Anomaly Detection in GPS Data Based on Visual Analytics
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ABSTRACT

Modern machine learning techniques provide robust approaches for
data-driven modeling and critical information extraction, while hu-
man experts hold the advantage of possessing high-level intelli-
gence and domain-specific expertise. We combine the power of the
two for anomaly detection in GPS data by integrating them through
a visualization and human-computer interaction interface.

In this paper we introduce GPSvas (GPS Visual Analytics Sys-
tem), a system that detects anomalies in GPS data using the ap-
proach of visual analytics: a conditional random field (CRF) model
is used as the machine learning component for anomaly detection in
streaming GPS traces. A visualization component and an interac-
tive user interface are built to visualize the data stream, display sig-
nificant analysis results (i.e., anomalies or uncertain predications)
and hidden information extracted by the anomaly detection model,
which enable human experts to observe the real-time data behav-
ior and gain insights into the data flow. Human experts further
provide guidance to the machine learning model through the in-
teraction tools; the learning model is then incrementally improved
through an active learning procedure.

Index Terms: H.1.2 [Models and Principles]: User/Machine
Systems—Human information processing; H.5.2 [Information In-
terfaces and Presentation]: User Interfaces—Graphics user inter-
faces; 1.5.2 [Pattern Recognition]: Design Methodology—Pattern
analysis, Feature evaluation and selection;

1 INTRODUCTION

With the prevalence of the Global Positioning System (GPS), an
increasing number of electronic devices and vehicles have been
equipped with a GPS module for a variety of applications including
navigation and location-based search. In addition to such conven-
tional use, the GPS module can also be treated as a sensor that can
regularly report the position and other status of the hosting vehicle
or object. Such GPS traces provide very useful information regard-
ing the temporal trajectory and the moving pattern of the host as
well as indirect information regarding the surroundings of the host.
In this paper, we focus on data analytics and anomaly detection of
GPS traces of urban taxis.

There are three major objectives of such data analysis: 1) use taxi
GPS traces to assist urban traffic monitoring because the speed of
a taxi indirectly indicates the traffic condition on the street where
the taxi is; 2) improve the safety of pedestrians and taxi passen-
gers by monitoring and detecting reckless behaviors of taxi drivers;
3) discover potential emergencies or abnormal situations associated
with taxi drivers or passengers. There exist a few challenges to
achieve these objectives. First, we need to deal with a large number
of simultaneous real-time data streams because there are typically
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a large number of taxis in an urban area; second, we need to ef-
ficiently analyze the temporal patterns of individual GPS traces as
well as spatial distributions of these traces to report any abnormal
traffic conditions or driving behaviors in real-time.

Manually analyzing hundreds of GPS traces is obviously unreal-
istic. On the other hand, a completely automatic approach would
not be feasible either since abnormal situations need to be con-
firmed by human experts. Therefore, a visual analytics approach
is taken to develop a semi-automatic system. There should exist
both data analysis and visualization components in the system to
support collaboration between machines and human analysts. The
data analysis component is based on machine learning models. Fast
automatic analysis is first performed by the data analysis compo-
nent, which is also capable of providing the uncertainty of the anal-
ysis results. GPS traces along with analysis results are presented
through the visualization engine. Human analysts can make use of
the visualization in multiple different ways. Most of the time, the
automatic analysis results are correct with high confidence. There-
fore, human analysts can directly take the results provided by the
machine. When a result is presented with high uncertainty, a hu-
man analyst can interact with our system to look at the details of
the spatial and temporal patterns to correct the automatic analysis
result. More importantly, any user-provided analysis results can
also be used as training data to improve the performance of the au-
tomatic data analysis component so that it can achieve a higher level
of accuracy on future incoming data.

Our system harnesses the computing power of machine learning
models and the high-level intelligence of human experts through
a visualization engine and a human-computer interaction interface.
Through the visualization and the interaction tools, human experts
can choose to browse the most relevant information and provide
guidance to the anomaly detection component. We use a state-
of-the-art discriminative machine learning model, conditional ran-
dom fields (CRFs), for anomaly detection. CRFs require supervised
training. To minimize the amount of manual labeling for training
the CRF model, the performance of our CRF model is incrementally
improved through an active learning procedure. Active learning is
a machine learning paradigm that the learner (machine model) se-
lectively choose data items with a high prediction uncertainty as
training set. This is because such data items are the most critical
ones that can directly remove ambiguities in the machine model
and effectively improve its performance.

