
ActivePoints: Acquisition, Processing and Navigation of
Large Outdoor Environments

Hui Xu Baoquan Chen

Department of Computer Science and Engineering
University of Minnesota at Twin Cities

http://www.cs.umn.edu/ � �
hxu,baoquan �

Email:
�
hxu, baoquan � @cs.umn.edu

Abstract

A longstanding challenge for computer graphics has been
capturing images of real-world objects and building their 3D
digital representations accurately and efficiently. Recently,
rapid advancements in laser range scanning hardware have
much improved the accuracy and efficiency of 3D scanning.
In meeting the needs of various applications, the main graph-
ics issues are how to process the paramount size of scanned
raw data and to build concise and accurate 3D representa-
tions so that scanned objects or environments can be effi-
ciently visualized and manipulated.

In this paper, we describe a system, dubbed ActivePoints,
for acquiring images of large outdoor environments by em-
ploying one of the most advanced scanning devices currently
available: Riegl USA’s LMS Z-360 3D image sensor. We
have designed and developed algorithms for creating effi-
cient 3D representations and rendering tools for efficient in-
teraction with the data. Even though ActivePoints shares a
common scanning pipeline with most existing scanning sys-
tems, it features several unique approaches. First, Active-
Points aims to generate a hierarchical point-based model
as the final representation. Second, to build this hierarchi-
cal model, ActivePoints employs an interactive segmenta-
tion and object organization tool coupled with automatic
segmentation algorithms. And finally, ActivePoints benefits
from a novel algorithm that can capitalize on new features
in modern graphics hardware for efficient and high quality
point-based rendering. We offer examples to demonstrate
that point-based models are better suited for representing and
visualizing large outdoor environments than earlier methods
and that ActivePoints proves to be an efficient system that
provides a platform for continuing exploration.

Keywords: 3D scanning, laser range acquisition, 3D pho-
tography, point-based rendering, interactive 3D graphics.

1 Introduction

For enhancing the realism of graphic representations, com-
puter graphics practitioners have been employing real-world

2D photographs as textures mapped on objects. Recently,
researchers have shown an increasing interest in capturing
and processing real-world 3D objects and scenes to achieve
the ultimate realistic virtual experience. Many applications,
such as in architecture design, entertainment (games, movie
special effects), telepresence, and documentation of ancient
architecture and archeology sites, would benefit from such
work. To these ends, new ways of digitizing existing envi-
ronments and viewing them are required.

However, capturing real-world objects and scenes, espe-
cially in outdoor environments, poses great challenges, re-
quiring the development of new software and hardware sys-
tems. Current software systems take an image-based mod-
eling approach, often employing computer vision techniques
for scene model construction [8], that can be combined with
interactive modeling tools [3]. These methods are inexpen-
sive, as no special scanning hardware is needed, and they
can capture objects and scenes of any size. However, the
constructed representations are often inaccurate, as the meth-
ods are sensitive to lighting conditions. Present hardware
systems employ 3D scanning devices for measuring object
distances, which until recently were limited to small objects
(e.g., toys or statues) and indoor scenes [6, 5, 1]. In addition,
traditional scanners only record range images of the scene;
therefore, color images must also be taken with digital cam-
eras, and registration of the range and color images must be
conducted.

In this project, we employ one of the currently most ad-
vanced acquisition devices for acquiring 3D models of out-
door scenes in order to meet our objective of fast, accurate,
and high resolution scanning and interactive virtual naviga-
tion of the scanned scenes. Our scanning device is Riegl
USA’s LMS-Z360 3D imaging sensor, which can measure a
distance up to 200m with 12 mm precision and obtain range,
intensity, and color images simultaneously. This eliminates
the need to register separate range and color images, hence
improving scanning accuracy and speeding up the acquisi-
tion process. Scanning outdoor scenes is more challenging
than scanning indoor objects for a couple of reasons. For
one, outdoor scene scanning is more constrained in terms
of setting up scanning locations; natural landscape obsta-



cles like bushes and trees can make it impossible to ob-
tain a complete image of the environment. The most sig-
nificant challenge of outdoor scene scanning is the unprece-
dented amount of data that needs to be acquired, processed,
and rendered efficiently. Because the scanning resolution
must be high enough to acquire sufficient details, capturing
1cm details at 100m distance, for example, requires scan-
ning over 6000 points for 360 degrees. A full panoramic
scan (

���������	�����
) takes about 4 minutes to do, producing

over 5 million points.

