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Volume Cutout

Abstract We present a novel method for cutting out
3D volumetric structures based on simple strokes that
are drawn directly on volume rendered images. The free-
hand strokes roughly mark out objects of interest and
background. Our system then automatically segments
the regions of interest and refines their boundaries in the
rendered image. These 2D segmentation results provide
constraints for 3D segmentation in the volume dataset.
The objects of interest are then efficiently cut out from
the volume via a combination of our novel two-pass graph
cuts algorithm and the pre-computed over-segmentation.
Our method improves traditional, fully automatic seg-
mentation by involving human users in the process, yet
minimizing user input and providing timely feedback.
Our experiments show that our method extracts volu-
metric structures precisely and efficiently while requiring
little skill or effort from the user.

Keywords Segmentation · Volume Editing · Visualiza-
tion · Volume Rendering · Interaction

1 Introduction

Volume segmentation that identifies individual objects
in volumetric datasets has been an area of extensive re-
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search. In medical imaging, an accurate volumetric seg-
mentation of organ structures is needed for diagnostic
and treatment planning applications. Volume segmenta-
tion is also essential for effective volume visualization.
Many state-of-the-art volume visualization tasks involve
exploring the substructures of volume datasets and re-
quire volume classification information. For example, two-
level volume rendering [7,9] selectively applies different
rendering techniques to different objects. More impor-
tantly, an effective volume segmentation method can fa-
cilitate interactive data exploration. With the ability to
interactively identify and segment interesting structures
or objects, a visualization system can adaptively apply
importance-driven rendering [28] or deformation [16] to
better visualize objects of interest.

Various sophisticated volume segmentation algorithms
have been proposed. However, segmentation remains a
challenge because of the semantic gap between the high-
level human perception and the low-level features that
the segmentation is based on. Automatic segmentation of
objects from volume data is fundamentally difficult due
to the ambiguity between object boundaries. To over-
come the difficulty of automatic segmentation, human
supervision/intervention becomes essential. Traditional
manual segmentation processes involve drawing object
contours around cross-sectional views and linking these
cross-sections together. However, this manual procedure
can be extremely tedious, very time consuming and re-
quires user experience and skill. The objective, therefore,
is to develop an efficient method that supports high level
user interaction which is less laborious than operating
on each slice individually. The method should provide
instant feedback so that additional user interaction can
be specified to refine the results. Our aim is to facilitate
interactive data exploration and visualization through
such interactive object selection. Offline segmentation
does not accommodate this process.

In this paper, we present a novel method for cutting
out 3D volumetric structures based on simple strokes
drawn directly on rendered images. The freehand strokes
placed by the user roughly mark out the objects of inter-



2 Xiaoru Yuan et al.

est and the background. Our system then automatically
segments the regions of interest and refines their bound-
aries on the rendered images based on a 2D graph cuts
algorithm. The results from image segmentation provide
constraints for volume segmentation. The object of in-
terest is then efficiently cut out from the volume via a
combination of our two-pass graph cuts algorithm and
pre-computed over-segmentation for acceleration. Our
method improves traditional fully automatic segmenta-
tion by involving human users in the process putting hu-
mans in the loop, yet minimizing user input. Our exper-
iments show that our method extracts objects precisely
and efficiently while requiring little skill or effort from
the user.

The remainder of this paper is organized as follows.
In Section 2, we briefly review related work. We give an
overview of our method in Section 3, and describe several
important steps of our approach in detail in Sections 4,
5, 6, and 7. We then discuss results and limitations in in
Section 8. Finally we present our conclusions in Section
9.

2 Related Work

The volume cutout method that we propose in this pa-
per is extended from 2D image segmentation and vision
techniques with added interaction. Our method performs
both 2D and 3D segmentations in two consecutive stages.
In the following, we briefly review several state-of-the-art
segmentation methods, emphasizing on those that sup-
port efficient user interaction.

Magic Wand [12] is a selection tool widely used by
many image editing software. It collects color statistics
from a user-specified image region and segments a sub-
image region, where colors fall within some tolerances of
the statistics. Finding suitable tolerance values depends
on individual image context. This method is prone to er-
ror when the foreground and background pixels overlap
in their color space distributions. Intelligent paint [22] is
a region-based interactive segmentation technique based
on Toboganning [4]. It extracts regions of interest from
the image background using paint strokes. Intelligent
scissors [18,19] is a boundary-based method. It com-
putes a minimum-cost path via a shortest-path graph
algorithm between user-specified boundary points. In-
telligent scissors and intelligent paint allow the user to
quickly and accurately select objects of interest [17,20].
Tan and Ahuja [25] develop a tool for selecting objects
using freehand sketches based on the decomposition of
the image segmentation into a triangulation. This trian-
gulation captures the adjacency information of the seg-
ments as well as the shape of the segment boundaries.