The rest of this paper is organized as follows. In Section 2, we
give an overview of our visual analytics system. In Section 3, we
first give an overview of conditional random fields and then discuss
in detail how to perform feature extraction in our CRF model for
GPS anomaly detection. In Section 4, we first review the active
learning approach, and then present the criteria we use to select
candidate training data. In Section 5, we present our visualization
component and the human-machine interface of our system. After
that, we demonstrate experimental results of our system on a set of
GPS traces in Section 6. Related work and conclusions are given in
Sections 7 and 8.



2 OVERVIEW

GPS traces from hundreds of taxis within an urban area serve as
the input to our system. Such data can be streamed to our sys-
tem in real-time. Data is automatically collected from every taxi
once every few seconds. These collected data items form the tra-
jectory of a taxi over time. A data item consists of 6 attributes:
(ID,latitude,longitude,loaded speed,time). ID is the identifica-
tion number of the taxi from which the data is collected. latitude
and longitude define the global location of the taxi. loaded is a
boolean value indicating whether the taxi is loaded with passengers
or not. speed is simply the speed of the taxi at the time of collec-
tion. time is the time stamp of the GPS data item.

Our system consists of four major components: a machine model
for anomaly detection, an active learning module, a visualization
component, and a human-machine interaction interface. Figure 1
gives an overview of the system architecture.
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Figure 1: Overview of the system architecture

The human-machine interaction interface forms the front-end of
the system, while the back-end consists of the visualization engine,
the active learning module and an anomaly detection component
based on the conditional random field (CRF) model. Since CRFs
perform supervised classification, an initial CRF model with a rea-
sonable classification accuracy needs to be trained in advance. The
interaction interface supports three modes: basic mode, monitor-
ing mode and tagging mode. A user can switch among these three
modes at any time.

The basic mode only visualizes the raw GPS traces, and users
can only perform basic exploration.

In the monitoring mode, the anomaly detection component is ac-
tivated, and anomaly tags are shown dynamically on the screen.
As shown in Figure 1, data passes through the visualization engine
and the CRF model. At every time step, the CRF model predicts
the status (normal or abnormal) of every taxi by analyzing the new
incoming data together with previous data falling within a causal
time window. The visualization engine takes the incoming GPS
traces and the predicted labels from the CRF model to update the
visualization on the screen. In addition, upon request from the user,
the visualization engine can also show internal feature values used
by the CRF model. Thus, human experts can not only verify the
final analysis results from the CRF model but also gain additional
insights by checking the evidences the CRF model uses to reach its
conclusions.

In the tagging mode, the active learning module is activated. It
uses the CRF model to mark data items whose labels are highly un-

certain. High uncertainty indicates the current version of the CRF
model has become inadequate to label these data items automati-
cally. Human experts are requested to manually label a represen-
tative subset of these marked items. Such labeled data can then be
used to train an improved version of the CRF model.

The visual analytics approach taken in our system gives a novel
anomaly detection framework for GPS data with minimal user in-
tervention by effectively integrating automatic state-of-the-art ma-
chine learning techniques with human experts’ insights. Figure 2
shows a snapshot of the system. Note that even though the data
flow and labels are visualized in real-time, the system allows users
to roll-back to previous time stamps to re-check a label or to exam-
ine event logs offline in case that simultaneously occurring abnor-
mal events cannot be handled in time.

3 ANOMALY DETECTION BASED ON CRFs

Conditional random fields is a machine learning model for repre-
senting the conditional probability distribution of hidden states Y
given observations X. Intuitively, a conditional random field model
builds the conditional probability distribution P(Y|X) for determin-
ing the most probable labeling of observation data. It was first
introduced by Lafferty et al. [13] for text sequence segmentation
and labeling, and has been successfully applied to many problems
in text processing, such as part-of-speech (POS) tagging [13] and
name entity recognition (NER) [18], as well as problems in other
fields, such as bioinformatics [24] and computer vision [12].

In the remainder of the paper we limit our discussion of CRFs
to linear-chain CRFs, which is the model we use for our GPS data
anomaly detection.

3.1 Linear-Chain Conditional Random Fields

The state variables Y in a linear-chain conditional random field [13,
27] are restricted to form a chain. This assumption greatly sim-
plifies the model complexity and yet is a very natural assumption
in applications where the input X has a sequential form, such as
text sequences for natural language processing problems or gene se-
quences for bioinformatics problems. Linear-chain condition ran-
dom fields are well suited for modeling and classifying GPS data
too because GPS data streams are essentially temporal signals and
have a sequential nature.

