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Abstract

We present a method for fusing two acquisition modes,
2D photographs and 3D LiDAR scans, for depth-layer de-
composition of urban facades. The two modes have comple-
mentary characteristics: point cloud scans are coherent and
inherently 3D, but are often sparse, noisy, and incomplete;
photographs, on the other hand, are of high resolution, easy
to acquire, and dense, but view-dependent and inherently
2D, lacking critical depth information. In this paper we use
photographs to enhance the acquired LiDAR data. Our key
observation is that with an initial registration of the 2D and
3D datasets we can decompose the input photographs into
rectified depth layers. We decompose the input photographs
into rectangular planar fragments and diffuse depth infor-
mation from the corresponding 3D scan onto the fragments
by solving a multi-label assignment problem. Our layer de-
composition enables accurate repetition detection in each
planar layer, using which we propagate geometry, remove
outliers and enhance the 3D scan. Finally, the algorithm
produces an enhanced, layered, textured model. We eval-
uate our algorithm on complex multi-planar building fa-
cades, where direct autocorrelation methods for repetition
detection fail. We demonstrate how 2D photographs help
improve the 3D scans by exploiting data redundancy, and
transferring high level structural information to (plausibly)
complete large missing regions.

1. Introduction

Fast and accurate digital acquisition of urban buildings
remains a challenging task. While procedural modeling
provides an attractive and effective option for generating
high quality models of buildings, and has been employed
for creating virtual cities, it remains unsuitable for digital
archival of existing cities. A common solution for such dig-
ital acquisition is image-based modeling, which has been
used to produce realistic 3D textured models using various
degrees of manual assistance. However, even state-of-the-
art image-based modeling methods require a large number
of photographs to create models with sufficient 3D geomet-
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ric details. An alternative is to directly use 3D scanners.
In either case, the resultant 3D models are represented as
low level primitives, and lack explicit encoding of high level
structures, which are characteristics of urban facades.

High resolution laser scanners can be used for high qual-
ity model acquisition even with mm-resolution accuracy.
Such scanners, however, are slow and have small working
volumes, making them unsuitable for digitizing buildings
and city blocks. Alternately, 3D LiDAR scanners are at-
tractive as they are fast, easy to use, and capable of gener-
ating rough coherent scans of large structures like building
facades. Unfortunately, such scans are noisy, sparse, and
typically have large missing parts (see Figures 1 and 8). Al-
though they provide a cursory impression of the scanned
buildings, in the raw point cloud form they are unsuited for
any practical application or digital inspection.

On the other hand, 2D photographs have important com-
plementary characteristics to 3D scans. They are high reso-
lution, noise-free, and, unlike LiDAR scans, they typically
cover more of the building facade. Importantly, as cameras
are portable and ubiquitous, it is easy to obtain photographs
from various viewpoints, possibly from locations where it
is challenging to scan from, e.g., rooftops.

The complementary traits of 3D scanners and pho-
tographs naturally suggest the use of a multi-modal acquisi-
tion approach. We present an algorithm for careful fusion of
these two acquisitions modes, targeted specifically towards
urban buildings with large-scale repetitions.

Given multi-modal inputs comprising of an incom-
plete noisy 3D point set S and a single or multiple pho-
tographs {I;}, our goal is to create an enriched 3D model
with information extracted and fused across the two modes.
A major challenge is due to large missing regions common
in LiDAR scans (see Figure 1). We rectify the photographs
and register the two modalities together. However, project-
ing the 3D information from the scan over the registered
2D photograph only partially augments the photograph with
depth values (Figure 1 (mid-left)).

