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Current AI is far from Human-Level AI
• Sample complexity is high	for	supervised learning,	even more	for	RL

– Real-world	actions	can be lethal,	experience is limited &	costly
– We don’t have	a	good	simulator	of	the	real	world	(esp.	involving humans)

• High-level concepts	provided by	human designers	or	labelers

• Errors made	by	trained systems reveal that their ‘understanding’	is
very shallow and	superficial

• The	dream of	deep learning discovering and	disentangling high-level
explanatory variables	is far	from achieved
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Learning Multiple Levels of Abstraction

• The	big	payoff	of	deep	learning	is	to	allow	learning	higher	
levels	of	abstraction

• Higher-level	abstractions	would	disentangle	the	factors	
of	variation,	which	allows	much	easier	generalization,	
transfer,	reasoning,	and	language	understanding

• These	factors	are	composed	to	form	observed	data
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(Bengio	&	LeCun 2007)



How to Discover Good 
Disentangled Representations

• How	to	discover abstractions?	

• What is a	good	representation?	(Bengio	et	al	2013)
• Need clues	(=	priors)	to	help	disentangle the	underlying

factors (not	necessarily statistically independent),	such as
• Spatial	&	temporal	scales
• Marginal	independence
• Simple	dependencies between factors

• Consciousness prior

• Causal	/	mechanism independence
• Controllable factors
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System 1 vs System 2 Cognition
Two systems (and categories of cognitive tasks): 

• System 1

• Cortex-like (state controller and representations)
• intuitive, fast heuristic, UNCONSCIOUS, non-linguistic

• what current DL does quite well

• System 2
• Hippocampus (memory) + prefrontal cortex
• slow, logical, sequential, CONSCIOUS, linguistic, algorithmic

• what classical symbolic AI was trying to do 

• Grounded language learning: combine both systems

Manipulates high-level / 
semantic concepts, which 
can be recombined 
combinatorially



Compositionality to bypass the 
curse of dimensionality

6

We	need	to	build	compositionality into	our	ML	models	

Just	as	human	languages	exploit	compositionality	to	give	
representations	and	meanings	to	complex	ideas

Exploiting	compositionality	can	give	an	exponential gain	
in	representational	power

Distributed	representations	/	embeddings:	feature	learning

Deep	architecture:	multiple	levels	of	feature	learning

Prior	assumption:	compositionality	is	useful	to	
describe	the	world	around	us	efficiently



Missing from Current ML: 
Understanding & Generalization
Beyond the Training Distribution

• Learning	theory only deals	with generalization
within the	same distribution

• Models learn but	do	not	generalize well (or	
have	high	sample complexity when adapting)	to	
modified distributions,	non-stationarities,	etc.

• Poor	reuse,	poor modularization of	knowledge:	
humans are	good	at	systematic generalization
(e.g.,	combining known words in	new	ways
unlikely under the	training	distribution)



The Need for
Meta-Learning



Meta-Learning / Learning to learn

• Generalize the	idea of	hyper-parameter optimization
• Inner loop optimization (normal	training),	a	fn of	meta-params

• Outer	loop optimization (meta-training),	optimize meta-params

• Meta-parameters can be the	learning rule itself (Bengio	et	al	1991;	Schmidhuber
1992),	learn 2	optimize

• Meta-learn an	objective	or	reward function,	or	a	shared encoder
• Meta-learning can be used to	learn to	generalize or	transfer
• Can	backprop through ,	use	RL,	evolution,	or	other tricks	
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Learning to Generalize and Adapt End-to-End

• We can optimize through the	sequence
• see regular training	data	(and	learn from it)
• see (a	few)	out-of-distribution	examples (and	optionally fine-tune	/	adapt to	them)

• if	these steps involve some meta-parameters which can be tuned so that we optimize
the	generalization performance	in	the	second	step
• 0-shot	generalization =	out-of-distribution	generalization
• k-shot generalization:	the	learner is allowed to	use	a	few	examples of	the	modified
distribution,	we are	doing transfer learning
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Beyond iid: Hypotheses about how 
the environment changes,
Independent Mechanisms and 
the Small Change Hypothesis
• Independent	mechanisms:	

• changing one	mechanism does not	change	the	others (Peters,	Janzig &	Scholkopf 2017)

• Small	change:
• Non-stationarities,	changes	in	distribution,	involve few	mechanisms at	a	time	(e.g.	the	
result of	a	single-variable	intervention)

• How	can we discover these independent mechanisms,	i.e.,	factor	
knowledge?



