minimal cost gestalt assignment. Thus, when gestalts
compete due to conflicts, naturally the strongest gestalt in terms of
its energy terms wins. Thus, the model clearly complies with the
conflicting and masking phenomena.

Still, our graph-cut assigns labels to overruled groups resulting in
partial gestalts. We detect such assignments and remove them. To
do so, we evaluate the graph-cut assignment by measuring the total
data cost term of each group before and after graph-cut. If there is
a large drop in data cost, it means the group has been overruled
by another gestalt and we denote it as invalid and mark its ele-
ments as unassigned. Note that overruled gestalts may still create
new (smaller) gestalts by themselves and therefore we repeat graph-
cut computation iteratively. In each iteration we compute potential
groups, perform graph cut and detect valid gestalts. Next we re-
move the valid groups from the graph and repeat the whole process
on the remaining elements. We stop when no new gestalts can be
formed.

In conflict cases, where two gestalts equally compete on common
elements, graph cut will choose one rule arbitrarily. The phenom-
ena of both groups breaking together seldom occurs since graph-cut
minimizes the number of distinct labels and data cost, thus prefer-
ring large low cost groups.

Figures 3- 5 shows conflicting element configurations (upper row)
and our optimization results (lower row). In Figure 3(top), two can-
didate vertical and horizontal regularity gestalts compete with each
other as they share a common element. In the left example, the ver-
tical gestalt wins as its regularity is denser thus having lower label
cost. On the right, the horizontal gestalt wins since both vertical
and horizontal gestalts have equal density but the horizontal gestalt
has a higher element number thus a lower label cost. The colored
elements in the low rows of the figure show our computed gestalt.
In Figure 4(right), elements congregate together, leading to com-
petition between rules of (vertical) regularity and proximity. Our
method selects the proximity gestalt (lower right), due to the su-
periority of proximity. If we change the shapes of elements as in
Figure 5(right), the previously computed gestalt in Figure 5(lower
left) is split due to the superiority of similarity.

6 Visual Abstraction

From the computed gestalts, we can apply different abstraction
methods to achieve different styles. Unlike previous abstraction
techniques in non-photorealistic rendering, our gestalt-based ap-
proach decouples the identification of abstracting regions from ab-
straction styles. In other words, the same gestalt can be presented
with different abstraction styles. We define abstraction styles in a
content dependent manner.

Abstracting Architectural Drawing. We propose two types of
operators, embracing and summarization, for abstracting architec-
tural drawing. Embracing replaces elements in a gestalt by a sim-
plified enclosing shape. Summarization represents the repeated ele-
ments in a gestalt with a smaller number of repeated elements. Our
choice of abstraction operator depends on the number of repeated
elements in a gestalt.

If a gestalt contains more than tk repeated elements (in our im-
plementation tk = 20), we apply a summarization operator which
gradually reduces the number of elements. Otherwise gestalts are
abstracted using an embracing operation. We use the convex hull

(a) (b) (c) (d) (e)

Figure 11: Gestalts are abstracted by creating a simple represen-
tation for the overall form. Here we show progressive grouping
(from left to right) by regularity, proximity and similarity. Since ab-
straction is governed by an LOD threshold, we first simplify smaller
gestalts, and later larger ones.

of the elements in a gestalt for its embracing. We observe that ar-
chitectural drawings typically consist of dominant horizontal and
vertical directions denoted as Manhattan World alignment. There-
fore, if within a threshold, we align the enclosing convex hull with
vertical and horizontal directions.

Figures 6, and 10 demonstrate progressive simplification sequences
using the two different ways of abstraction. The fine details on the
door and windows are abstracted using embracing, while the fences
are abstracted with summarization operation.

Figure 11 shows a window from Figure 10 being progressively sim-
plified, where convex hulls and axis aligned boxes are used for em-
bracing. This interesting example demonstrates the effects of dif-
ferent Gestalt principles during abstraction. From (a) to (b), the
rules of proximity and similarity take part in the upper part of the
window, while the rules of regularity and similarity take effect in
the lower part. The rule of regularity continues to take effect from
(b) to (c). From (c) to (d), the rules of similarity and proximity
take part, and finally in (e) the rule of proximity groups the half
disk with the box. For abstraction, the embracing operator applies
convex hulls (upper window) and boxes (lower window) for the el-
ements.

Level-of-Detail To generate progressively simplified results, we
can repeatedly apply the gestalt computation in a progressive man-
ner. That is, we take the current computed gestalt simplification
result as input elements, and apply the gestalt simplification again.
This process repeats until reaching the desired level or no new
gestalts arise.

Gestalts computation does not explicitly account for progressive
level-of-details although locally, using our label cost formulation,
denser groups are superior to sparser ones. Hence, we can obtain
gestalts that are arbitrarily large. In order to achieve a level-of-detail
hierarchy we define a threshold parameter 0 ≤ tLOD ≤ 1 and limit
forming gestalts that contain neighbor elements p, q with distance
d(p, w) ≥ tLOD · Dbbox, where Dbbox is the drawing’s bounding
box.

We can synchronize the level-of-detail with screen resolution by
measuring the Dbbox in screen space coordinates denoted by D

′
bbox

and defining tLOD = 2

D
′
bbox

. Thus, our coarsest resolution is

achieved when D
′
bbox = 2 pixels. As tLOD increases, larger

gestalts are permitted to form and hence coarser level-of-details.
Figures 1, 14 and 15 show progressively simplified examples
in reducing scale. Note that the core structure is preserved and
still clearly apparent even when the building is significantly scaled
down.