To process scanned data, most of the existing systems re-
construct scanned sample points into polygon meshes, ex-
tract corresponding texture maps out of camera-taken im-
ages, and then render textured polygons on conventional
graphics hardware. The justification for constructing poly-
gons has been the rendering support offered by the avail-
able hardware. But in fact, this usually results in an ex-
cessive number of triangles. The high resolution necessary
for scanning large environments leads to a high triangle-per-
pixel ratio during the novel view rendering. Furthermore,
fitting meshes into points, especially those of natural phe-
nomena, may create unwanted artifacts by producing non-
existing structures or jagged boundaries between objects [6].

In this system, we instead construct point models from
scanned samples. Using points as an alternative modeling
primitive has been explored for over a decade and has re-
cently received increased attention from researchers. Points
have been shown to be advantageous over polygons when
representing highly detailed features [10], and thus as mod-
ern graphics hardware provides more support for the render-
ing of point primitives, point-based rendering will undoubt-
edly continue to gain in popularity [7]. Besides the efficiency
they provide for rendering, points are also more flexible for
visualizing and modeling scanned large environment. Al-
though substantial further research will be needed to develop
a full-fledged point-based system (with necessary polygons)
for processing acquired large outdoor scans, here we present
two major efforts we are making in that direction. The first is
an interactive segmentation and object organization process
coupled with traditional automatic segmentation approaches.
The aim of this process is to build up a hierarchical represen-
tation of the environment. This modeling process is designed
to also compute additional geometric information for points.
The second effort is an efficient and high-quality rendering
system capable of rendering an environment of millions of
points interactively on commodity graphics hardware. The
rendered scenes are of a high quality and present the appear-
ance of solid surfaces.

We will begin our discussion of this system with a re-
view of a representative scanning pipeline. We then describe
our scanning system in section 3, point-based modeling in
section 4, and point-based rendering in section 5. We will
present our results in section 6, and finally conclude with a
discussion and plan for future work (section 7).

2 A Representative Scanning
Pipeline

Although different scanning approaches and applications
have resulted in scanning pipelines that emphasize different
operations and vary in their order, in this section, we present
a representative pipeline consisting of four main steps: (1)
denoising and multi-channel registration (of a single scan);
(2) multi-scan registration; (3) segmentation, object editing,
and organization; and (4) rendering.


 Step 1: Depending on which range scan device is used,
noise may be prominent in the scanned samples and
hence has to be removed from the range images, a
procedure called denoising. And as noted, because
most laser scanners can obtain only range images, color
images taken separately must be registered with the
scanned ranged images.


 Step 2: To obtain an integrated model, a sufficient num-
ber of scans has to be taken and then registered and
merged into a single 3D representation.


 Step 3: In this step, individual objects may be seg-
mented out and then transformed, copied, or deleted [9].
Various editing operations can also be applied (e.g., fill-
ing holes).


 Step 4: Once the complete models are obtained, the last
step is to perform rendering for manipulation and navi-
gation.

The goal of most previous systems has been to reconstruct
polygon mesh. Therefore, in the first step, after registering
color images with range images, texture maps are extracted
from color images for constructed polygons [1]. The main
task in the second step is removing redundancies among
overlapping scans, where meshes from different scans have
to be seamlessly connected [5]. Lastly, in the third step, the
rendering of textured polygon models is straightforwardly
performed on conventional graphics hardware.

There are also existing systems that do not reconstruct
polygon mesh. In the system described in [6], image-based
rendering is used to produce the color depth images that are
the desired final representation. In this system, step 1 resam-
ples color images on range image grids so that each sample
contains both color and range information. In step 2, after
merging, points are still stored in their original image for-
mat and redundant points are removed as groups (or tiles).
During the rendering, multiple color depth images are di-
rectly projected onto the novel view to form a new rendering
through 3D warping or projecting regular mesh constructed
out of the depth image.

Our scanning system also follows this representative
pipeline, but aims to generate an organized point set, which
is different from [6]. Because our scanning device can ob-
tain color and range images simultaneously and offers a high

2



Figure 1: Scanning devices and images acquired through a single scan of a corner on the University of Minnesota campus. The
images have the same resolution of 5 million points.

level of precision, we do not need to take the operations in
steps 1. Thus the following presentation of our system will
include only the operations in step 2 to 4. We will begin this
description by introducing our scanning hardware system.

