
Energy-Based Hierarchical Edge Clustering of Graphs

Hong Zhou† Xiaoru Yuan‡ Weiwei Cui† Huamin Qu† Baoquan Chen§

The Hong Kong University of Science and Technology, Kowloon, Hong Kong†∗

Peking University, Beijing, China‡
The University of Minnesota at Twin Cities, MN, USA§

ABSTRACT

Effectively visualizing complex node-link graphs which depict re-
lationships among data nodes is a challenging task due to the clutter
and occlusion resulting from an excessive amount of edges.

In this paper, we propose a novel energy-based hierarchical edge
clustering method for node-link graphs. Taking into the consider-
ation of the graph topology, our method first samples graph edges
into segments using Delaunay triangulation to generate the control
points, which are then hierarchically clustered by energy-based op-
timization. The edges are grouped according to their positions and
directions to improve comprehensibility through abstraction and
thus reduce visual clutter. The experimental results demonstrate
the effectiveness of our proposed method in clustering edges and
providing good high level abstractions of complex graphs.

Keywords: Graph visualization, Edge clustering, Delaunay trian-
gulation, Node-link diagrams, Hierarchies.

Index Terms: E.1 [Data Structures]: Graphs and networks; G.1.6
[Numerical Analysis]: Optimization—Constrained Optimization;
I.3.6 [Computer Graphics]: Methodology and Techniques—
Interaction Techniques; H.5.0 [Information Interfaces and Presen-
tation]: General.

1 INTRODUCTION

Graph is a popular tool to represent complex relationships. Infor-
mation such as trade relationships among countries or cities, hyper-
links among Internet webpages, citations between literatures, dy-
namic biological reactions within a complex system, power grids,
airline routes, road maps, and interpersonal relationships can all be
modeled by node-link diagrams in which nodes represent data ele-
ments and links indicate their relationships.

However, as the amount of information increases, visual clutter
becomes a major challenge to achieve effective visualization. Edge
congestion [3, 16, 19], where excessive edge density in a region
leads to edge-crossings and edge-overlappings, obscures nodes in
these regions, and thus causes difficulties in understanding the in-
formation represented by the graph. One typical example is the
maps of the flight routes of airline companies. Severe edge conges-
tion can often be observed near major hub cities from which many
flights originate. The edge density is so high that the entire region
surrounding the hub cities can be fully covered by lines. It would
be very difficult to trace individual flight route and extract useful
information from the underlying graph in such cases.

The graph edge density can be alleviated by magnifying the con-
gestion regions [2,5,6,10], merging and rearranging edges [3,4,12].
More recently, hierarchical edge clustering methods have been ap-
plied to avoid visual clutter in single-source graphs [15] and graphs

∗e-mails: zhouhong@cse.ust.hk, xiaoru.yuan@gmail.com, wei-

wei@cse.ust.hk, huamin@cse.ust.hk, baoquan@cs.umn.edu

with known hierarchical structures [9]. Through grouping the
edges, visual clutter can be dramatically reduced without moving
the node positions which may have semantic or geographic mean-
ings in graphs such as road maps. However, the research on edge
clustering, especially hierarchical edge clustering for general node-
link graphs is scarce. In this paper, we propose a novel energy-
based hierarchical edge clustering method for general node-link di-
agrams. Our method first performs Delaunay triangulation on graph
nodes and segments original graph edges based on the computed
Delaunay edges. Then adaptive sampling which reflects both node
and edge densities in graphs are achieved. Clustering edges based
on the adaptively sampled segments instead of uniformly sampled
segments can generate more desirable results which maintain the
topology information of the graph. The sampled segments are then
filtered and hierarchically clustered based on our energy-based op-
timization method. The proposed energy function takes both lo-
cations and directions of edges into consideration during the edge
clustering stage, in order to make spatially close and visually par-
allel edges cluster together. Finally, the clustered edges are dynam-
ically grouped according to their positions in the hierarchy to im-
prove comprehensibility through abstraction and thus reduce visual
clutter. Users can slide our provided scrolling bar to dynamically
explore the edge clustering results at continuous level of details in
real time.