Another challenge is detecting repetitive patterns, preva-
lent in urban facades. Typical building facades are not
restricted to simple planar faces. As a result, even in
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Figure 1. Given a 2D photograph and 3D LiDAR scan of a building (left), we overlay the scan over the rectified photograph (semi-
transparent) (mid-left). Analyzing the fusion of the two modes allows decomposing the scene into depth-layers (distinctively colored,
mid-right) followed by a per-layer symmetry detection that allows completing and augmenting the LiDAR scan with enhanced texture

information (two views, right).

a perfectly rectified photograph, repeated protruding ele-
ments like balconies may not appear as regularly spaced el-
ements in image space due to the perspective distortion (see
Figure 4). Thus, any global autocorrelation-based sym-
metry detection approach fails. Hence, learning the self-
symmetries requires decomposing the building facades into
multiple planar depth-layers. We accomplish such a decom-
position by augmenting parts of the photograph with depth
values transferred from corresponding parts of the scan, and
propagating depth labels across the whole facade using a
multi-label assignment. Finally, we detect self-symmetries
in the depth-augmented photos and propagate both geome-
try and texture across repetitions to complete missing parts
in the scan (see Figure 2).

Specifically, fusing the two modes enables: i) augment-
ing the photos with depth, ii) decomposition of depth-
augmented photos into consistent depth layers, iii) auto-
matic image space repetition detection in each layer, and
(iv) completion and integration of per-layer geometry and
texture information.

2. Related Work

Given the large volume of work on urban modeling, we
refer the reader to the recent survey by Vanegas et al. [2009]
for a comprehensive coverage. Here we only focus on pre-
vious works most closely related to ours, in particular those
addressing self symmetries and 2D/3D integration in the
modeling process.

Image-based modeling. Works on automatic reconstruc-
tion of urban scenes have mostly been based on collections
of photos [3, 6, 8, 18,20, 22] or multi-view video [14], re-
lying on photogrammetric reconstruction and image-based
modeling techniques. Debevec et al. [2] propose an inter-

active image-based modeling method that exploits charac-
teristics of architectural objects coupling an image-based
stereo algorithm with manually specified 3D model con-
straints. More recently, Sinha et al. [18] present an interac-
tive modeling system using unordered sets of photographs,
leveraging the piecewise-planarity of architectural models.
Mueller et al. [12] perform analysis on 2D facade images
in order to generate a 3D procedural model counterpart.
Xiao et al. [22] efficiently model facades from images by
decomposing facades into rectilinear elementary patches.
Later they extend the semantic segmentation and analysis
approach to more general scenes, to produce visually com-
pelling results by imposing strong priors of building regu-
larity [23]. Special shape symmetries can also be leveraged
to model architectural objects from a single image [9].

Integrating 2D with 3D. Diebel and Thrun [4] combine
low-resolution range images and high-resolution registered
camera images to create high-resolution range images us-
ing Markov random fields. Stamos et al. [19] perform au-
tomatic registration of 2D images with 3D range scans by
matching linear features between the range scans and the
photographs. The alignment is then used to optimally tex-
ture map the photographs onto the dense model. Images can
also be enhanced or augmented with information presented
in 3D, as exemplified by the work of DeepPhoto [10]. Un-
like previous attempts, we tightly couple two input modali-
ties, images and 3D range scans, to produce 3D geometry.

Symmetry analysis. Symmetries, repetitions, and regu-
larity have been extensively studied in the context of image
analysis, and to a lesser extent for 3D geometry, with appli-
cation towards procedural modeling, scan completion, and
improvement. We review only a subset of works that are
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Figure 2. Starting from an input photo and a LiDAR scan (a), the two acquisition modes are registered (b). 3D primitives in the input scan
are detected and used to over-segment the photograph into rectangular fragments (c). Solving a multi-label assignment problem yields a
depth-layer decomposition of the fragmented image (d). In each depth layer, repetitions are detected (e) and used to consolidate the inputs

to produce a textured polygonal 3D model (f).

most related to our setting.