The Need for
Sparsely Interacting 

Modules



On the Relation between Abstraction, Thought and 
Attention

• A	thought	is	a	low-dimensional	object,	few	aspects	of	the	state
• Attention	allows	us	to	focus	on	a	few	elements	out	of	a	large	set
• Soft-attention	allows	this	process	to	be	trainable	with	gradient-based	optimization	and	

backprop
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Attention	focuses	on	a	few	
appropriate	abstract	or	concrete	
elements	of	mental	
representation	



The Attention Revolution in Deep Learning

• Attention mechanisms	exploit	GATING	units, have	unlocked	a	
breakthrough	in	machine	translation:	

Neural	Machine	Translation

• In	Google	Translate	since	2016:	
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Lower-level

Higher-level

Softmax over	lower
locations	conditioned
on	context at lower and
higher locations	

Human
evaluation

human
translation

n-gram
translation

current
neural	net
translation

(ICLR’2015)

Attention	enables:
• Differentiable

memory	access
• Operating	on	sets
• Long-term

dependencies
• Self-attention,	

transformers,		
SOTA	NLP

• Consciousness



• 2	levels	of	representation:	
• High-dimensional	abstract	representation	space	(all	known	
concepts	and	factors)	h

• Low-dimensional	conscious	thought	c,	extracted	from	h

• c	includes	names	(keys)	and	values	of	factors

The Consciousness Prior
Bengio 2017, arXiv:1709.08568
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conscious	state	c

input	x

unconscious	state	h
attention



Why do I call it a Prior?
• There	is something very special about the	

kind of	high-level variables	which we
manipulate with language:
• we can predict some given very few	
others
• E.g.	"if	I	drop	the	ball,	it will fall on	the	ground"

• corresponds	to	a	sparse factor	graph
• Each factor	captures	an	independent
piece of	knowledge
• Strong interactions	between few	variables
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Learn Generative Models in Latent Space, 
not Pixel Space
• For	human-like brains,	generative models are	useful for	

planning	(model-based RL),	imagination,	counterfactuals,	
inference over	causes	and	explanations,	high-level credit
assignment
• NONE	OF	THIS	REQUIRES	WORKING	IN	PIXEL	SPACE

• Current generative models are	trained wrt pixel-space
objectives,	how	to	train	purely in	the	space of	abstract	
representations?	We want the	encoder	mapping pixel	space to	
abstract	space to	be trained wrt the	high-level goals	too.

• There	is an	issue	of	possible	collapse	of	representations if	we
maximize predictability (e.g.	max	likelihood)	in	latent	space
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Encoder

Predict

Deep InfoMax or	DIM
(Hjelm et	al	&	Bengio	ICLR	2019)



Integrating System 1 and System 2
• System	2	model	is	very	coarse	and	imperfect,	unlike	system	1
• System	2	abstract	concepts	need	to	be	grounded	via	system	1
• System	2	thinking	allows	counterfactual	reasoning,	i.e.,	

imagining	scenarios	which	did	not	and	will	not	happen,	as	an	
exercise	(e.g.	for	credit	assignment,	if	I	had	done	that…),	allows	
generalization	far	from	the	training	data,	imagine	dangerous	
scenarios	without	having	to	take	the	actual	risks

• System	2	is	too	slow	and	inefficient,	compile	to	system	1	into	
habits	and	intuitive	behavior
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Separating Knowledge in Small 
Re-Usable Pieces

• Pieces which can be re-used combinatorially
• Pieces which are	stable	vs	nonstationary,	
subject to	interventions

Change	due
to	intervention



Wrong Knowledge Factorization
Leads to Poor Transfer

• With the	wrong factorization P(B)	P(A|B),	a	
change	in	ground truth P(A)	influences	both
modules,	all	the	parameters
• poor transfer:	all	the	parameters must	be adapted

• This	is the	normal	situation	with standard	neural	nets:	
every parameter participates to	every relationship
between all	the	variables
• this causes	catastrophic forgetting,	poor transfer,	
difficulties with continual learning or	domain
adaptation,	etc



Recurrent Independent Mechanisms

Multiple	recurrent
sparsely interacting
modules,	each with
their own dynamics,	
with object
(key/value	pairs)		
input/outputs	
selected by	multi-
head attention
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Goyal	et	al,	arXiv:1909.10893



Recurrent Independent Mechanisms

RIMs generalize better than SOTA	methods for	sequential learning to	
out-of-distribution	data	(longer	sequences,	larger images).
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Goyal	et	al,	arXiv:1909.10893