3 Scanning Hardware System

Our scanning device is the Riegl LMS-Z360 3D Imaging
Sensor, one of the most advanced 3D laser scanners currently
available, which records range, intensity, and RGB color.
The scanner features long-range measurement and high ac-
curacy (12mm precision up to 200m), a large field of view
(
��� � �	����� �

), and a high scanning speed (24,000 pts/sec).
Figure 1 illustrates the scanning equipment, scanning action,
and sample images of a single scan. The lower left image of
Figure 1 shows the system setup during the scan. The scan-
ner is mounted on a tripod, which can be further mounted
on a cart for moving around easily. The laptop is connected
to the scanner through an enhanced parallel port for collect-
ing scanned data, which can also be replaced with a wireless
connection for unpleasant weather conditions or avoiding the
operators appearing in the scanned scene.

The laptop runs the interface software RiScan to control
the scanning process, such as setting the scanning starting
point, angles (vertical and/or horizontal), and speed. The
scanner scans three channels of information: color (RGB),
range, and intensity. In the scanned raw data, each RGB
channel is represented using 16 bits. In RiScan, one can de-

fine color transformation to change the 16 bits color channel
to 8 bits for display. The top and right images of Figure 1
show the color, range, and intensity images of one scan. The
bright spot at the top left corner of the color image is the sun.
The range value is pseudo color-encoded. Even though the
manufacturer specifies the maximum range of this scanner as
200m, as can be seen from Figure 1, sometimes the acquired
range can be beyond that. Air conditions do have some in-
fluence on the scanning quality, as the best quality can be
obtained in clear and dry weather conditions. The scanning
resolution has to be high enough to acquire sufficient details.
In this report we demonstrate our system using scans of two
locations on the University of Minnesota Campus, all scans
have high resolution of 5 million points.

4 Point-Based Modeling

We have devised algorithms and tools that directly operate on
point sets to obtain an optimized point representation. Our
approach involves two main operations. The first is to com-
pute additional geometric information for each point, such
as size and normal vector. The second is to group points
into clusters based on scene semantics and their local geom-
etry, after which redundant points are removed for optimiza-
tion. In this approach, no connectivity information is nec-
essarily built up between points. The following details five
procedures that are involved in creating point-based repre-
sentation: segmentation, point geometry calculation, multi-

3



Figure 2: Example of segmentation procedure: (a) original image; (b) invalid data (without range information) removed; (c)
searching area defined; (d) automatic segmentation with mis-classified region (red) and unclassified part of the building (green);
(e) assistant lines drawn to indicate boundaries; (f) updated segmentation; (g) combined with other part of the building; (h)
the segmented entire building removed and added to object list; (i) in user interface of segmentation tool, segmented objects
listed in the ”Segmentation Manager” window where they can be selected, deleted, and grouped; (j) completed segmentation
of a scene.

4



ple scan registration and merging, hierarchical data structure
construction, and point model editing.

4.1 Segmentation

Segmentation is an important step in extracting objects for
building an individual object hierarchy. For example, points
for each building are segmented out and collected into a
group; within each building group, points can be further
grouped together according to local geometric structures.
The final representation is essentially a data hierarchy, with
individual points at leaf nodes and clusters of surfaces, walls,
and buildings at intermediate nodes.