Schaffalitzky and Zisserman [15] automatically detect
repeated image elements in planes, which are typical in
urban facades. They compute features and use RANSAC
to detect repetitions under projective transformations. Ko-
rah and Rasmussen [11] address the problem of automati-
cally detecting 2D grid structures such as windows on build-
ing facades from images taken in urban settings. Pauly
et al. [13] introduce a transform domain analysis coupled
with a non-linear optimization to detect regular k-parameter
structures in 3D shapes. Recently, user-assisted repetition
patterns have been used for effectively improving sparse
building scans [21,24]. Wu et al. [21] present a feature-
based method that extracts repetition and symmetry hy-
potheses from the rectified image. They make simplifying
assumptions such as constant repetition height, and no gaps
between floors to find the repetitive pattern. Nevertheless,
due to perspective distortion, such methods fail to correctly
detect repetitions in image space in scenes with multiple
depth layers (e.g., see Figure 4).

3. Overview

Given multi-modal inputs comprising of an incomplete
noisy 3D point set S and a photograph /, our goal is to create
an enriched 3D model with information extracted and fused
across the modes. The method easily extends to incorpo-
rate multiple images, when available (see Figure 8). A key
observation is that the two data sources carry complemen-
tary information. The two modes can be jointly explored
to produce 3D models of superior quality, which are other-
wise difficult to achieve using a single source of acquisition.
Specifically, while operations like depth estimation, planar
facade detection and model consolidation can be robustly
executed on 3D scans, others involving edge detection and
finding translational repetitions, which are common in ur-
ban facades, are better performed in the dense image plane.

A typical building facade does not consist of a single
dominant plane, but of multiple planar sections separated
across depth, introducing different foreshortening in differ-

ent layers. This poses a challenge to direct image space
symmetry detection even on a rectified facade image (see
Figure 4). Our algorithm first uses the depth information
from the scan S to partition the image 7 into polygonal re-
gions with consistent depth, denoted as depth-layers. We
register the two data sources to simplify tasks like segmen-
tation and depth extraction. Next, we compute depth-layers
together with reliable 2D edge information by solving a
multi-label assignment problem. Finally, we consolidate
the data using repetitive patterns extracted from each depth
layer to produce a complete textured polygonal mesh.

4. Depth-layer Decomposition

We decompose an input image into depth layers using a
sparse LiDAR scan in the following principal stages: (i) rec-
tification of image / and registration with scan S, (ii) seg-
mentation of image / into polygonal regions using edges
from / and S, and (iii) assigning consistent-depth to the ex-
tracted segments using a multi-label assignment formula-
tion. We now elaborate the steps (see Figure 2).

2D-3D registration. We first manually mark two horizon-
tal and two vertical lines on the input image /, extract the
respective vanishing points, and solve for the metric recti-
fication that take the extracted vanishing points to infinity
and restore orthogonality relations. The user then marks
two pairs of rectangles, two in 2D and two in 3D to indi-
cate rough correspondence, which is then used to extract
the camera pose for /. Later we use this estimated camera
matrix to project S onto /.

2D-3D segmentation. We use the registered 2D-3D data
sources to partition image / into segments, which are later
used for depth-layer extraction. First, using RANSAC, we
extract planar regions from the input scan S similar to [16].
We prune out outlier planes arising out of sparse sampling
and noise using the Manhattan-world prior [1, 5], which bi-
ases the planes to lie along principal directions. We esti-
mate the three major axes by clustering plane orientations

884



b) collapsed instance

£ g oy < < )
— L
ke R T

s S L apsosel
)

a) input scan e) consolidated points

AR LR |

T

f) extrusion facade q) énhaﬁcec_i texture

Figure 3. For each detected repetition pattern extracted from an image depth-layer, we collapse the corresponding points from scan to a
single slab, project the slab to the frontal plane, perform edge detection biased to horizontal/vertical directions, propagate the edges to the
consolidated point sets to create a rectangular fragmentation of the ortho-image. The fragment image is extruded, shown in gray, using the
corresponding depth layer information to produce consolidated geometry (f) and texture, and thus a textured polygonal model (g).

and selecting the dominant three orthogonal clusters. Next,
we compute two types of 3D edges: (a) edges extracted by
identifying intersections of nearby planes, and (b) in-plane
edges are extracted by applying a state-of-the-art edge de-
tector [7] to the points in each plane. We overlay the visible
extracted 3D edges and the principal planes on the image /.
We greedily stretch each edge until it meets another (maxi-
mum of 5% of their respective lengths) and intersect them to
form polygons, thus over-fragmenting the (rectified) image
into polygonal segments.