The graphical representation of a linear-chain CRF is shown in
Figure 3. ¥; is the hidden state variable for the node at position 7 in
the sequence, X; is the observed data at position 7. Each state vari-
able Y; is only connected to the immediately preceding and follow-
ing states (restriction of feature definition). The probability distri-
bution over the random variables (X,Y) is modeled after a Markov
random field (undirected graphical model), as is shown in Figure 3.
By the fundamental theorem of Markov random fields [8], which
states that the joint probability of a Markov random field can be
factorized into a product of potential functions over local cliques
(features) in the graph, the joint probability of the hidden state se-
quence y conditioned on x can be written in the following form:
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where Z(x) is the normalization item:
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We use lowercase notations X,y for assignments to the variables.
N is the length of the input sequence and K is the size of the feature
function set. Each fj, is a feature function (potential function) that is
defined over a local clique in the graph, and takes y;, y,—1 and items
in the input observation sequence as arguments. A weight vector
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Figure 2: A snapshot of the visual interface. Middle left: main window for visualization and information display. Upper left: interface for
visualization configurations and user operations. Bottom Left: interface that shows time and supports play-back. Right panel. Display dynamic

histograms of the traffic or the selected items, a legend and system status.

A ={A1,..., A4 } is associated with the feature function set. The val-
ues in the weight vector determine how the feature functions con-
tribute to the conditional probability computed by the model. A fea-
ture function f;(y;,#—1,X;) is an indicator function that describes a
local pattern, for example fi(y; = abnormal,y;_| = normal) re-
turns 1 if the two state conditions are satisfied. The feature func-
tions, {fi,...,fx}, define a set of clique templates for the CRF
model: given an input sequence X, the graphical model for the se-
quence can be constructed by moving the feature templates over the
sequence. Therefore, a CRF model is fully specified by the feature
function set and the weight vector (f,1).

Since a conditional random field is a supervised machine learn-
ing model, it needs to go through a supervised training stage before
being used for new testing data.

Training The training process computes the model parameters
(the weight vector) according to labeled training data pairs {y,x}"
such that the log-likelihood

ZlogP ZlogZ

is maximized. The above objective function is convex so gradient-
based optimization can guarantee to find the globally optimal so-
lution. The state-of-the-art gradient ascent method for such an
optimization problem is the limited-memory Broyden-Fletcher-
Goldfarb-Shanno (L-BFGS) algorithm [16].

Inference When a trained CRF model is applied to a novel in-
put sequence, it tries to find the most likely hidden state assignment
y, i.e., the label sequence
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for the unlabeled input sequence x. For linear-chain CRFs, this
can be efficiently performed by dynamic programming (the Viterbi
algorithm [19]) over the sequential hidden variables y.

Figure 3: A graphical representation of a linear-chain CRF. For time
step 7, Y, is a discrete hidden state, and X, is an observation data
vector. The feature function set is defined over the observation vec-
tor.

For a detailed discussion on inference and training algorithms
for CRFs, interested readers are referred to [27]. In the following
section, we describe the task-specific details of our GPS anomaly
detection component using linear-chain CRFs.

3.2 Feature Extraction

Given raw GPS data streams from taxi GPS devices, our anomaly
detection component intends to automatically identify taxis with
abnormal driving behaviors. The value of hidden states Y is thus
limited to {abnormal,normal} (More states could be included if
the input data provides more information for reliable labeling).
The observation sequence X is derived from the raw GPS streams.
Specifically, at each time step, incoming raw data items are pre-
processed for fast fetching, and a new observation vector X; is ex-
tracted for every taxi. The observation vector is derived from data
with a time stamp inside a time window and a spatial location inside
a neighborhood of the target taxi. A detailed description of the fea-
ture functions used in our CRF model is given in the following part
of the section. We divide a GPS data stream into non-overlapping
segments, and take the observation vectors within each segment as
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Figure 4: lllustration of data organization for CRF-based labeling.
A GPS data stream is divided into non-overlapping segments, and
the observation vectors within each segment are taken as an input
sequence to the CRF model. D, is the GPS raw data at time step t,
and X, is the derived observation vector. The output state sequence
Y is the anomaly detection result.

an input sequence to the CRF model. The segment length is con-
figurable, in our system, we use 200 seconds as a typical setting.
For each input sequence, the computed hidden states are used as
the predicted labels of the taxi over a corresponding time interval.
Figure 4 illustrates how the data is organized and processed in the
CRF framework.