The rest of the paper is organized as follows. We briefly dis-
cuss related work in Section 2. In Section 3, details of our proposed
hierarchical edge clustering algorithm are given, followed by exper-
imental results and performance discussions in Section 4. Finally,
we present our conclusions and future work in Section 5.

2 RELATED WORK

Much efforts have been devoted to relieving edge congestion since
over a decade ago. Without modifying the layout of the graph itself,
directly magnifying the congestion regions with techniques such as
Magic Lens [2] and fisheye views [5, 6, 10] can make the central
part larger and provide a focus+context view, but cannot relieve the
edge confusion and occlusion. Edge crossings can also be reduced
by rearranging the nodes and edges. One possible way to allevi-
ate edge congestion is to merge edges and draw them as curves.
Force-based or energy-based node layout algorithms [13, 14] have
been investigated to generate good graph layouts for medium size
graphs, based on some aesthetic criteria. However, for graphs with
dense edges, edge crossings usually cannot be reduced to a satisfac-
tory level. Ware et al. [17] discussed the perception of continuity
in edge paths and showed that the three most important factors of
the cognitive criteria of graph aesthetics are the length of the path,
continuity, and edge crossings, in a decreasing order of importance.
It can be observed that the most severe congestion occurs in the
areas where edges heavily cross each other. NewBery [12] pro-
posed the Edge Concentration method which reduces the number
of edges while retaining the graph structural information. The pro-
posed method eliminates edges through replacing the set of edges
with the same set of source and target nodes by a special node called
edge concentration node. The number of crossings is reduced sub-

1 2 3

4

4

(a) (b) (c)

(f) (g)

(d)

(e)

A

B C

D

E
F

A

B C

D

F
E

Figure 1: Hierarchical edge clustering algorithm overview. Step 1: performing Delaunay triangulation; Step 2: sampling the graph edges; Step 3:
building the control map of the graph; Step 4: generating edge hierarchy (hierarchical clustering). The figures (e) and (f) enclosed in the dotted
rectangle are the intermediate graphs during the hierarchical clustering.

sequently when the number of edges is reduced. Lin [11] further
studied the computational complexity of Edge Concentration and
showed that the problem is NP-hard.

Schemes of planar graphs [4] have been investigated to to-
tally avoid edge crossing with certain constraints. Carpendale and
Rong [3] described an edge-displacement algorithm which inter-
actively adjusts the graph layout. In their algorithm, only edges
are shifted to provide sufficient space to clarify relationships, while
nodes remain at their original positions. EdgeLens [19] interac-
tively curves edges of the node-link diagrams away from the center
of focus (center of the lens) without changing the node positions.
Sufficient space can be provided by the EdgeLens operations to dis-
cern ambiguous node and edge relationships and to reveal the un-
derlying information while still preserving the node layout. How-
ever, the visual clutter is only reduced locally, and large-scale pat-
terns cannot be effectively revealed. Above methods rely on the
interaction with the user and are not applicable to static media such
as magazine printouts. Edge Plucking [18] introduced by Wong and
Carpendale allows users to interactively pluck edges apart to clarify
node-edge relationships.

Hierarchical methods have been applied to graphs with known
node hierarchy structures to avoid visual clutter and provide bet-
ter abstractions of graphs [9]. Phan et al. [15] proposed a method
for generating layouts of flow maps using hierarchical clustering.
The algorithm minimizes edge crossings and distorts node positions
while maintaining their relative positions. Their method mainly tar-
gets at single-source node-link diagrams. It is not clear how to ex-
tend it to general multiple source graphs. Recently, Gansner and
Koren [7] presented an idea of minimizing an energy function for
rerouting edges to achieve hierarchical edge clustering. The edge
density is reduced by coupling groups of edges as bundled splines
that share part of their routes. However, their method is specifically
designed for circular layout graphs, while our method is for general
node-link graphs. TopoLayout, a feature-based algorithm organiz-

ing multilevel undirected graph layouts by topological features, has
been proposed by Archambault et al. [1]. The graph hierarchy is
formed by collapsing subgraphs into single nodes according to re-
cursively detected topological features. Instead of clustering the
nodes, our method clusters the edges to build the hierarchy, which
can keep the geographic meanings of the nodes in the graph. Qu
et al. [16] proposed a controllable edge clustering method based on
Delaunay triangulation to reduce visual clutter for large networks.
It groups edges together which are represented by curved lines ac-
cording to their geometry information. That method only allows
merging on the Delaunay edges, while our new method can provide
more flexibility and scalability to the edge clustering process.