Although sophisticated segmentation methods are already
available for range images (e.g., [6]), these methods are
fully automatic and not reliable for complex environments.
Therefore, we employ interactive operations to enhance the
results of segmentation and speed up the process. Figure 2i
shows the segmentation tool interface. A typical segmenta-
tion procedure in our system is demonstrated in Figure 2a-
h. First, the system loads in the scanned images (Figure
2a (only the color image is shown and here and hereafter).
Then samples with invalid range values are removed (Figure
2b). Next, the user draws a close curve (Figure 2c, marked
as blue) on the image around the building that needs to be
segmented, so that the search is constrained within the close
curve for efficiency. The user selects any point on the build-
ing by clicking on it. An automatic segmentation algorithm
is performed to complete this operation; the system provides
several segmentation algorithms to choose from. The user
may also choose whether to run the segmentation operation
on the range, color, or intensity image, as one channel may
provide better segmentation than another for a given object.
For example, using the color image for segmentation may
give poor results for a building in relative darkness; how-
ever, using the range or depth images may produce better
segmentation. Figure 2d shows the intermediate segmenta-
tion result based on range image. The automatic segmenta-
tion algorithms usually need further refinement, especially
for large complex environments. As shown in Figure 2d,
points inside the red circle are misclassified, and points on
the building inside the green circle are not classified. To re-
move the misclassified points, assistant lines are drawn to in-
dicate boundaries. Figure 2f shows the selection updated af-
ter two assistant lines (blue lines in Figure 2e). For points not
classified, the user can select a new point and continue the
segmentation. The additionally classified points are added
to the existing ones. Figure 2g shows the final segmentation
of the building. In this process, a set of additional functions
like separation, undo, and redo are provided to ensure an ef-
ficient and user-friendly process. Finally, the user inserts the
segmented building into an object list (lower right window
of Figure 2i), removes the building from the scene (Figure
2h), and then continues working on the rest of the scene un-
til all objects are segmented. Figure 2j shows the completed
segmentation of the scan. Notice that the ground is manually

partitioned for efficient view frustum culling as discussed in
5.3.

4.2 Point Geometry Calculation

The second procedure in creating an optimized point rep-
resentation is point geometry calculation. Although it is
not our objective to reconstruct a complete polygon model,
point geometric information is necessary for estimating the
on-screen projection size of a point, performing back-face
culling and resampling, and so on. Typically, the size, tan-
gent, and normal vectors are calculated for each point.

Each pixel scanned represents a 3D point with a certain
size. The pixel azimuth angle is

���
and altitude angle is

���
,

which can be calculated based on the scanning field-of-view
and image resolution. Since angles

���
and

���
are small, the

horizontal distance � � and vertical distance � � in 3D space
between two points � -distance away from the scanner can
be approximated as � �	� � � � and � �
� � � � , correspond-
ingly. Usually

� �
and

� �
are equal; therefore, � ��� � � .

For two adjacent points representing the same surface, we
require that their geometries (circular disks) cover the local
surface without holes in between. To ensure this, the disk of
the point must have a minimum radius of

 �� � � or
 �� � � .

We take advantage of the regularity of the initial scanned
images for computing normals and tangent planes. Point
adjacency (even connectivity) information can be obtained
from pixel adjacency in the scanned images. Then a local
geometry (e.g., a plane or curved patch) can be fitted into
the points within the small neighborhood (space) of a point.
The geometry (normal and tangent) of the point can then be
computed from this fitted local geometry.

4.3 Multiple Scan Registration and
Merging

The third procedure in creating an optimized point represen-
tation is multiple scan registration and merging. To build up
a unified representation of a complex environment, we have
to take multiple scans and register and merge points from
them into one point set. There are numerous methods that
have been developed for registration of multiple scans. In
this system, we use PolyWorks, software sold with the scan-
ner, to perform this registration and obtain the transforma-
tion matrix for transforming each scan into a central coor-
dinate system. Differently than in a polygon reconstruction
approach, our merging is done directly on points. Generally
speaking, merging is achieved by removing redundant points
with a lower sample rate. For example, when two scans of
the same building are merged, the building is represented by
the scan taken closest to it (i.e., with higher point resolution).
The sample rates of points from two range images are com-
pared by computing the determinant of the Jacobin matrix of
the transformation between the two range images, a method
similar to measuring the local area change in image warp-

5



ing. A sampling rate comparison between two points that
come from different reference images and correspond to the
same region in the scene is then employed. Two points with
similar 3D positions and normals are determined to be corre-
sponding points. Unlike the approach of [6], our redundancy
test and removal is operated on every sample point, rather
than on tiles.

4.4 Hierarchical Data Structure
Construction

The fourth procedure in creating an optimized point rep-
resentation is the construction of a hierarchical data struc-
ture. A hierarchical data structure based on segmented ob-
jects is essential for point model editing (discussed next).
Moreover, it allows view frustum culling to be performed
efficiently. Segmented objects, with already-computed ad-
ditional local geometry information, are either further par-
titioned or grouped to form the data hierarchy. Partitioning
or grouping is determined automatically by the localities of
the objects or manually by the user. For example, a building
may be partitioned as several components (e.g., walls). The
user may then group it with other buildings in the same spa-
tial neighborhood as a single object node in the hierarchical
structure. This grouping continues until a single root group
is obtained. To facilitate efficient view frustum culling, for
each intermediate node we calculate its bounding box and
store the information in the data structure.