To a large extent the performance of a CRF model is determined
by the selection of the feature function set. In our GPS anomaly de-
tection, the features at a time step are based on speed, time, location
and passenger loading information.

e speed: Speed is a primary source of cues that indicate driving
behaviors. Instead of simply taking the speed of the target taxi at
a single time step alone as a feature function, we rely on statistical
properties, including histograms of the target taxi’s speed in a time
window [T —s,T], where T is the current time step, and histograms
of the speed of taxis in a neighborhood of the target taxi at 7. Speed
is decomposed into magnitude and direction. Therefore there are
four histograms in total, the histogram of speed magnitude in a
time window, the histogram of speed direction in a time window,
the histogram of speed magnitude in a spatial neighborhood, and
the histogram of speed direction in a spatial neighborhood. Each
histogram has 20 bins, and every bin of a histogram defines a fea-
ture function. Specifically, for a histogram of speed magnitude, the
magnitude is discretized into 20 intervals, and each bin represents
one interval. Similarly, for a histogram of speed direction, the di-
rection is also discretized into 20 intervals, and each bin represents
an angular interval of 18 degrees. The count (height) of a bin is the
number of occurrences with the corresponding attribute interval. In
addition to individual histograms, a mean histogram of each of the
four types is also calculated over all taxis; for each taxi, the Earth
Mover’s Distance (EMD) [14] between its individual histogram and
the corresponding mean histogram is taken as an additional feature
function. These EMDs serve as a global measurement of how much
an individual histogram deviates from the overall average.

e time: Time is also a very important feature that implies the like-
lihood of anomaly occurrence along the day. In GPS traces, time is
represented in second. In the feature definition, time values are dis-
cretized into the following intervals: morning, morning_rush_hour,
noon, afternoon, afternoon_rush_hour, night, late_night.

e Jocation: Location in the raw GPS data is expressed as (longi-
tude, latitude) coordinates. We partition the target urban area into

a rectangular grid, and use the indices of the grid blocks as loca-
tion values. Intuitively each grid block serves as a district in the
urban area, and the feature induction and selection algorithm ([13]
section 6) of the CRF model are used to extract the hidden corre-
lations between districts and the likelihood of anomaly occurrence,
even though we don’t have an explicit information about the dis-
tricts. Note that this feature selection algorithm works not just for
location feature but for all the features.

e load: Boolean value indicating whether a taxi is loaded with pas-
sengers. This is also taken as a potential feature.

4 ACTIVE LEARNING

Active learning is a general learning paradigm and many variations
exist. The active learning scenario we have in the system is most
related to pool-based active learning, where the learner proactively
chooses a sample set of data items from a (usually very large) set of
unlabeled data as the candidate training set to limit the amount of
labeled data required for the learner to reach an acceptable level of
accuracy [23, 5] or an increased level of generalization [3, 26]. Pool
based active learning is a practical and effective learning method in
many applications where unlabeled data is easily obtainable while
manual labeling is expensive. This is exactly the case in our system.
We have an unlimited amount of streaming data while manual la-
beling on such data is laborious. The success of an active learning
procedure depends on the sample selection criteria. In the liter-
ature, many different criteria have been proposed including label
uncertainty [26] and prediction variance [6].

In our system, we adapt the criteria proposed in [28] for CRF-
related sample selection. These criteria take into account sam-
ple uncertainty, representativeness, and diversity to choose non-
redundant samples of high uncertainty as the training set. Among
the three, uncertainty measures the level of confidence a CRF model
labels a data sequence. Representativeness and diversity measure
the similarity among samples. The active learning procedure first
chooses a set of candidate samples with the highest uncertainty, and
then uses the representativeness criterion to refine the candidate set
by filtering out redundant data items in the candidate set. In the last
step, we use the diversity criterion to select from the candidate set
the ones that have not yet been covered in the training set. In the
following we discuss our adapted version of these sample selection
criteria.

Uncertainty A conditional random field provides a natural
confidence measurement of the prediction it makes. For a se-
quence X, the confidence (conditional probability) of label y; of x;
P(y;|x) can be efficiently computed using the forward/backword al-
gorithm [28]. The overall confidence C(y|x) of the label sequence
y given input sequence X is defined to be the minimum confidence
among all labels in the sequence, i.e., C(y|x) = min; P(y;|x). Given
the definition of the confidence of a sample sequence X, the uncer-
tainty measure is defined as

Uncertainty(x) = 1 — C(y|x).