3 HIERARCHICAL EDGE CLUSTERING ALGORITHM

In this section, we first give the definition of node-link graphs. We
then briefly overview our proposed energy-based hierarchical edge
clustering algorithm which consists of four steps, i.e., performing
Delaunay triangulation, sampling the graph edges, building the con-
trol map, and generating the edge hierarchy. We then discuss the de-
tails of each step followed by a brief description of the implemented
interface enabling user exploration on the clustering results.

3.1 Basic Definition

A graph G = (V,E) comprises a set V of n nodes, and a set E of m
edges, where V = {vi|i = 1, ...,n}, E = {(vi,v j)|vi,v j ∈ V, i 6= j}.
Each edge (vi,v j) connects nodes vi and v j . In the scope of this
paper, we only consider undirected graphs, in which edge (vi,v j) is
equivalent to (v j,vi).

We do not change the node positions during the clustering with
the assumption that a relatively good initial layout of nodes has been
computed based on other methods [13, 14] and the location of each
node is unchanged during the clustering. For certain applications
such as visualizing airline flight routes, it is important to preserve
the node location.

A

B C

D

E
F

G‘ G‘’ G‘’’

Figure 2: Sampling the graph edges based on Delaunay triangula-
tion. Edge AD is intersected with Delaunay triangulation edges BF,
BE, and CE. Four segments AG′, G′G′′, G′′G′′′, and G′′′D are sampled
for edge AD.

Before clustering, in the representation of the graph G, each edge
(vi,v j) is a straight line connecting two nodes vi and v j , as shown in
Figure 1(a). Our edge clustering algorithm merges edges and dis-
plays a new edge layout in the form of polylines or curves according
to the graph topology and edge distribution.

3.2 Algorithm Overview

As illustrated in Figure 1, our energy-based hierarchical edge clus-
tering algorithm can be divided into the following four steps:

• Step 1: Performing Delaunay Triangulation. Delaunay trian-
gulation is computed based on the node set V ;

• Step 2: Sampling the Graph Edges. Each edge in the set E is
subdivided into segments according to its intersections with
the Delaunay edges computed in Step 1;

• Step 3: Building the Control Map. Sampled segments, rep-
resented by the midpoint of each, are filtered to form a new
graph G′(V ′,E ′), based on the criteria of Euclidian distance
and the relative positions of each node pair in the set V ′;

• Step 4: Generating the Edge Hierarchy. Nodes in the new
graph G′ are hierarchically clustered based on our energy op-
timization. The edges in the original graph G are clustered
accordingly.

In the following subsections, we describe each step in detail.

3.3 Step 1: Performing Delaunay Triangulation

Similar to the controllable and progressive edge clustering
method [16], we first compute a Delaunay triangulation of the nodes
in the original graph G. Delaunay triangulation is a classic method
to generate triangles from points. Delaunay triangulation maxi-
mizes the minimum angle of all the angles of the triangles in the
triangulation and tends to avoid sharp angles, thus the shapes of the
generated triangles are usually very good. An example triangula-
tion of nodes in the graph shown in Figure 1(a) is illustrated in Fig-
ure 1(b). The Delaunay edges are marked with red color. Recently,
some GPU-accelerated Voronoi diagram and Delaunay triangula-
tion methods have been proposed [8], thus thousands of points can
now be triangulated in real time. In our algorithm, we take the ad-
vantages of Delaunay triangulation for the graph edge sampling in
the next step.

(a) (b)

A

B C

D

E
F

(c) (d)

Uniform sampling

 grid Edges

Sampled segments

 of graph edges

 Delaunay Triangulation based

non-uniform sampling grid edges

Figure 3: Comparison between uniform sampling and our proposed
non-uniform sampling scheme based on Delaunay triangulation: (a) -
(c) uniform sampling schemes with regular grids at difference sam-
pling rate; (d) Delaunay-triangulation-based non-uniform sampling
scheme.