An image segmentation or classification problem can
be posed as a 2D graph cuts problem. Recently, sev-
eral interactive methods for 2D image segmentation with
user interaction have been developed [1,14,23] based on

the graph cuts algorithm. Graph cuts [6,2,3] is a com-
binatorial optimization technique using global optimal
pixel labeling of an object and its background, which
cab be computed by max-flow/min-cut algorithm. Grab-
cut [23] extends graph cuts by introducing an iterative
scheme using graph cuts for intermediate steps. The user
draws a rectangle around the object of interest. Each it-
eration estimates color statistics of the object and the
background and applies graph cuts to compute a refined
segmentation. More recently, graph cuts algorithm has
been applied to interactive video cutout [29].

For volume segmentation, most segmentation meth-
ods are built on directly applying 2D segmentation tech-
niques to volume slices. Hastreiter and Ertl [8] extend
the 2D intelligent scissors to volume segmentation by
considering inter-slice relations and using a 3D filter to
compute the local cost. Huang and Ma [11] apply region-
growing techniques to assist the user in defining and lo-
cating features of interest in a volume. Region growing
starts from a seed point which is picked by the user on
volume slices. Tzeng et al. [26] further support user in-
put directly on a cross sectional plane and use neural
networks to compute the high dimensional classification.
Tzeng and Ma [27] allow the user to work in the cluster
space to specify transfer functions of arbitrary dimen-
sions and operate directly on the classification and vi-
sualization results. Boykov and Jolly [2] also extend the
graph cuts algorithm to volumes by marking foreground
and background seeds on volume slices.

All the above methods work on volume cross-sections.
It is difficult for the user to have a global view of the
objects and the contextual volume based on one sin-
gle cross-section. Owada et al. [21] recently develop a
method, named volume catcher, to directly segment a
volume by 2D free-form sketching on the rendered im-
age. Their system computes the 3D locations of the user-
specified 2D stokes based on the assumption that the
user always traces the silhouette of the object of inter-
est. Our method is inspired by this method. However, the
user does not necessarily need to follow the object con-
tour in our case. Rather, he/she can draw any strokes
as long as these strokes indicate the object and back-
ground regions. This alleviates the user’s commitment
when sketching. Hence, it is more practical and efficient.

3 Overview

Our method is a combination of 2D and 3D graph cuts al-
gorithms based on 2D user input. The processing pipeline
is shown in Figure 1. Given an input volume, we first
apply a watershed based over-segmentation. After ren-
dering an image of the volume, we apply similar 2D
over-segmentation to the image. Then, the user directly
marks out foreground and background objects using sim-
ple strokes on the image. Based on the over-segmentation
of the image, our system separates background and fore-
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Fig. 1 Volume cutout pipeline: input volume data is first over-segmented and assigned a transfer function during the
pre-processing stage. Based on the volume rendered image, 3D segmentation is obtained by a combination of 2D and 3D
graph cuts algorithms initiated by 2D user input. The user can further select a subset of the extracted objects (In the last
image, dotted lines indicate removed objects.).

ground regions based on a graph cuts algorithm. From
image segmentation, 3D background seeds are generated
for further volume segmentation. The objects of inter-
est are then efficiently cut out from the volume by our
two-pass graph cuts algorithm for 3D. Since only the
3D background seeds are specified, the first pass of the
graph cuts algorithm returns a subset of the object (fore-
ground) seeds. Those seeds are initial conditions passed
to the next pass of the graph cuts algorithm, which
achieves the final volume segmentation.

As discussed in the previous sections, one major dif-
ference of our segmentation approach from most existing
methods is that we directly operate on rendered images.
As shown in Figure 2, a single slice provides very limited
information on the structure of a dataset. When the full
volume is rendered, the overall structure of the data be-
comes visible. This provides an “overview” of the data,
on top of which the user can select objects of interest or
remove unwanted objects.

(a) (b)

Fig. 2 Comparison of information conveyed in (a) one cross-
section of an MRI CISS dataset of a human head volume, and
(b) a volume rendered image.