Representativeness For the subset of data sequences with
high uncertainty S, a representativeness measure is defined over
each sequence S; as following,
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Representativeness(S;) = 1 —Sim(S;,S;),

where Sim(S;,S;) is the similarity between two sequences. Given
two sequences S; =< pj|,...pim > and S; =< pj1,...pjm > (Pik 18
the k-th data item in sequence S;, m is the length of a sequence.
Note that in our system all sequences are of the same length),

Sim(S;,S;) = Lym  cos(pu.pj) = Ly, prk'kijku, which is



the average pairwise cosine similarity over the entire sequences.
A high representativeness value means that a sample sequence is
not similar to any other sequence in the candidate set. Note that
the more complicated calculation of representativeness in a gen-
eral context [28] has been simplified in our system because the se-
quences are of the same length.

We use the following formula

L(S;) = 0.6Uncertainty(S;) + 0.4Representativeness(S;)

to choose a candidate training set whose combined score L(S;) ex-
ceeds a prescribed threshold, where the coefficients are empirical
values determined by experiments.

Diversity Once the candidate set with the highest combined
scores have been chosen, we use the diversity measure to remove
items that are redundant with respect to data items that are already
in the training set from the previous iteration. Specifically, for each
of the sequences S; in the candidate set, we add it to our final train-
ing set if the similarity score between S; and any item currently
in the training set is not greater than 1 = (1 + avgSim)/2, where
avgSim is the average pairwise similarity among all sequences cur-
rently in the training set.

In our GPSvas system, the CRF model uses an ample set of low
level features of attribute values summarized over a spatial and tem-
poral window, while the visualization interface exhibits higher level
visual cues which are easily interpretable by human intelligence, for
example, abnormal speed variation patterns, irregular shapes of tra-
jectory, strange spatial distributions of neighboring taxis, etc. The
active learning module helps to improve model performance in the
sense that it drives a training process that takes human labeled data,
which serve as a message of human judgements made from high
level visual cues, and reveals the hidden patterns from the data in
the language of low level features used in the machine model. In
other words, end-users (experts on urban traffic monitoring) label
abnormal driving behaviors from the visualized traffic flows based
on their expertise and discretion; the training procedure then in-
duces the relevant feature set and adjust model parameters to dis-
tinguish anomalies from the normal.

5 VISUALIZATION AND INTERACTION

Visualization and interaction play a critical role in our system. It
connects the back-end machine learning components with human
analysts who monitor and guide the system’s execution. Three ma-
jor functionalities are accommodated in the visualization and inter-
action components: 1) The visualization engine displays taxi tra-
jectories and their associated text annotations generated from the
anomaly detection component. This provides a general impression
of the traffic flow and individual driving behaviors, for example,
possible traffic jam zones and aggressive passing behaviors, to the
system user; 2) In addition to the above basic visualization func-
tionality, our system can also visualize the internal feature values
that the CRF model relies on to automatically label a vehicle, i.e.,
the most critical features that vote for or against the decision on an
anomaly detection label. This information helps analysts gain addi-
tional insights on the streamed GPS data; 3) The human-computer
interaction interface allows the user to select specific information to
explore and to provide guidance to the underlying machine learning
models.

Note that these three functionalities are organized as integrated
visualization and interaction components of the system. They co-
ordinate with each other for presenting data and information, and
conveying human knowledge and guidance to the machine models.
The following three subsections discuss these three functionalities
respectively.

We use the Prefuse visualization toolkit [ 10] for our visualization
task. For the requirement of data source de-identification, map is
not used in the visualization interface.

5.1 Visualizing GPS traces

The GPS traces of the taxis pass through the system as data streams.
These data streams are scanned only once and kept in the system for
a while before being discarded. Visualization of such GPS traces
includes updating the location of the taxis, displaying a partial tra-
jectory of each taxi as well as visually presenting other information
that is available in the trace records, such as whether a taxi is loaded
with passengers. We also base on the statistics of speed in a time
window to highlight potential anomalies.

Figure 5: A visual representation of GPS traces. Taxi A is loaded
with passengers, and is highlighted with an orange stroke color to
signal a potential anomaly. Taxi B is not loaded with passengers.
Taxi C is selected by the mouse and highlighted with a red stroke
color. Nearby taxis of the selected taxi has a blue stroke color. The
trajectory of the selected taxi is highlighted in red.