4.5 Point Model Editing

The last procedure in creating an optimized point represen-
tation is point model editing. Here we emphasize visual at-
tributes editing rather than geometry editing [9]. We have
developed a tool that allows users to edit the color value
(brightness, contrast) and hue of a selected object. The tool
also allows for cloning colors, which sometimes proves to be
the easiest way to correct local color problems. This kind of
color editing is also very important for correcting light and
color inconsistencies caused by the movement of the sun dur-
ing the long scanning process. This is also a very practical
tool for dealing with such color inconsistency problems be-
cause an automatic method still takes a long way to achieve.
This is a problem unique to outdoor scanning, as in indoor
scanning light conditions can be controlled. We can use sim-
ilar image editing tools to conform the colors of two images
to one another. We are convinced that more such tools will
be useful.

5 Rendering

For point rendering, we employ the traditional splatting
method [10], where a point is represented as a disk of cer-
tain size (termed splats). We employ efficient view frus-
tum culling for eliminating invisible points, thereby spend-

(a) (b) (c)

Figure 3: Alpha textures: (a) Gaussion ���
���� � (

� � ��� �
), (b)	�
� �

, and (c) ��������� ����	������ , where
�

is the radius and
alpha is 0 if

��� 	
.

ing computation mostly on visible points, resulting in ac-
celeration. We also leverage modern commodity graphics
hardware, e.g., point sprite primitive, for accelerated point
rendering. Using the point primitive, points can be rendered
as a textured point with texture coordinates (0,0) in the top
left corner and (1,1) in the bottom right corner. Our ren-
dering system utilizes hardware-supported point sprites to
perform surface splatting with alpha blending [10] and con-
ducts a two-pass rendering approach, much like [7]. Such
rendered images promise high quality, but are expensive to
compute, especially for complex environments. We have de-
veloped several strategies to enable interactive rendering on
commodity graphics hardware while compromising little on
image quality.

Two-pass rendering is used to ensure correct alpha blend-
ing for point sprite rendering (sorting point primitives for this
purpose is impractical due to the size of the data). The first
rendering pass generates a depth buffer of visible objects.
Then in the second pass, the depths of points are compared
with the corresponding values in the depth buffer. Only point
sprites having comparable depth values are blended with the
current framebuffer. In this pass, no depth buffer is updated.
Below we will discuss in more detail the two-pass rendering
process and the strategies designed for accelerated rendering.

5.1 Two-Pass Rendering

In the first pass, a depth buffer is generated by rendering the
scene as opaque points (visibility splatting). In the second
pass, the depth buffer is initiated as the depth buffer ob-
tained in the first pass and the depth buffer updating is dis-
abled. Then points are rendered as point sprites with alpha
blending enabled. During the rendering, only points passing
through depth testing are blended with the frame buffer. One
implementation issue is making sure points on the visible
surfaces get past the depth testing. One solution is to push
the visible surfaces slightly away from the viewpoint during
the first-pass rendering. Simply increasing all depth values
by the same amount will not work because, depending on
the point’s distance from the view, the same depth deviation
translates to different distances in 3D space. The solution

6



proposed in [7] is to calculate a z offset for each vertex using
a vertex shader. We employ a simpler approach here. Rather
than using costly computation to translate a depth buffer by a
small threshold, we simply push the far clipping plane away
from the camera by a certain distance before performing the
second-pass rendering. According to the projection formula,
the calculated depth values will become slightly smaller so
that points on visible surfaces can pass through depth testing.
This method was used in shadow rendering as an alterna-
tive to hardware-supported z-bias techniques, which are not
widely supported.

There may be a problem with this approach for some dis-
tant objects in a scene. The problem is caused by the un-
even distribution of the traditional perspective-correct depth
within the depth buffer range. When the far/near clipping
plane ratio is large, as in our outdoor scenes, a large percent-
age of the depth buffer range is used on the scene depth range
of short distance objects. For example, for a far/near ratio of
100, 90 percent of the depth buffer range is used on the first
10 percent of the scene depth range. This means depth values
for distant objects are sparsely quantified. Therefore, push-
ing the far plane by a certain distance results in little depth
deviation for distant objects. To address this problem, we use
a w buffer in place of a traditional depth buffer. In a w buffer,
the homogeneous w-coordinate from the point’s (x,y,z,w) lo-
cation in projection space is used, rather than perspective-
correct z (i.e., z/w). Using a w buffer, the buffer bits are more
evenly allocated between the near and far clipping planes in
world space. Therefore, a w buffer is ideal for our large envi-
ronment scene rendering since it allows applications to sup-
port large ranges while still getting relatively accurate depth
value. The w-buffer is supported by most graphics hardware
today.