4 Preprocessing

In the preprocessing stage, we perform over-segmentation
on the input volumetric datasets to accelerate the sub-
sequent operations. We apply a 3D version of watershed
over-segmentation. As in the Tobogganing method [4,
30], we over-segment the volume into small regions by
sliding in the derivative terrain. Given the gradient mag-
nitude of a volume, each voxel determines a slide direc-
tion by finding the voxel in its neighborhood with the
lowest gradient magnitude. Each voxel is linked to the
smallest of its neighbors and eventually to points of lo-
cal minima, which form the basis for a watershed region.
The gradient magnitude used in our method is com-
puted using multi-scale derivative of a Gaussian kernel
Nσ(x, y, z), which is a three-dimensional normal distri-
bution with a standard deviation of σ. The multi-scale
gradient magnitude is given as the maximum convolution
value of the derivative of Gaussian kernels. Note that in
on-the-fly segmentation, a similar over-segmentation is
applied for acceleration for each rendered image to be
segmented.

After the over-segmentation, we convert the volume
into clusters of approximately 20 to 100 voxels. The later
volume segmentation will directly operate on these clus-
ters.

Before the interactive segmentation, a transfer func-
tion is chosen for the volume dataset. The objective of
this transfer function design is to reveal important struc-
tures residing in the volume.

5 User Interaction and Image Segmentation

After preprocessing, our system renders the volume ac-
cording to the specified transfer function. The user di-
rectly draws strokes on the rendered image to guide the
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segmentation. As illustrated in Figure 3, the user draws
strokes to indicate the background (white strokes) and
foreground (yellow strokes) regions on the volume ren-
dered image. The system returns an initial image seg-
mentation using the 2D graph cuts algorithm and the
precomputed over-segmentation. The information regard-
ing 2D segmented regions is then sent to the next step
of volume segmentations.

5.1 2D Over-segmentation

To improve the efficiency of the 2D graph cuts based
segmentation, we adopt the acceleration method used
in Lazy Snapping [14] which is based on pre-segmented
pixel clusters, instead of pixels. The pixel clusters are
segmented regions from the watershed segmentation. In
Figure 3(a), the red lines are the boundaries of over-
segmented regions. During the over-segmentation, seg-
mented regions with zero alpha value are set as invalid.
No clusters are generated for those regions.

(a) (b)

(c) (d)

Fig. 3 (a) Over-segmentation of a 2D volume rendered im-
age. (b) strokes placed by the user. (c) corresponding clus-
ters covered by input strokes. (d) segmented 2D foreground
regions.

5.2 2D Segmentation on Volume Rendered Image

Our algorithm uses graph cuts for both image segmenta-
tion and volume segmentation. In this section, we briefly
describe the 2D graph cuts algorithm for image segmen-
tation for completeness of explanation. Our extension on

the graph cuts for 3D volume segmentation is discussed
in the next section.

A 2D image can be treated as a graph G = 〈P,N〉,
where P is the set of all nodes and N is the set of
all unordered pairs 〈p, q〉 connecting adjacent nodes. In
the case of a 2D image, the nodes are pixels on over-
segmented regions in the image and the arcs are adja-
cency relationships with connections between neighbor-
ing pixels. During user interaction, the user marks the
foreground (F) and background (B) pixels. All other re-
gions are assigned as unknown (U).

The graph cuts algorithm divides the nodes in P into
two groups (Gf and Gb) and assigns each node with a
membership label value 0 or 1. For every pi ∈ F , pi ∈ Gf ,
let its membership label be xi = 1. For every pi ∈ B,
pi ∈ GB , let its membership label be xi = 0. The energy
cost function can be defined as:

E(P) = λ
∑

pi∈P

R(pi) +
∑

pi,pj∈N

B(pi, pj) xi 6= xj (1)

The coefficient λ ≥ 0 in Equation (1) specifies a rela-
tive importance of the region property term R(pi) versus
the boundary property term B(pi, pj).

Region property term R(pi). The regional term
R(pi) assumes individual penalties for assigning pixel p

to foreground (xi = 1) or background (xi = 0). For ex-
ample, R(pi) may reflect how the intensity of pixel p fits
into a known intensity model (e.g. histogram) of the ob-
ject and background. The value of R(pi) is defined as
follows:

if pi ∈ Gf ,

R(pi) = 0, pi ∈ F

R(pi) = +∞, pi ∈ B (2)

R(pi) = −ln(
dF

pi

dB
pi

+dF
pi

), pi ∈ U

if pi ∈ Gb,

R(pi) = +∞, pi ∈ F

R(pi) = 0, pi ∈ B (3)

R(pi) = −ln(
dB

pi

dB
pi

+dF
pi

), pi ∈ U

dB
pi

=||Cpi
− CF || and dF

pi
=||Cpi

− CB || are the color
distances of node pi to the marked foreground (F) and
background (B) clusters, respectively [14].