Taxi Trajectory According to the sampling rate of the GPS
data, the actual position of each taxi is updated every 10-20 sec-
onds. Directly connecting these position updates with line seg-
ments would produce unnatural zigzagging trajectories. We use
a Cardinal spline [25] to generate a plausible trajectory given the
position samples. Since the original GPS position samples are not
sufficiently dense, to avoid unrealistic undulations in the resulting
spline, we choose an appropriate tension parameter for the Cardinal
spline. Afterwards, the approximate position of the taxi at any time
can be computed using this spline. This generates more continuous
and natural trajectories of the taxis and produces smoother vehicle
movements. The actual look of the taxi trajectories interpolated by
Cardinal splines can be found in Figure 5. Note that the length of
the partial trajectory of a taxi is determined by a fixed-size causal
time window. A longer partial trajectory indicates a higher average
speed in the time window.

Passenger Loading Each taxi is visually represented as a
thick solid dot. Its filled color is used to indicate whether a taxi
is loaded with passengers or not. Specifically, a green filled dot
indicates the taxi is loaded, and black indicates the opposite.

Potential Anomalies In this part of visualization, we use a
simple cue, speed magnitude, for detecting potential abnormal driv-
ing behaviors in an unsupervised way. Specifically, we calculate
a histogram of speed for every taxi within a causal time window,
and compute the Earth Mover’s Distance (EMD) between this his-
togram and the average histogram among all taxis. We also build
a prior Gaussian model over the EMDs. Histograms with an EMD
to the average histogram larger than twice the standard deviation
of the Gaussian (2-sigma rule) are considered potential anomalies.
We use the stroke color of the solid dot to distinguish the potential
anomalies from others. Orange is used for highlighting taxis with
potential anomalies, and cyan is used for the others. In addition,
at every time step, the taxi whose histogram has the largest EMD
to the average histogram is highlighted by scaling its dot size by a
factor of 3.



Such potential anomalies may be different from the anomalies
labeled by the CRF model built using supervised training. These
potential anomalies focus on fast moving taxis, which exhibit po-
tentials to have true anomalous situations, while the anomalies la-
beled by the CRF model are more reliable because they are decided
using a richer set of features with a sufficiently trained CRF model.

An example snapshot (part of the full screen) of trace visualiza-
tion is shown in Figure 5.
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Figure 6: Top: the speed histogram for a time window, Bottom: the
speed histogram for a spatial neighborhood. Each bucket in the his-
tograms corresponds to a feature with the feature value represented
by the height. Colors are used to reveal the degree of correlation
(positive or negative) with the predicted label. Warm colors (red)
show positive correlations while cool colors (blue) show negative cor-
relations. neutral (black) colors shows weak correlations.

5.2 Visualizing CRF Features

In a typical application, a CRF model is used as a black box:
a user trains the model weights with a set of training data, and
uses the trained model to make predictions on unlabeled data after-
wards. It is usually unclear to a user how the predictions are made.
More specifically, what are the critical factors that contribute to the
model’s output. In our visualization component, we developed a
module that visualizes the internal information of the CRF model
to illustrate how a decision is made inside the CRF model. The
internal information includes the current state of features and their
weights. Visualizing such information provides the possibility that
if inappropriate weights are found in the CRF model, one could tune
those weights in the right direction by adding specific labeled train-
ing data through the active learning procedure. To the best of our
knowledge, this is the first attempt to visualize the internal states of
CRF models.

A CRF model consists of two parts: the feature set, and the
weights associated with the features. In practical applications, the
feature set tends to be very large such that it would be impossible
to gain understanding into the model by directly displaying them
in plain texts. In our visualization component, we use visual rep-
resentations of the features and their weights instead. When a user
selects a specific data item, the subset of features that is turned on
for the specific data item are visualized, as well as the associated
weights. For example, for a specific taxi at time step ¢, an “on”
feature could be “the number of other nearby taxis whose speed
is lower than 10 is between 5 and 10”. In the next time step, this
feature would probably become “the number of other nearby taxis
whose speed is lower than 10 is less than 5”. From this example we
see that for different taxis or different time steps, each feature takes
potentially a different value. In our visualization scheme, a feature
is represented by a rectangular bar, the height of which encodes its
value (count), and the color of which encodes the weight associated
with the feature. Positive weights are shown as red while negative
weights are shown as blue. A linear interpolation is used to obtain

colors for intermediate weights. Figure 6 shows an example of the
visualization of a feature set consisting of bins in the speed his-
tograms. Representative abnormal cases and their histograms are
shown in Figure 7.