Preprint, Work in Progress

Copying Train(50) Test(200)
kT kA hsize CE CE

RIMs

6 5 600 0.01 3.5
6 4 600 0.00 0.00
6 3 600 0.00 0.00
6 2 600 0.00 0.00
5 3 500 0.00 0.00

LSTM - - 300 0.00 2.28
- - 600 0.00 3.56

NTM - - - 0.00 2.54

RMC - - - 0.00 0.13

Transformers- - - 0.00 0.54

Sequential MNIST 16 x 16 19 x 19 24 x 24
kT kA hsize Accuracy Accuracy Accuracy

RIMs

6 6 600 85.5 56.2 30.9
6 5 600 88.3 43.1 22.1
6 4 600 90.0 73.4 38.1

LSTM - - 300 86.8 42.3 25.2
- - 600 84.5 52.2 21.9

EntNet - - - 89.2 52.4 23.5

RMC - - - 89.58 54.23 27.75

DNC - - - 87.2 44.1 19.8
Transformers- - - 91.2 51.6 22.9

Table 1: Performance on the copying task (left) and sequential MNIST resolution task right). Error (CE on
the last 10 time steps) on the copying task. Note that while all of the methods are able to learn to copy
for the length seen during training, the RIMs model generalizes to sequences longer than those seen during
training whereas the LSTM, RMC, and NTM degrade. Sequential MNIST resolution: Test Accuracy % on the
Sequential MNIST resolution generalization task (see text) after 100 epochs. Both the proposed and the Baseline
model (LSTM) were trained on 14x14 resolution but evaluated at different resolutions; results averaged over 3
different trials.

think of this as consisting of two temporal patterns which are independent: one where the sequence is
received and another “dormant” pattern where no input is provided.

As an example of out-of-distribution generalization, we find that using RIMs, we can extend the length
of this dormant phase from 50 during training to 200 during testing and retain perfect performance
(Table 1), whereas baseline methods including LSTM, NTM, and RMC substantially degrade. In
addition, we find that this result is robust to the number of RIMs used as well as to the number of
RIMs activated per-step. Our ablation results (Appendix C.5) show that all major components of the
RIMs model are necessary to achieve this generalization. We consider this preliminary evidence that
RIMs can specialize over distinct patterns in the data and improve generalization to settings where
these patterns change.

4.1.2 SEQUENTIAL MNIST RESOLUTION TASK

RIMs are motivated by the hypothesis that generalization performance can be improved by having
modules which only activate on relevant parts of the sequence. For further evidence that RIMs can
achieve this out-of-distribuution, we consider the task of classifying MNIST digits as sequences
of pixels (Krueger et al., 2016) and assay generalization to images of resolutions different from
those seen during training. Our intuition is that the RIMs model should have distinct subsets of the
RIMs activated for pixels with the digit and empty pixels. As a result, RIMs should generalize better
to greater resolutions by keeping the RIMs which store pixel information dormant over the empty
regions of the image.

Results: Table 1 shows the result of the proposed model on the Sequential MNIST Resolution Task.
If the train and test sequence lengths agree, both models achieve comparable test set performance.
However, the RIMs model was relatively robust to changing the sequence length (by changing the
image resolution), whereas the LSTM performance degraded more severely. This can be seen as
a more involved analogue of the copying task, as MNIST digits contain large empty regions. It is
essential that the model be able to store information and pass gradients through these regions. The
RIMs outperform strong baselines such as Transformers, EntNet, RMC, as well as the Differentiable
Neural Computer (DNC) (Graves et al., 2016).

4.2 RIMS LEARN TO SPECIALIZE OVER OBJECTS AND GENERALIZE BETWEEN THEM

We have presented evidence that RIMs can specialize over temporal patterns. We now turn our
attention to showing that RIMs can specialize to objects, and show improved generalization to
settings where we add or remove objects at test time.
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The Need for
Causal Understanding



Learning « How the world ticks »
• So	long	as	our machine	learning models « cheat »	by	relying only on	

superficial statistical regularities,	they remain vulnerable to	out-of-
distribution	examples

• Humans generalize better than other animals thanks to	a	more	
accurate internal model	of	the	underlying causal	relationships

• To	predict future	situations	(e.g.,	the	effect of	planned actions)	far	
from anything seen before while involving known concepts,	an	
essential	component	of	reasoning, intelligence	and	science
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Deep Learning Objective: 
discover high-level representation
capturing cause and effect variables

• What are	the	right	representations?	