Boundary property term B(pi, pj). This bound-
ary term comprises the boundary properties of segmen-
tation. Coefficient Bpi,pj

≥ 0 should be interpreted as
a penalty for the discontinuity between pi and pj . Nor-
mally, Bpi,pj

is large when pixels p and q are similar (e.g.
in their intensity) and close to zero when the two are very
different.

Bpi,pj
= αexp(−

||Cpi
− Cpj

||2

2σ2
) (4)

where α and σ are user defined parameters. If the color
values are in [0, 255], the values of α and σ range from
10 to 50.
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The process of interactive image segmentation is il-
lustrated in Figure 3. For a frame to be segmented, over-
segmentation (Figure 3(a)) is first performed to accel-
erate segmentation. In Figure 3(b), the user places two
types of strokes on the rendered images to indicate fore-
ground (yellow strokes) and background (white strokes).
The corresponding over-segmented cluster nodes covered
by the user input (Figure 3(c)) are then set as initial
foreground and background nodes for the graph cuts
algorithm, which achieves the final segmentation (Fig-
ure 3(d)). Note that some structures not connected to
the user marked foreground volume regions can also be
segmented as foreground due to their similarity to the
marked foreground regions.

6 3D Volume Segmentation

A volume segmentation problem can also be considered
as a 3D labeling problem. If we are only interested in the
foreground regions, it becomes a binary labeling problem
and can be solved by the graph cuts algorithm. As stated
in the previous section, graph cuts algorithm requires an
initialization of foreground and background nodes. For a
volume, they should represent seed voxels for the objects
of interest and their contextual volume.

The 2D image segmentation only gives partial infor-
mation needed for the 3D graph cuts algorithm. For any
pre-segmented voxel cluster in the volume, if its projec-
tion is outside the 2D foreground region, then it must
be in the background. Initial background nodes can thus
be found. However, as it is also possible that background
voxel clusters could be projected onto the 2D foreground
region, foreground nodes cannot be directly identified. To
address this issue, when the foreground F is unavailable
for computing the region property term R(pi), we de-
fine a modified boundary property term B(pi, pj) with-
out specifying the foreground nodes in 3D:

if pi ∈ Gf ,

R(pi) = +∞, pi ∈ B (5)

R(pi) = −ln( K
K+dB

p
), pi ∈ U

if pi ∈ Gb,

R(pi) = 0, pi ∈ B (6)

R(pi) = −ln(
dB

pi

K+dB
p

), pi ∈ U

where K is a constant which is the user estimation of av-
erage dF

p . We develop a two-pass graph cuts algorithm.
In the first pass, we use the above edge cost definition.
It returns a subset of the object. We use the returned
partial objects as foreground nodes and apply the reg-
ular graph cuts algorithm to achieve the final volume
segmentation. Our two-pass 3D graph cuts algorithm is
illustrated in Figure 4. For some situations, the graph
cuts obtained in the first pass already give reasonable
segmentation results.

Input from 

2D Graph Cuts

Background Nodes

Unknown Nodes

Eye

(b)

Eye

Pass 1

Foreground Nodes

(c)

Eye

Pass 2

Segmented

Volume Object

(d)

Projection Plane Volume Cross-section

Foreground Nodes

Unknown Nodes

Background Nodes

(a) Projection Plane

Volume Cross-Section

 in (b), (c) and (d)

Fig. 4 Two-pass graph cuts algorithm for volume segmen-
tation. (a) result of 2D segmentation on a volume rendered
image. (b) 3D nodes in the volume are classified as back-
ground and unknown according to their projection to the 2D
background and foreground regions. (c) The first pass graph
cuts generates a subset of foreground seed nodes. (d) The
second pass achieves the final segmentation.
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7 Segmentation Refinement

In cases when the interactive segmentation procedure in-
troduces unwanted objects, it is desirable to have an in-
teractive tool for the user to edit them. For example, the
user can keep a subset of extracted objects by removing
unwanted ones. As illustrated in Figure 5, the user draws
freehand curves to selectively remove unwanted objects
from the segmentation result. Our system achieves this
refinement by projecting segmented volume objects onto
the current viewing plane and checking whether their
projections fall into the region specified by the user. The
user can also adjust viewing angles to get a best editing
position.

8 Results and Discussion

We perform all our experiments on a Dell Precision 530
workstation with a single Intel Xeon 2.20G Hz CPU,
1GB RAM, 4X AGP motherboard and a Nvidia GeForce
6800 Ultra graphics card with 256MB memory. Our sys-
tem is implemented using MFC, OpenGL, and Cg. The
volume rendering window size is 5122. The user interac-
tion and image segmentation in 2D achieve interactive
rates. The user normally does not notice any lag when
placing strokes on the rendered volume image. The run-
ning time of volume segmentation depends on the com-
plexity of the input volume and ranges from less than one
tenth of a second for 643 volumes to around one minute
for 2563 volumes. Over-segmentation plays a very impor-
tant role on the performance of volume segmentation.
With a robust over-segmentation, it is possible to gen-
erate less a number of segments, resulting the run time
performance improved.