Abstracting Mosaics In architectural drawings, the rules of
proximity, similarity, and regularity dominate, while the rules of



continuity and closure seldom apply. To demonstrate the effect of
these rules, we extend our application to non-architectural content.
In particular, we focus on mosaic art since artists cleverly position
and orient the discrete tiles to exhibit the structure through con-
tinuation and closure effects. By computing gestalts, we can ex-
tract the structure, mostly due to rules of continuity and closure.
Starting from a set of colored tiles given as polygonal elements, we
cluster them by color similarity. In a cluster, we connect between
centers of neighbor tiles yielding a set of disjoint polylines. Fig-
ure 9(left) shows our input polylines extracted from a fish mosaic
(in Figure 16(left)).

We show the continuity and closure gestalts obtained at different
level-of-details on the fish mosaic. Polylines representing different
tile clusters get grouped together mostly by continuity and closure
gestalts. Primitive shapes as circles and straight lines are fitted to
the polyline elements yielding closure and continuity gestalts re-
spectively. For abstraction purposes, we compute for each gestalt a
representing polyline by averaging vertex positions and a width that
encloses the gestalt elements. We draw the new lines with average
color of elements inside the gestalt.

7 Results

We have applied our gestalt-based abstraction on a variety of archi-
tectural drawings, exploring the behavior of our model in presence
of complex conjoining gestalts. In all our experiments we have
used the following thresholds of potential gestalts (see 4): prox-
imity tp = 10 pixels, similarity ts = 0.8, regularity frequency
magnitude tr = 0.7 and closure fitting tc = 5 with ε = 2 pixels.
The average computational time for a coarse-to-fine abstraction se-
quence is 3 minutes and maximal time is 5 minutes.

Since our method simplifies architectural drawings while preserv-
ing meaningful structures, we demonstrate in Figure 12 an immedi-
ate application of our method for computing thumbnail directories
with increased visual perception.

In Figure 13, we evaluate our method by comparing our
result against several manual and automatic techniques on
the Taj Mahal drawing. To normalize the comparison, we
bounded all simplifications by the same amount of geomet-
ric detail as measured by the amount of present line geom-
etry. In Figure 13(a) is the result of a professional hand-
drawn abstraction from a website that teaches drawing ab-
stract buildings (http://tlc.howstuffworks.com/family/how-to-draw-
buildings6.htm). In Figure 13(b), we asked an amateur artist to
draw a simplified version while maintaining important structures.
Figure 13(c) is the result by the technique of Shesh and Chen [2008]
and (d) shows the result of applying proximity based simplification
of geometric elements. Finally our result is in (e). Both ours (e) and
the expert artist simplification (a) preserve the major structures and
are comparable in terms of the visual quality. Nevertheless, Shesh
and Chen [2008] (c) and geometric simplification (d) use low-level
distance metrics for abstraction and fail to preserve the important
high-level structures as in ours.

In order to measure the effectiveness of our method we have run a
thorough user study. In this study we have asked a group of 200
users to view simplified drawings and choose the one that best rep-
resents the original input. For that, we have built a test case contain-
ing twenty architectural drawings simplified by our method, hand-
drawn by an artist and a straightforward geometric simplification
technique (in Figures 13 (b), (d) and (e)). We compare equiva-
lent simplifications, by measuring the amount of geometric detail
and choosing drawings with similar amount of detail. As expected,
users preferred our simplification over the straight-forward geomet-
ric approach with 74% votings for us against 26% for the geometric

approach. We were surprised to discover that our method has done
better even against the artist with 66% votings for us against 34%
for the artist.

In Figure 14, we demonstrate that our gestalt abstraction can handle
fine building details with curved structures and thus is not limited
to grid-based rectangular architecture. Figure 15 shows a building
being zoomed out from left to right. Note how the scaled-down
simplified versions preserve the major features and structures, and
hence, can serve as representative icons of the original buildings. In
Figures 1, 6, 11, 14 and 15 we render results using an NPR sketchy
style for visual emphasis of abstraction. We include all results using
a clean rendering style in the supplemental material.

In the mosaic example (Figure 16), the continuity/closure gestalts
play a dominant role in the simplification sequence (see also Figure
9). Here, a circle is fitted to the fish eye during the closure gestalt
computation. The strength of this gestalt preserves the fitted circle
even after several iterations of simplification.

8 Concluding Remarks

In this paper, we have proposed a framework that models sev-
eral prominent Gestalt principles and competition/conflicts among
them. The framework is formed in a computational model that is
realized with graph cuts. The effectiveness of this framework has
been demonstrated in summarizing and abstracting architectural el-
ements, with extended applicability to other objects, illustrated on
mosaics arts.

The presented work represents still a first attempt to modeling the
complex interaction among multiple Gestalt principles. We will
continue to benefit findings from the psychological domain. The
proposed computational framework can be easily adapted to con-
firm to psychological findings and extended to model other Gestalt
behaviors. We believe that tools have be built for this framework
and can be used to facilitate psychological experiments and leading
to new findings.

While in this paper we demonstrate how our Gestalt analysis ben-
efits abstraction for the computer graphics purpose, naturally the
proposed method can also be effective for scene understanding in
general, and further for bettering visual communication.

Figure 12: An architecture directory is illustrated using thumbnails
of simplified drawings from our method.
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