• Causal	variables	explaining the	data

• Pixels	are	not	causal	variables

• How	to	discover them?	(learn the	mythical encoder)

• How	to	discover their causal	relationship,	the	causal	graph?



Turning a Hindrance into a Useful Signal

• Changes	in	distribution	(nonstationarities in	agent	learning,	
transfer scenarios,	etc)	are	seen as	a	bug	in	ML,	a	challenge

• Turn them into a	feature,	an	asset,	to	help	discover causal	
structure,	or	more	generally to	help	factorize knowledge:

• Tune	knowledge factorization (e.g.	causal	structure)	to	
maximize fast transfer

• ”Nature	does	not	shuffle	environments,	we	shouldn’t”	
L.	Bottou

ArXiv paper, Bengio et al 2019: A	Meta-Transfer	Objective	for	Learning	to	Disentangle Causal Mechanisms



Small Change è
Small Sample Complexity

Few	parameters	need	to	changeè small	L2	change	è few 
examples needed to recover from the change

Under	the	right	parametrizationè fast adaptation	to	interventions



Empirical Confirmation: 
Correct Causal Structure Leads 
to Faster Adaptation

AàB	is the	
correct	
causal	
structure:	
faster online	
adaptation	
to	modified
distribution	
=	lower NLL	
regret



A Novel Approach to Causality: 
Disentangling the Causes

• Realistic settings:	causal	variables	are	not	directly observed
• Need to	learn an	encoder	which maps raw data	to	causal	space
• Consider both the	encoder	parameters and	the	causal	graph	

structural	parameters as	meta-parameters trained together wrt
proposed meta-transfer objective

Experiments successful in	2-D	with simple	linear mappings,	Bengio	et	al	2019.

Bengio et al 2019: A	Meta-Transfer	Objective	for	Learning	to	Disentangle Causal Mechanisms



Learning Neural Causal Models
from Unknown Interventions: 

Avoiding Super-exponential Search

• Most	causal	induction	methods search over	super-exponential
number of	possible	graphs
○ Difficult to	scale to	larger graphs

• How	to	bypass	the	super-exponential search?
○ Learn ensemble	of	structured causal	models (SCM)
○ More	efficient,	does not	have	to	search through super-
exponential set	of	possible	DAGs.

Ke et	al	&	Bengio	arXiv:1910.01075



Multivariate Categorical MLP Conditionals



Comparative Results
Asia	graph,	CE	on	ground truth edges,	comparison against other
causal	induction	methods

Evaluating the	consequences of	a	previously unseen intervention

Ke et	al	&	Bengio	arXiv:1910.01075
Learning	Neural	Causal	Models from
Unknown Interventions



Observing Other Agents
• Can	infants	figure	out	causal	structure	in	spite	of	being

almost passive	observers?
• Yes,	if	they exploit	and	infer the	interventions	made	by	

other agents
• Our	approach does not	require the	learner to	know	

what the	action/intervention	was (but	it could do	
inference over	interventions)

• But	more	efficient	learning if	you can experiment and	
thus test	hypotheses about	cause	&	effect



The Need for
the Agent Perspective in 

Deep Learning



The Agent Perspective for Deep Learning

• Classical deep learning and	ML	only considered a	fixed data	distribution

• Agents	can modify their environment through their actions

• There	may be multiple	agents,	also leading to	non-stationarities,	changing distribution

• Difficult to	generalize out-of-distribution

• Need for	the	agents	to	"really understand"	their environment

• Acting	purposely can help	to	gather knowledge,	discover good	representations
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Jointly Learning Natural Language and a World Model

• Should we first learn a world model and then a natural language description of it? 

• Or should agents jointly learn about language and about the world? 

• I lean towards the latter. 

• Consider top-level representations from supervised ImageNet classifiers. They tend to 
be much better and easier to learn than those learned by unsupervised learning. Why? 

• Because language (here object categories) provides to the learner clues about relevant 
semantic high-level factors from which it is easier to generalize. 

• See my earlier paper on cultural evolution, which posits that culture can help a learner
escape from poor optimization, guide (through curricula) the learner to better
explanations about the world. 