3.4 Step 2: Sampling the Graph Edges

In the previous step, we obtain a triangulation of the node set V . As
shown in Figure 1(a) and (b), each edge in the original graph G is ei-
ther overlapped or intersected with one or multiple Delaunay edges.
An edge (u,v) ∈ E, intersecting with k Delaunay edges can be sub-
divided into k +1 sampling segments according to the intersection
positions. As illustrated in Figure 2, edge AD intersects Delaunay
edges BF, BE, and CE at points G′, G′′, and G′′′ respectively. Line
segments AG′, G′G′′, G′′G′′′, and G′′′D are sampled.

Based on Delaunay triangulation, we non-uniformly sample
edges according to the geometry of the graph. In Figure 3, our non-
uniform sampling scheme is compared with the grid-based uniform
sampling scheme on the same graph illustrated in Figure 2. In Fig-
ure 3(a), the graph edges are sampled with a 2× 2 grid. The sam-
pling grid edges are drawn in the purple color. Each graph edge is
segmented according to its intersections with the grid edges. Edges
are segmented into 17 fragments, each painted with the color of red,
green, blue, or yellow. In Figure 3(b) and (c), the graph edges are
sampled under the increased rates, with the grid size of 4× 4 and
7×7 respectively.

We observe that with regular sampling, segments with very short
length are usually generated in two scenarios. In the first scenario,
a graph edge intersects the corner of one grid cell, such as the seg-
ments colored with red in Figure 3(a) and (b). In the second sce-
nario, a graph node is very close to the grid cell boundary and the
node has edge(s) corssing the nearest grid cell boundary. One ex-
ample is the lowest node (node F in Figure 1) in Figure 3(c). Based
on the above observation, the uniform sampling that is solely based
on the edge length instead of the graph geometry may result in too
many or too few subdivided edge segments with undesirable length,

either causing low performance or generating unpleasant results.

Figure 3(d) shows all the segments generated with our Delaunay-
triangulation-based scheme. Delaunay triangulation edges are
drawn in dashed lines to be distinguishable from the original graph
edges. In contrast to uniform sampling, our sampling scheme con-
siders not only the edge information itself, but also the information
of the neighboring nodes, e.g., the overall topology of the graph.

3.5 Step 3: Building the Control Map

Based on the sampling result of the second step, we build a control
map for further processing. We represent each sampled segment
with its midpoint (blue points shown in figure 1) and form a new
complete graph G′(V ′,E ′), in which V ′ is the set of the midpoints
of sampled segments in G and E ′ is the set of edges connecting each
pair of nodes in V ′. We call graph G′ the control map of graph G.
By merging and rearranging the nodes in the control map, we can
cluster and reroute the edges in the original graph G. Before further
processing, the edges, in graph G′, that satisfy the following criteria
are first filtered out.

1. The edge linking two nodes (representing two sampled seg-
ments in graph G) which are originally on the same edge in
graph G;

2. The edge linking two nodes with Euclidian distance larger
than a threshold d specified by the user.

After filtering, only a subset of edges in E ′ remains, as shown
in Figure 1(d). This filtered control map G′ forms the basis of the
further hierarchical edge clustering in the next step.

3.6 Step 4: Generating the Edge Hierarchy

In this step, we build the hierarchical clustering of nodes in the
control map G′ and thus generate the hierarchical edge clustering
in G accordingly. During this step, the nodes of G′ are merged and
moved. The edges in graph G can be drawn as polylines or curves
with control points from graph G′. The edges in E ′ are first sorted
according to their energy U computed with Equation 1:

U(u′,v′) = −Du′v′ −∆θ (u′,v′) · ln(Du′v′ +1)

−∆α(u′,v′) · ln(Du′v′ +1) (1)

where Du′v′ = ||pu′ − pv′ || is the Euclidian distance of node u′

and v′, and ∆θ (u′,v′) is the angle between the two sampled edges
associated with u′ and v′. When both u′ and v′ are original nodes in
the initial control map, ∆α(u′,v′) is the same as ∆θ (u′,v′).