The performance of the rendering can be further improved
when scenes are rendered from front to back because a point
failing the depth test will not be rasterized. Although a pre-
cise sorting on points is impossible for each frame, we can
sort segmented objects based on their distances from the
camera.

Hardware-supported point sprites allow a point to be ren-
dered as a textured point with texture coordinates (0,0) in the
top left corner and (1,1) in the bottom right corner. In the
second pass, we combine this technique with a traditional
alpha blending method to approximate screen space splat-
ting for each point. The texture of the point is pre-generated
alpha texture. Figure 3 shows the alpha textures that we
have experimented with. Images in the results section are
rendered using the cosine-based alpha texture (Figure 3c),
which seems to provide better results most of the time.

5.2 Rendering Point Primitives

When rendering a point sprite, its screen size needs to be
specified in addition to its coordinates, color, and texture.
Once the point’s 3D size is calculated, its screen size can
be calculated. We seek hardware support for this calculation

v
screenS

3D
S

L

V

fov

P

d D

ϕ

E (Viewpoint)

view plane

Figure 4: Estimation of point’s screen projection size.

as much as possible. Figure 4 illustrates a point
�

in 3D
space, where � is the viewpoint; � is the distance between
the viewpoint � and the point

�
; � ��� is the field of view; �

the angle between eye ray � � ; and the center view direction�� ; � is the screen resolution. The point size 	�
� in 3D space
is the diameter of the point disk, whose radius is provided in
section 4.2.

Most modern graphics hardware can calculate 	������������ us-
ing the following formula:

	������������ � 	�
����� � ��� � � � � �"! (1)

where parameters
�

,
�

, and
�

are user-predefined constants;
� is calculated by hardware based on the point’s 3D coordi-
nates.

Let us compute these constants. Based on similar trian-
gles and with slight approximation, we have 	#����������� � � �
	 
� �%$ , where

$ � �'& (�)+*-,�. �� and
& � �0/21435� . Thus, we

have

	 �����������%6 � 	�
�7�� �8/21435� (9)+* �:� ��� � � �
�

(2)

Comparing quation 1 and 2, we have
� � �

,
� � �

, and� ��� � � � /;1<3 � � (9)+* � ,�.
�
� . It is expensive to compute

� ��� �
for every point and to pass it to hardware. Therefore, we use
the average angle � � ,�.

�
= as an approximation and obtain a

constant parameter
�

:

� � � /;1<3 � � � ���� �4(9)+* � � � ���� � � (3)

Unfortunately, most current graphics hardware does not
take 3D size 	 
� as one of the point’s attributes (like co-
ordinates and color), but simply take it as a place holder.
For example, in DirectX8.1, the 3D point size has to be
specified by calling function SetRenderState with parameter
D3DRS POINTSIZE. However, it is not applicable to call
SetRenderState for every point to set its 3D size, as it will

7



slow down the rendering significantly. We solve this prob-
lem by specifying an average point size for each segmented
object instead of each point. Considering that the number
of objects ranges from only tens to hundreds, the overhead
of calling SetRenderState function is almost negligible. As
we are using an averaged 3D point size, to ensure a reason-
able approximation for each point, we have to group points
tightly together. As discussed in 4.2, the size of a point is
decided mainly by the distance between the point and the
scanner since the per pixel azimuth angle and altitude angle
are nearly constant. Therefore, this size averaging is only
reasonable when the variation of distance values of points
within a segmented object is small corresponding to the ob-
ject’s distance to the viewer.

In the current hardware implementation, the point’s orien-
tation is not considered when evaluating the point’s screen
size, as can be seen from the equation 1. We expect that
future graphics hardware will eventually address this issue.