5.3 Interaction Interface

Human-machine interaction is another indispensable part of our
system. In our system, interaction is bi-directional: on one hand
users explore the visualized taxi partial trajectories and their asso-
ciated text labels indicating whether any anomalies have been auto-
matically detected; on the other hand, the underlying active learning
module proactively selects items with highly uncertain labels and
requests feedbacks from human experts. Human experts give re-
sponses by manually providing labels to the requested items. Such
labels are used for training an improved version of the CRF model.
To provide appropriate user control, the interface allows the users to
customize most of the system parameters, such as radius of neigh-
borhood, size of objects, type of information to display, etc.

To accommodate different types of user interaction described
above, our system is designed to have three interaction modes: ba-
sic mode, monitoring mode and tagging mode. The basic mode only
visualizes the raw GPS traces without any labels, and users can only
perform basic exploration. In the monitoring mode, the anomaly
detection component is activated, and anomaly tags are shown dy-
namically on the screen. Users can also choose to view the internal
CREF states of the tagged data items. In the tagging mode, the ac-
tive learning module is activated. Highly uncertain labels from the
CRF model are highlighted, requesting for user input. CRF model
training with the newly labeled data is also activated in the tagging
mode. In the following we describe each of these three modes and
their corresponding interactions.

Basic Mode Basic interactions in this mode includes: (a)
zoom-in/zoom-out, which is controlled by mouse scroll, (b) drag-
ging, which translates the center of the view port on the 2D plane by
direct mouse dragging, (c) taxi selection, which highlights the se-
lected taxi whose detailed information is also displayed on screen,
(d) replay, which goes back in time to show the data that has just
passed by. This allows users to check important scenarios of the
traffic when necessary. There are a few other interaction operations
such as pause/resume, change neighborhood radius for extracting
the neighborhood features, information filtering to control the set
of visual items (trajectories, grid) to be rendered on screen, and
change the size of the fonts and taxi items, etc. Note that all the
operations in this mode are available in the other modes as well.
Figure 8 shows the zoom-in affects with various visualization set-
tings at different levels.

Monitoring Mode The extra computation in the monitoring
mode is running the anomaly detection component. Feature se-
quences of the taxis are periodically fed to the CRF model, which
returns automatically tagged results to the visualization engine,
which adds text annotations to the taxis if being labeled as anoma-
lies. The anomalies are highlighted by setting the filled color to red.
The annotation for a detected anomaly consists of a text string and
an associated confidence value. In this mode, internal CRF feature
values and weights that contribute to a labeling result can be visu-
alized when the analyst selects the specific taxi which the labeling
result is associated with.

Tagging Mode Different from the monitoring mode, the tag-
ging mode is not for monitoring the anomalous cases but for collect-
ing manually labeled results used in active learning. In the tagging
mode, the active learning module selects representative taxis whose
predicted labels are highly uncertain and send them to the visual-
ization engine. The visualization engine shows the predicted labels
and their uncertainty values together with the taxis. Human experts
can select any of these items and assign it a manual label to either
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Figure 7: Representative abnormal cases and histograms. (a) An abnormal case with an irregular pattern of driving directions. (b) An abnormal
case involving high speed. (c) An abnormal case with a crowded neighborhood (possible traffic jam). An identified critical factor is highlighted

with a red rectangle with rounded corners.

(a)

36 ° % o fomans:
° e
o o ° uo.gmaf ° °
°
o ° o e
94 @ Aorom@o.s1
°
1/0.62 . o
rghal’p.82
°
°
mal/g.91
o
L/‘L\
(b) ©

Figure 8: Information exploration at different scales. (a) A global view of taxi trajectories with a superposed grid, (b) a zoom-in to a local area
where anomalies occur, (c) further zoom-in to a finer scale to view the local taxi distribution (trajectories of unselected taxis are hidden).

confirm or correct the predicted label. The number of mouse clicks
is minimized in such a way that clicks are only required when the
label needs to be flipped. At the end of manual tagging, the user can
trigger the system to train an improved version of the CRF model
using the manually labeled data. Once the training concludes, our
system switches to the updated CRF model.

6 ANOMALY DETECTION PERFORMANCE

We have tested the anomaly detection performance of our GPS vi-
sual analytics system on an Intel 17-860 2.8 GHz Quad Core proces-
sor. In this following we discuss the experimental setup and results
on anomaly detection using CRFs.