The edge with the highest energy is collapsed to form one sin-
gle node. Intuitively, nodes with close or parallel corresponding
sampled segments are likely to be merged together. After merging
a node pair, the control map graph G′(V ′,E ′) is updated and the
energies of updated edges are recomputed. The new pairs are in-
serted into the priority queue according to the energy. For the newly
formed node w′ which is the merging of node w′

1 and w′
2, its cor-

responding sampled segment direction is computed as the average
direction of the segments associated with w′

1 and w′
2. In Equation 1,

if u′ is the merging of nodes u′1,u
′
2, ...,u

′
m, and v′ is the merging of

nodes v′1,v
′
2, ...,v

′
n of the initial control map, then the sampled seg-

ment directions of u′1,u
′
2, ...,u

′
m are averaged for the direction of u′.

The segment direction of v′ is computed similarly. Value ∆θ (u′,v′)
is computed using the average segment directions and ∆α(u′,v′) is
computed as the sum of pairwise angle between set (u′1,u

′
2, ...,u

′
m)

and (v′1,v
′
2, ...,v

′
n).

During the merging of node pair (u′,v′) in V ′, the following op-
erations are performed:

1. Update the node list V ′: Remove u′ and v′ from the node list
V ′ and insert new node u′v′ into V ′. The position of u′v′ is
initialized as the midpoint of u′ and v′;

2. Update the edge list E ′: Remove the edges associated with u′

and v′ and make new edges with the end node u′v′. The edges
are being filtered based on the criteria described in the step
of building the control map (Step 3) before being added into
graph G′.

3. Optimize the location of u′v′: The location of u′v′ is optimized
to minimize the overall energy of graph G′.

Our energy definition is partially inspired by the edge-repulsion
LinLog energy model [14]. The first term in Equation 1 can be in-
terpreted as the attraction between close segments. The closer the
two segments are, the higher possibility the merging has. Thus, in
Equation 1, the smaller the value of Du′v′ , the larger the energy is.
The second term models the repulsion between segments with small
Euclidian distance but large direction difference. In this term, the
angular distance is multiplied by the logarithmic value of the Eu-
clidian distance. Large angular distance makes small energy, thus
two segments with very different directions have a low possibility
to be merged even though they have small Euclidian distance. The
term ∆θ (u′,v′) is recorded in radians, therefore, the value ranges
from 0 to π/2. The value of term Du′v′ is positive. If the input to the
logarithmic operation is less than 1, the curve becomes very sharp
as the input value increasing. The last term in Equation 1 is used to
prevent the merging of the nodes whose corresponding edges in the
original graph G are almost perpendicular to each other. Similar to
the second term, this term also considers both angular and Euclidian
distances. The difference is that the angular distance of ∆θ (u′,v′)
is recorded for the segments in the original graph G instead of the
control map G′.

The energy model for location optimization is following:

U(G′) = − ∑
(u′,v′)∈E ′

Du′v′ − ∑
(u′,v′)∈E ′

(∆θ (u′,v′) · ln(Du′v′ +1)) (2)

where Du′v′ and ∆θ (u′,v′) are defined the same as in Equation 1.
Equation 2 is for the overall energy of graph G′. Compared with
Equation 1, the first two terms are similar, and the third term of
Equation 1 is removed. The removed term is to count the pairwise
angles between the nodes in the initial control map. For the overall
energy of a graph, this term is a constant value and can be ignored
for optimization.

The above merging operation is repeated until there is no new
candidate node pair left in the queue.

3.7 User Interaction

We provide an interface allowing users to explore the node-link
graphs with different level of details. The implemented user in-
terface consists of two regions, as shown in Figure 4. The left is the
display region. The graphs are displayed with shaded tubes (edges)
and spheres (nodes). The right is the parameter region. Two types
of parameter controls are provided to the user. The control panel for
the computation parameter is used for adjusting the edge clustering
computation, i.e., the distance threshold discussed in Section 3.5
and 3.6. The display parameter panel provides users with the access
to explore the clustering results. In our algorithm, each edge is seg-
mented and represented by a series of control points. The resulting
hierarchically clustered edges can be drawn in either Catmull-Rom
splines or Bezier curves upon the user’s selection. In this paper,
all the curves shown are drawn with Catmull-Rom splines in which
specified curves pass all of the control points. Our user interface
supplies an easy-to-use scrolling bar for user exploration. The user
can slide the scrolling bar to examine the edge clustering results at
different levels interactively.