Images in Figure 6 show the volume cutout results
of several datasets: an Neghip (64 × 64 × 64), an MRI
CISS human head (256× 256× 124), and a CT scanned
foot (160×430×183). Images in the first column are one
frame of volume rendering. The middle column shows the
freehand sketches indicating foreground and background.
Images in the right column show how the objects of in-
terest are cut out from the original volume. It is evident
that the user’s input efforts for achieving these volume
cutouts are simply a few strokes, hence are almost effort-
less. Also, the user can further refine object extraction
results by removing unwanted objects.

It is worth pointing out that user does not need to
mark out every foreground object; only representative
ones are sufficient. Our method will extract all objects
with appearance similar to the marked-out foreground
objects, except those that are explicitly marked out as
background objects. The last row of Figure 6 shows an
example where objects that are likely to be marked as
foreground, when marked out as background, are not
extracted out. However, in certain situations, segmented
regions that are not directly connected to the user spec-

ified regions might be undesirable. We are working on
an algorithm that is able to enforce that only regions
connected to the marked foreground be segmented out.

Even though our method has generally been proven
effective, there are several issues that we need to ad-
dress to improve its robustness. It is very important for
the graph cuts algorithm to set appropriate parameters.
For different datasets, such parameters vary. For noisy
datasets, obtaining the best parameters is not trivial. It
would be beneficial to have the system incorporate an
adaptive graph cuts parameter setting scheme based on
user interaction. It is also possible to incorporate some
prior knowledge of the dataset into the graph cuts energy
cost function to achieve better segmentation results.

There are some difficult situations which our method
cannot handle well. For noisy data sets, our methods may
include some extra objects into the results. The user can
apply the refinement tool available in our system to re-
move unwanted objects. Such refinement is applied on
the segmented result of the head dataset (Figure 6 2c).
For very fuzzy object boundaries, it is difficult to obtain
an accurate image segmentation. Changing transfer func-
tions or applying some image processing operators may
improve the image contrast and sharpen boundaries. Ap-
plying higher dimensional transfer functions [13] which
consider gradient information will also improve the im-
age quality. For a very complex object inside a volume,
the seed points acquired from one rendered image may
not be sufficient. In such cases, we could exploit images
rendered from multiple view positions to better define
the object boundary.

Because we segment the volume based on its ren-
dered image, an ideal transfer function for our purpose
should be able to display most internal structures simul-
taneously. Many methods have been proposed to auto-
matically design transfer functions according to the data
properties. Fujishiro et al. [5,24] automate transfer func-
tion design based on topology analysis for 3D field . He et
al. [10] use genetic algorithms to create a population of
transfer functions starting with a user given or random
set of transfer functions. Marks et al. [15] propose de-
sign galleries to automatically generate a distribution of
possible transfer functions and their corresponding ren-
dering results. We are working on an automatic method
for generating transfer functions that suits our require-
ments.

9 Concluding Remarks

We have presented a novel method for cutting out 3D
volumetric structures based on simple strokes drawn di-
rectly on rendered images. Unlike most existing volume
segmentation methods, our interactive method operates
directly on 2D rendered images. We also propose a novel
extension of the 2D graph cuts algorithm to overcome the
difficulty of identifying foreground objects in the volume.
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(a) (b) (c)

(d) (e) (f)

Fig. 5 Refining segmentation results. (a) a volume rendered image of the segmentation result. (b) the user draws an enclosed
curve on the volume rendered image to remove unwanted structures. (c) volume objects after applying user refinement. (d)
for further refinement, the user changes the viewing angle. (e) the user draws another enclosed curve on the volume rendered
image to remove more unwanted structures. (f) volume objects after applying second user refinement.

Our method improves upon traditional automatic seg-
mentation by involving human users in the process, yet
minimizing user input and providing timely feedback.
Our experiments show that the proposed method ex-
tracts objects precisely and efficiently while requiring lit-
tle skill or effort from the user. We believe that intuitive
volume cutout can be used to facilitate interactive data
exploration and enhance visualization.
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Fig. 6 Results of volume cutout on several volume datasets: an Neghip (the first and fourth rows), an MRI CISS human
head (the second row) and a CT scanned foot (the third row). (left column) 2D volume rendered images. (middle column)
user supplied strokes indicating foreground and background. (right column) extracted objects.