Query by Committee We use the query-by-committee [7]
strategy instead of a single model to improve the robustness of
anomaly detection. Specifically, five separate CRF models are ini-
tially trained using different sets of training sequences. Given a new
sequence, each of the five models makes an independent prediction
and the one with the highest confidence level is chosen as the fi-
nal result. In other words, we choose the prediction result by the
committee member who has the highest confidence in its decision.

train 1 2 3 4 5 AVG | QBC
baseline | 0.62 0.72 0.77 0.61 0.66 | 0.67 | 0.66
trainl 083 0.73 087 0.79 0.77 | 0.80 0.88
train2 083 0.78 082 0.82 0.82 | 0.81 0.90

Table 1: Summary of labeling accuracy.

Accuracy Table 1 summarizes the prediction accuracy of the
individual models, averaged result and the query-by-committee
model. Prediction accuracy is shown for three different versions
of each model, the initial version trained with relatively little train-
ing data, and two versions trained after the first and second round of

active learning. It is obvious that active learning steadily improves
labeling accuracy over iterations. Given the prediction accuracy of
the five individual CRF models, their average (expected) accuracy
and the final prediction accuracy of the query-by-committee model,
we confirm that the query-by-committee strategy can in general im-
prove prediction accuracy (compare the last two columns of Table
1), and can potentially achieve performance better than any of the
individual models.

7 RELATED WORK

GPS signal indicates the temporally changing location of the GPS
device wearer. Many techniques and systems have been developed
to visualize GPS or trajectory data in a 2D or 3D space. [1] and [21]
are two recent works on GPS data analysis and trajectory visualiza-
tion. A system is introduced in [20] for visualizing real-time multi-
user GPS data from the Internet in a 3D VRML model. GPSVisu-
alizer, Google Earth, Yabadu Maps, GPS-Track-Analyse. NET and
FUGAWI Global Navigator are examples of online systems that
support the visualization of GPS data in various applications. The
prevalence of GPS devices and wearable computing devices make
wearable computing [2] a new emerging field of research. A re-
cent technique for visualizing aircraft trajectories has also been pre-
sented in [11].

Our system integrates GPS data visualization with anomaly de-
tection using conditional random field models. This type of appli-
cation has not yet been found in the visual analytics literature. In
machine learning, however, there is an increasing popularity in in-
formation retrieval [15], behavior classification or human activity
understanding [9, 17] based on mobile sensor data, i.e., GPS data.
In [15], the authors use hierarchically constructed conditional ran-
dom fields to model human activities and extract significant loca-
tions in a map from GPS traces. Although [15] uses a similar type
of data and learning model as we do, the difference lies in that their
goal is to discover important patterns and locations in human ac-
tivities while our goal is to perform anomaly detection in taxi driv-



ing behaviors. They try to develop a completely automatic method
while our system is semi-automatic and human-computer interac-
tion is essential. We adopt a visual analytics approach to integrate
human expertise and achieve a good performance.

8 CONCLUSIONS AND FUTURE WORK

In this paper, we have introduced a visual analytics system for
anomaly detection in urban taxi GPS data streams, and demon-
strated that such an approach integrates the power of machine learn-
ing models with human intelligence. Human understanding to the
data and machine performance on anomaly labeling are mutually
enhanced. In the system, we applied the conditional random field
model to anomaly detection in GPS data and proposed a feature
selection method, which is shown effective for the task by our ex-
perimental results. Active learning is used for minimizing the data
labeling effort, providing a solution to incremental model improve-
ment and allowing the model to adapt to the latest data as time in-
volves. For streaming data, such an active learning methodology is
more adaptive compared with a passive learning one. Visualization
and user interaction have been designed to selectively display the
information according to users’ demand. In particular, we took ef-
fort to visualize the internal features and weights of a CRF model,
which reveals critical internal mechanisms of such models that have
been previously used as a black box.

There exist a few directions for future work. First we could ex-
ploit the geographical information in the system, i.e., design fea-
tures based on street information, or use a map to improve trajec-
tory reconstruction. Second, collect user assessment to improve the
system usability and make a user-friendly interface design. Third,
increase the number of hidden states, such as driving skill level
and regional traffic status, of the CRF model, given that GPS traces
provide relevant information as a type of sensor data. Another po-
tential direction for future work is to extend the linear-chain CRF
model to more complex models. For example, a hierarchical hidden
Markov model [4] allows hidden states to be defined at different
levels of granularity to model a hierarchical structure, or a semi-
CRF model [22], which models hidden state transitions as a semi-
Markov chain. Both models have a higher computational complex-
ity, but with careful model design, we expect better performance in
label prediction.
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