Multi-label depth-layer generation. We use a multi-
label assignment formulation to assign depths to the image
fragments resulting in depth consistent layers using infor-
mation from the set of planar primitives ® extracted from S.
More formally, we look for a labeling that assigns for each
segment s € [ a label p € ®, such that the labeling creates
coherent unfragmented regions from the over-fragmented
image. We create a graph with each segment s € [ as a
node, and connecting nodes s; and s; by an edge only if s;
and s; share a boundary in /. Assigning consistent depths
to the segments then amounts to solving a multi-label as-
signment problem on the constructed graph while balancing
contradictory energy costs consisting of data and smooth-
ness terms.

The data term E;,,, measures the cost of assigning a seg-
ment s; € / to an extracted planar component p; € ®, and
is broken up into terms measuring effects of neighbors and
of occlusion. We utilize the 2D-3D registration to project
points of p; to pixels X),; on image /. Then, we measure the
cost of assigning a segment s; to an extracted planar com-
ponent p; as the average distance from all pixels of segment
s to the closest pixels in X,

EDneighbor(Si,pj) = Z d(xkvij)/|Si|v

X ES;

where, d(x;, X)) measures the distance from pixel x; to the
closest pixel in X),;, and [s;| denotes number of pixels in
segment s ;.

Further, due to sparsity and perspective projection of 3D
scan points, foreground and background points can project
to same planar segment resulting in ambiguities (see Fig-
ure 2). In other words, since points in S are sparse, points
from different planes may be projected to the same area in
I. In such cases, we favor assigning the area to the front
plane rather than the back ones using the following occlu-
sion term (see also [17]). For each scan point g € S, we
define its occlusion influence region using a decay function:

OCCeff(xk;Q) _ led(xk,q)l/Rz’

where d() is the distance from the overlayed scan point ¢
to the pixel x; and R is the maximal occlusion radius lim-
iting occlusion effect to only pixels in the proximity of g.
We set R to be the average distance between points in S.
For each assignment of a segment s; € [ to a certain planar
component p; € ®, we compute for each pixel x; € s;, the
occlusion cost occ.,sr as the sum of occlusion effects that
are in front ("<") of the assigned planar component p;, as

>

Pm <Pj 7q€pj

OCCcost (xkapj) = OCCEff(xkvq)'

Finally, the occlusion data cost of a segment s; € I under the
assignment to a planar component p; € ® is simply:

EDocclusion(si)pj) = Z OCCcost(xk’Pj)/|Si|-

X ES;

By construction, our 2D image is over-segmented into
polygons, while we have a primitive-guided conservative
segmentation in 3D. Hence, the smoothness term Egp0rn
encourages adjacent segments (s;,s;) € I, which are not
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Figure 4. (Left) A global autocorrelation based method like that of
Wau et al. [21] cannot correctly capture repetitions due to different
repetitions depths. In contrast, our method operates on separate
depth layers to produced desired result (right).

connected by any projected separating 3D edge, to be as-
signed to the same depth plane. More specifically,

T fo # fs; aw U (@, N(siUs))) =0

Esmumh(si’sj ) - {0 otherwise

where, ®,, denotes projected 3D edge ¢, T is a constant
penalty for assigning neighbor segmentations with no 3D
edge between them to different depth planes. In contrast,
if there is no 3D edge between neighboring segments, the
smoothness term encourages them to be assigned to the
same plane. In all our experiments we used 7 = 2.

We use the combined energy E = EDjeighpor + 4 -
ED,cciusion + Esmoorn to minimize a multi-label assignment
problem for the extraction of planar components from 3D
scan and 2D segments. This yields a decomposition of the
image into planar depth layers (see Figure 2).