Figure 4: The user interface of our system using energy-based hi-
erarchical edge clustering. Left: display region; Right: parameter
region accepting user input.

4 EXPERIMENTAL RESULTS AND DISCUSSION

We applied our energy-based hierarchical edge clustering algorithm
to several node-link diagrams. Figure 5 shows the clustering results
on two graphs with simple topologies. The top images are the orig-
inal graphs, while the bottom ones are the corresponding clustered
results. In Figure 5(a), one array of nodes are all connected to a
single center node to form a single bundle. As illustrated in Fig-
ure 5(b), a tree graph is clustered by our algorithm. All edges are
grouped as expected. Figure 6 shows the hierarchical edge clus-
tering structure of an artificial dataset with 13 nodes and 57 edges.
Figure 6(a) is the original node-link graph. The highest level of
edge clustering generated by our hierarchical edge clustering algo-
rithm is illustrated in Figure 6(b). Figure 6(c)-(e) show the inter-
mediate graphs during the hierarchical clustering from low to high
levels. Graph edges are clustered progressively as the level of hier-
archy increasing.

We further applied our algorithm on a flight route map. The
original graph is shown in Figure 7(a), with 83 cities and 187 flight
routes displayed. Each graph node represents a major city in China,
while each graph edge represents a flight connecting two cities. The
hierarchical clustering result is illustrated in Figure 7(b). Airline
routes are clustered together according to their geometry and topol-
ogy structures. Similar routes are combined together to reduce vi-
sual clutter. We observe that undesirable results can be generated
for a few routes. Such as the route of the direct flight between
Beijing and Urumqi (the most northwestern city in the map) is dis-
torted in the clustered result and becomes difficult to trace. We are
currently investigating possible solutions for such cases. One pos-
sibility is to let the user directly restrict the deformation degree for
certain graph edges.

We implemented our algorithm on a Dell OptiPlex GX280 desk-
top with a single Intel Pentium 4 3.2GHz CPU and 1GB Memory.
The results in Figure 5 can be computed interactively. Computing
the hierarchy for graphs in Figure 6 and Figure 7 takes 0.985 sec-
onds and 9.125 seconds respectively. Our implementation is not
highly optimized for speed. Therefore, for large size graphs, the
pre-computation may cost several minutes. The GPU-accelerated
Delaunay triangulation methods [8] and local optimization con-
straints can be applied to speed up the performance.

One advantage of our method is that once pre-computed, the
whole hierarchical clustering structure can be stored for further

(a) (b)

Figure 5: Results of hierarchical edge clustering. The images in the
top row are the initial graphs. The images in the bottom row are the
corresponding clustered graphs drawn with curved edges.

uses. After that users can interactively explore the clustering results
at continuous level of details clustering results with an easy-to-use
scrolling bar.

5 CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a novel energy-based hierarchi-
cal edge clustering method for graphs. Our method hierarchically
clusters control points of edges to minimize a tailored energy func-
tion. In the sampling stage, we adapt Delaunay triangulation for the
non-uniform sampling of graph edges. Comparing with uniform
sampling schemes using regular grids, our Delaunay-triangulation-
based scheme considers the topological structure of the graph and
generates more desirable results. Through hierarchical edge clus-
tering, our method can reduce visual clutter and provide a better
understanding of the graphs. The results shown in the paper demon-
strate the effectiveness of our method in clustering edges. Our al-
gorithm can be applied to data with complex interconnections and
can provide good high level abstractions of complex graphs.

We plan to further investigate the effectiveness of our method on
large graphs. We will test whether the diagrams with our hierarchi-
cal edge clustering are more readable than the raw diagrams under
some defined visual clutter measures. We are also interested in con-
ducting user studies to validate our technique. In addition, we are
looking into an intuitive interface for users to control the abstrac-
tion level of the clustering. In some cases, it is desirable to allow
users to modify the clustering results interactively, e.g., to modify
the locations of certain control points.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their valu-
able comments. This work is supported by Hong Kong RGC grants
CERG 618705 and 618706.