5.3 Visibility Culling

We perform both back face culling and view frustum culling
for speeding up the rendering. The back face culling is per-
formed using the calculated point normals. To perform view
frustum culling, a bounding box is calculated for each node
in the data hierarchy (section 4.4). During the rendering, we
perform efficient view frustum culling before sending points
to hardware. Starting from the root node, we test the in-
tersection between its bounding box and the view frustum.
If the bounding box is totally outside the view frustum, all
points inside the box are discarded; otherwise, if it is totally
inside the view frustum, all points are rendered. If there is
only partial intersection between the bounding box and the
view frustum, we then test lower level nodes in the data hi-
erarchy until leaf nodes are reached; they then are either dis-
carded or rendered.

6 Results

We have implemented our scanning pipeline on an 800MHz
Pentium III PC with DirectX 8.1 under Windows 2000. The
main memory is 1 GB. We used an nVidia GeForce4 Ti 4600
graphics card with 128MB video memory. All images are
rendered using

����� � �����
resolution.

We demonstrate the rendering quality of our system in
Figure 5 and 6. Even for close-up views (e.g., Figure 5b and
Figure 6c), the objects have a solid appearance. In Figure 5b,
the Fraser Hall building is pulled close to about 20m from
the camera although it was originally scanned from about
100m away. The rendering quality can be better appreciated
by comparing Figure 6(d) and (e), zoom-ins of the marked
region in Figure 6(c). Figure 6(d) is rendered using sim-
plest points without splatting, leading to holes and incorrect
visibility (back points leak through front points), while Fig-
ure 6(e) is rendered using point sprite splatting, where gaps

Table 1: Rendering performance (image resolution:
800x600)

View # of Points # of Points fps
Culling Rendered Discarded

Figure 5a Yes 531,490 787,724 16.0
No 1,319,214 0 7.1

Figure 5b Yes 141,628 1,177,586 22.6
No 1,319,214 0 6.6

Figure 6b Yes 450,593 867,310 16.9
No 1,317,903 0 7.1

Figure 6c Yes 565,472 752,431 14.1
No 1,317,903 0 7.1

are filled and the texts on the wall become clearly readable.
As we try to leverage graphics hardware to evaluate

points’ screen projection sizes, we are specifying one 3D size
for a group of points, as discussed in 5.2. This approxima-
tion performs well for distant objects, but is susceptible to
unwanted artifacts for close objects. This is demonstrated
in Figure 5a. As we can see in the green circle area, holes
appear between points. Another phenomenon is the obvious
boundary between two regions, each of which uses a differ-
ent averaged 3D point size. Even if we systematically in-
crease the average point size to avoid holes (e.g., by setting
the ‘average’ size as the largest one in the region), the bound-
ary between adjacent regions will still be visible as the av-
erage point size changes. The ultimate solution to this prob-
lem is to calculate each point’s screen size using its own 3D
point size, a feature we hope for in new-generation commod-
ity hardware.

Finally, we demonstrate the rendering efficiency of our
system in Table 1. The performance is evaluated when in-
teracting with scenes in Figures 5 and 6. The frame rate is
calculated based on time spent at each frame. Even though
the speed is reported for four specific frames, they are ad-
equately representative and demonstrate the range of frame
rate that we normally experience. Our system can sustain
comfortable interactivity when exploring fairly large envi-
ronments (about 2 million points) on middle-level hardware.
We also demonstrate the effectiveness of performing view
frustum culling. An average of a two times speed-up has
been achieved. When the environment gets larger, this ap-
proach will become more effective.

7 Conclusions and Future Work

We have presented a scanning system for large outdoor en-
vironment acquisition employing one of the most advanced
scanning devices today. To cope with the complexity of such
scenes, we have proposed and experimented with a point-
based modeling approach. In particular, we have demon-
strated an interactive segmentation and data/object organiza-

8



tion tool that can efficiently build a hierarchical representa-
tion of scanned environment. Given an unprecedented data
size and dynamic scanning scenario, this data organization is
extremely effective and important for future object indexing,
updating, and editing. We have also investigated novel meth-
ods of interactively rendering high-quality large point-based
scenes consisting of millions of points. This is achieved
partially by leveraging new features of current commodity
graphics hardware.