5. 3D Geometry and Texture Fusion

An important source of data improvement lies in data
redundancy, since urban facades often have large scale rep-
etitions. Since photographs typically cover much more of
the building than scans, we detect in-plane repetitions by
analyzing the depth-layers of image /, and then transfer the
recovered information to 3D in the consolidation stage.

In order to correctly detect available repetitive patterns,
we apply the repetition detection method of Wu et al. [21]
on each depth layer separately (see Figure 4). Subsequently,
we use the extracted pattern from the image / to consolidate
both the geometry of 3D point cloud S and the associated
texture for plausible completion of missing data using the
detected repetitions, as described next.

First, using the detected symmetry pattern, for each set
of repetitions we bring the corresponding floors of the point
set S to a single slab. We prune outlier points that have no
nearby points in corresponding slabs. The points linked to

all parallel depth planes are orthogonally projected onto a
single frontal plane (see Figure 3b). We detect edges based
on discontinuity of local density image [7]. Again using the
Manhattan-world assumption, we bias the solution to hori-
zontal and vertical edges. Finally, we transfer the extracted
edges back to the constituent floors, and extend the edges to
create local rectangular fragments.

The rectangular fragments inherit associated depth val-
ues from their respective depth planes. We use this infor-
mation, to create an extrusion surface, thus reconstructing a
scaffold for the facade faces (see Figure 3f). The associated
textures are extracted from the input image /.

We render the model from the camera view to find cor-
responding texture patches in the input photograph. If the
texture blocks do not suffer from missing parts or are not oc-
cluded (easily detected from camera view rendering of lay-
ers), we copy back the texture onto the scaffold reconstruc-
tion. When the corresponding texture fragment is corrupted,
we use good texture blocks corresponding to repeated parts
to produce plausible texture consolidation. Goodness of
texture blocks is judged based on the consistency with their
symmetric counterparts using SSD measure. Note that un-
like for 3D geometry consolidation, we prefer to only touch
texture parts in corrupted regions — this retains the subtle
variations often exhibited by facade faces, rather than pro-
duce a sterile repetitive texture reconstruction (Figure 3g).

6. Results and Discussion

We tested our algorithm on a large number of datasets.
Since many buildings have only a few distinctive styles, we
present only representative examples to highlight different
aspects of our technique (see also supplementary material).
We experimented with medium to very tall buildings. Fig-
ures 1 and 5 show the results for tall and medium height
buildings, respectively. Due to acquisition range limita-
tions, the LiDAR scans are sparse and top floors are com-
pletely missed; some other parts go missing due to occlu-
sions. With the assistance of 2D photographs, our method
successfully detects repetitive patterns that are then used to
complete missing geometry and consolidate its texture. Fig-
ure 5 demonstrates the advantage of fusing the two acquisi-
tion modes even when the input image has strong perspec-
tive distortion. In all our examples, only the described min-
imal user intervention was required to register the modes.

In Figure 7, we utilize a non-trivial repetition pattern
composed of two repetition sets. Since separate repetitive
patterns are handled independently by our fusion system,
we can successfully handle complex repetition patterns.

In Figure 8 we demonstrate the effective power of incor-
porating multiple photos for accurate layer decomposition.
Since 2D photographs are view-dependent, large parts of
the building can be occluded in a single photograph (top
row). Nevertheless, since photos are easy to acquire, we
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Figure 5. Top floors of buildings are barely visible to the LIDAR scanner resulting in large missing parts in the 3D scan. From left-to-right,
figure shows input photo and scan, repetition pattern, and the resulting enhanced 3D geometry and texture (with zoom-ins).

can take multiple photos to get a larger coverage of the
building. Our algorithm scales well to handle multiple pho-
tographs (bottom row). Through rectification and 2D-3D
registration, photos are aligned together with the 3D Li-
DAR scan, thus occluded texture in one photo is completed
from photos with different views. We decompose the pho-
tographs into depth-layers and accurately detect repetitive
structures (see Figure 4), which allow completing and en-
hancing the 2D texture. Furthermore, we utilize repetitive
patterns in 2D photos and their registration with 3D LiDAR
scans, to consolidate the scan point by transferring geom-
etry across constituent floors, completing missing regions
and enhancing data.