(a) (b)

(c) (d) (e)

Figure 6: Results of hierarchical edge clustering on an artificial dataset with 13 nodes and 57 edges: (a) the original node-link graph; (b)
the highest level of edge clustering based on our hierarchical edge clustering algorithm; (c), (d), and (e) the intermediate graphs during the
hierarchical clustering from low to high levels.

REFERENCES

[1] D. Archambault, T. Munzner, and D. Auber. TopoLayout: Multilevel

graph layout by topological features. IEEE Transactions on Visualiza-

tion and Computer Graphics, 13(2):305–317, 2007.

[2] E. A. Bier, M. C. Stone, K. Pier, W. Buxton, and T. D. DeRose. Tool-

glass and magic lenses: the see-through interface. In Proceedings of

the SIGGRAPH ’93, pages 73–80, 1993.

[3] M. Carpendale and X. Rong. Examining edge congestion. CHI ’01

extended abstracts on Human Factors in Computing Systems, pages

115–116, 2001.

[4] M. Dickerson, D. Eppstein, M. T. Goodrich, and J. Y. Meng. Confluent

drawings: Visualizing non-planar diagrams in a planar way. J. Graph

Algorithms Appl., 9(1):31–52, 2005.

[5] A. Formella and J. Keller. Generalized fisheye views of graphs. In

Proceedings of the 3rd International Symposium on Graph Drawing,

pages 242–253, 1995.

[6] G. W. Furnas. Generalized fisheye views. In CHI ’86: Proceedings

of the SIGCHI conference on Human factors in computing systems,

pages 16–23, 1986.

[7] E. R. Gansner and Y. Koren. Improved circular layouts. In Proceed-

ings of the 14th International Symposium on Graph Drawing, pages

386–398, 2006.

[8] K. Hoff III, J. Keyser, M. Lin, D. Manocha, and T. Culver. Fast com-

putation of generalized Voronoi diagrams using graphics hardware.

ACM Transactions on Computer Graphics, 33:277–286, 1999.

[9] D. Holten. Hierarchical edge bundles: Visualization of adjacency re-

lations in hierarchical data. IEEE Transactions on Visualization and

Computer Graphics, 12(5):741–748, 2006.

[10] Y. K. Leung and M. D. Apperley. A review and taxonomy of

distortion-oriented presentation techniques. ACM Trans. Comput.-

Hum. Interact., 1(2):126–160, 1994.

[11] X. Lin. On the computational complexity of edge concentration. Dis-

crete Appl. Math., 101(1-3):197–205, 2000.

[12] F. J. Newbery. Edge concentration: A method for clustering directed

graphs. In Proceedings of the 2nd International Workshop on Software

Configuration Management, pages 76–85, 1989.

[13] A. Noack. An energy model for visual graph clustering. In Proceed-

ings of the 11th International Symposium on Graph Drawingg, pages

425–436, 2003.

[14] A. Noack. Energy-based clustering of graphs with nonuniform de-

grees. In Proceedings of the 13th International Symposium on Graph

Drawing, pages 309–320, 2005.

[15] D. Phan, L. Xiao, R. Yeh, P. Hanrahan, and T. Winograd. Flow map

layout. IEEE Symposium on Information Visualization 2005, pages

219–224, 2005.

[16] H. Qu, H. Zhou, and Y. Wu. Controllable and progressive edge clus-

tering for large networks. In 14th International Symposium on Graph

Drawing, pages 399–404, 2006.

[17] C. Ware, H. C. Purchase, L. Colpoys, and M. McGill. Cognitive mea-

surements of graph aesthetics. Information Visualization, 1(2):103–

110, 2002.

[18] N. Wong and M. Carpendale. Interactive poster: Using edge plucking

for itneractive graph exploration. In Poster in the IEEE Symposium on

Information Visualization (2005), 2005.

[19] N. Wong, M. Carpendale, and S. Greenberg. Edgelens: An interactive

method for managing edge congestion in graphs. IEEE Symposium on

Information Visualization 2003, pages 51–58, 2003.

(a)

(b)

Figure 7: Results of hierarchical edge clustering on an airline flight route map with 83 nodes and 187 edges: (a) the original node-link graph; (b)
the edge clustering result. (Data source of the background map: http://www.airchina.com.cn/)