The above efforts have formed the framework for our fu-
ture research in this domain. We already have a few inves-
tigations underway on different aspects of the system. First,
we will extend the purely point-based modeling to a hybrid
modeling using both points and polygons [2]. The polygons
are naturally more efficient for representing flat surfaces,
while points are generally more efficient for high feature sur-
faces. In the same direction, we will investigate ways of op-
timizing point-based models for efficient modeling,. Second,
we will develop tools for fixing some of the holes. Again we
emphasize the development of an array of interactive tools
for tasks ranging from simple transformation and coping to
editing to texture synthesis. Third, to further speed up ren-
dering, we will incorporate efficient occlusion culling meth-
ods (e.g., [4]) to our rendering framework. We will also ex-
plore levels of detail in addition to our current data hierarchy.

8 Acknowledgements

Our thanks to Minh X. Nguyen and Xiaoru Yuan for numer-
ous discussions.

Support for this work has included a Computer Science
Department Start-Up Grant and a Grant-in-Aid of Research,
Artistry, and Scholarship, 2002-2003, all from the Univer-
sity of Minnesota; University of Minnesota Digital Technol-
ogy Center Seed Grant 2002, Ted & Linda Johnson Dona-
tion, and NSF CAREER ACI-0238486. This work was sup-
ported also in part by the Army High Performance Comput-
ing Research Center under the auspices of the Department
of the Army, Army Research Laboratory cooperative agree-
ment number DAAD19-01-2-0014. Its content does not nec-
essarily reflect the position or the policy of this agency, and
no official endorsement should be inferred.

References

[1] F. Bernardini and H. Rushmeier. The 3D model acqui-
sition pipeline. In Computer Graphics Forum, volume
21(2), pages 149–172. 2002.

[2] B. Chen and M. X. Nguyen. POP: A hybrid point and
polygon rendering system for large data. Proc. of IEEE
Visualization ’01, pages 45–52, Oct. 2001.

[3] P. E. Debevec, C. J. Taylor, and J. Malik. Modeling
and rendering architecture from photographs: A hybrid

geometry- and image-based approach. In SIGGRAPH
96 Conference Proceedings, pages 11–20, Aug. 1996.

[4] J. T. Klosowski and C. T. Silva. Efficient conserva-
tive visibility culling using the prioritized-layered pro-
jection algorithm. IEEE Transactions on Visualization
and Computer Graphics, 7(4):365–379, 2001.

[5] M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz,
D. Koller, L. Pereira, M. Ginzton, S. Anderson,
J. Davis, J. Ginsberg, J. Shade, and D. Fulk. The dig-
ital michelangelo project: 3D scanning of large stat-
ues. In Siggraph 2000, Computer Graphics Proceed-
ings, pages 131–144, 2000.

[6] D. K. McAllister, L. F. Nyland, V. Popescu, A. Las-
tra, and C. McCue. Real-time rendering of real world
environnements. In Rendering Techniques ’99, Euro-
graphics, pages 145–160, 1999.

[7] L. Ren, H. Pfister, and M. Zwicker. Object space EWA
surface splatting: A hardware accelerated approach to
high quality point rendering. In Proceedings of Euro-
graphics 2002.

[8] S. Teller. Toward urban model acquisition from
geo-located images. In Proceedings of the Confer-
ence on Computer Graphics and Applications (Pacific-
Graphics’98), pages 45–52, Oct. 26–29 1998.

[9] J. Wang and M. M. Oliveira. Improved scene recon-
struction from range images. In Proceedings of Euro-
graphics 2002.

[10] M. Zwicker, H. Pfister, J. van Baar, and M. Gross. Sur-
face splatting. In SIGGRAPH 2001 Conference Pro-
ceedings, pages 371–378, 2001.

9



(a) (b)

Figure 5: Two novel views of Walter Library and Fraser Hall (1,319,214 points and
����� � �����

image resolution): (a) using averaged 3D point size for each region leads to visible boundary
between regions and/or holes (within green circles). The region segmentation on the ground is
shown in Figure 2j; (b) a close-up view of Fraser Hall (segmented in Figure 2(a-h)).

(a)

(b) (c)

(d) (e)

Figure 6: Northrop Mall (1,317,903 points and
����� � �����

resolution): (a) original scanned panoramic image (only
color image shown); (b) trees and grounds (looking south); (c) Northrop Auditorium (looking north); (d) rendering
using raw points of marked area of (c) with holes and incorrect visibility (back points leaking through front points);
(e) rendering using point sprites of marked area of (c) clearly depicting solid appearance (readable texts on wall) and
correct visibility.

10