In Figure 9 we evaluate our algorithm on a synthetic 3D
model. Using a 3D building model, we virtually scan it by
ray casting from only 3 views resulting in 190k points. The
input point cloud simulates a real scan i.e. it is dense at
lower floors and very sparse at top floors. Our algorithm ac-
curately recovered all the depth-layers from the 2D photo-
graph and 3D scan. The resulting textured polygonal facade
(Figure 9-right) is identical to the input model although the
topmost floors could not be recovered due to completely
missing 3D samples and local repetitions.

Since we neither solve any non-linear systems nor does
our algorithm contain any nested loops, our method scales
roughly linearly with data size. We ran our algorithm on
a 2.83 GHz Intel Core Q9550 with 4GB RAM and report
the performance in Table 1. These are non optimized tim-
ings, and sum up to few minutes, which is negligible when
compared to the actual acquisition times. Our method is
controlled by a minimal set of parameters that stayed con-
stant through all of our experiments: minimum support for
RANSAC plane detection, 100 points; distance threshold,
0.05m. Please refer to additional material and video for fur-
ther evaluation and examples of our method.

Limitations. Although symmetry detection and data fu-
sion work in an unsupervised mode in our system, we

[ model J[ #pts. | imageres. [ lab.-assg. [ rep.-det. [ conso. |
Fig. | 338K 2592 x 3872 914s 357s 257s
Fig. 5 143K | 2592 x 3872 981s 327s 213s
Fig. 7 109K 856 x 1624 239s 172s 47s
Fig. 8 463K 1296 x 1936 756s 680s 84s

Table 1. Performance statistics on various models.

still expect the user to bootstrap the system using initial
markups. Spurious symmetry detection naturally produces
imprecise final models (see Figure 6). Additionally, our
method is ill-suited for enriching buildings with free-form
facades that violate our piecewise planar facade assumption.

input LIDAR input
scan photograph

output polygonal
model

we may fail to identify variations among repeated elements, e.g.,
different potted plants and railings across balconies. As a result,
the final polygonal model incorrectly contains identical balconies.

Conclusions. We presented a method to enhance 3D
urban models using depth-layer decomposition of pho-
tographs. Fusing 3D LiDAR and photographs exploits the
advantage of both, thus enabling consistent decomposition.
The information transfer is bidirectional: the 3D infor-
mation is transferred to the photos, and then the depth-
augmented photograph information is transferred back to
3D data. The final output comprise of consolidated geome-
try and texture information.

‘We have shown that a multitude photos further improves
the quality of the results. However, as we showed in our
examples, we use less than a handful of photos only, and not
a dense set, as typically needed for SfM or stereo methods.

A research avenue is to further exploit different types of
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Figure 7. Multi-modal data fusion produces textured polygonal model, with missing parts in LIDAR data being completed using extracted
repetition patterns. In this example, two sets of repetitions, in dark blue (top floors) and light blue (low floors), are discovered.

Figure 8. Photographs can have significant parts occluded due to trees and other obstacles (top row). The occlusions, however, are usually
different across views thus resulting in improved geometry and texture consolidation when we use more images. In this example we added
another photograph from a different view to significantly improve the resulting 3D model (bottom row).

Figure 9. Evaluation of our multi-modal method on synthetic data. We virtually scan a 3D model using a ray-casting sampling tech-
nique (left). We accurately compute depth layers (middle) and utilize repetitions to compute a textured polygonal 3D facade (right).
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photos as valuable sources of information in assisting the
enhancement of the street-level acquisition, for example,
satellite or aerial photography. We believe that the fusion
of a multitude of modalities is a promising research direc-
tion, and that our work is only a step in that direction.
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