BabyAI Platform Chevalier-Boisvert et al & Bengio ICLR 2019

Purpose: simulate language learning from a human and study data efficiency

Comprises:

● a gridworld with partial observability (Minigrid)
● a compositional natural-looking Baby language 

with over 10^19 instructions
● 19 levels of increasing difficulty
● a heuristic stack-based expert that can solve all levels

github.com/mila-udem/babyai

Grounded Language Learning



Under review as a conference paper at ICLR 2019

The language can also express the conjunction of several such tasks, for example “put a red ball
next to the green box after you open the door". The Backus-Naur Form (BNF) grammar for the lan-
guage is presented in Figure 2 and some example instructions drawn from this language are shown
in Figure 3. In order to keep the resulting instructions readable by humans, we have imposed some
structural restrictions on this language: the and connector can only appear inside the then and after
forms, and instructions can contain no more than one then or after word. The language is inten-
tionally kept simple, but still exhibits interesting combinatorial properties, and contains 2.48⇥ 1019

possible instructions.

hSenti |= hSent1i | hSent1i ’,’ then hSent1i | hSent1i after you hSent1i
hSent1i |= hClausei | hClausei and hClausei
hClausei |= go to hDescri | pick up hDescrNotDoori | open hDescrDoori |

put hDescrNotDoori next to hDescri
hDescrDoori |= hArticlei hColori door hLocSpeci
hDescrBalli |= hArticlei hColori ball hLocSpeci
hDescrBoxi |= hArticlei hColori box hLocSpeci
hDescrKeyi |= hArticlei hColori key hLocSpeci

hDescri |= hDescrDoori | hDescrBalli | hDescrBoxi | hDescrKeyi
hDescrNotDoori |= hDescrBalli | hDescrBoxi | hDescrKeyi

hLocSpeci |= ✏ | on your left | on your right | in front of you | behind you
hColori |= ✏ | red | green | blue | purple | yellow | grey

hArticlei |= the | a

Figure 2: BNF grammar productions for the Baby Language

go to the red ball

open the door on your left

put a ball next to the blue door

open the yellow door and go to the key behind you

put a ball next to a purple door after you put a blue box next to a grey
box and pick up the purple box

Figure 3: Example Baby Language instructions

The BabyAI platform includes a verifier which serves to check if an agent performing a sequence
of actions in a given environment has successfully completed a given instruction and achieved its
goal or not. The descriptors in the language can refer to one or to multiple objects. Hence, if the
agent is instructed to go to "a red door", it can execute this instruction by going to any of the red
doors in the environment. The then and after connectors can be used to sequence subgoals. The
and form implies that both subgoals must be completed, without ordering constraints. Importantly,
Baby Language instructions leave details about the execution implicit. An agent may have to find a
key and unlock a door, or move obstacles out of the way to complete instructions, without this being
stated explicitly.

3.3 BABYAI LEVELS

There is abundant evidence in the literature that using a curriculum may greatly facilitate learning
complex tasks for neural architectures (Bengio et al., 2009; Kumar et al., 2010; Zaremba et al., 2015;
Graves et al., 2016). To enable investigations of how a curriculum can help with data efficiency,
we have produced a number of levels that require the understanding of only a limited of subset
of Baby Language, and take place in environments of varying complexity. Formally, a level is a
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Early Steps in Baby AI Project
• Designing and training experts 

for each level, which can serve 
as teachers and evaluators for 
the Baby AI learners 

• Partially observable, 2-D grid, 
instructions about objects, 
locations, actions 

Under review as a conference paper at ICLR 2019

(a) GoToObj: "go to
the blue ball"

(b) PutNextLocal:
"put the blue key next
to the green ball"

(c) BossLevel: "pick up the grey box behind you, then go
to the grey key and open a door". Note that the green door
near the bottom left needs to be unlocked with a green key,
but this is not explicitly stated in the instruction.

Figure 1: Three BabyAI levels built using the MiniGrid environment. The red triangle represents
the agent, and the light-grey shaded area represents its field of view (partial observation).

3 BABYAI PLATFORM

The BabyAI platform that we present in this work comprises an efficiently simulated gridworld en-
vironment (MiniGrid) and a number of instruction-following tasks that we call levels, all formulated
using subsets of a synthetic language (Baby Language). The platform also includes a heuristic ex-
pert that can solve all BabyAI levels and is an important component in defining a simulated teacher
when evaluating human in the loop teaching methods.

3.1 MINIGRID ENVIRONMENT

Studies of data-efficiency are very computationally expensive (multiple runs are required for differ-
ent amounts of data), hence, in our design of the environment, we have aimed for a minimalistic and
efficient environment which still poses a considerable challenge for current general-purpose agent
learning methods. We have implemented MiniGrid, a partially observable 2D gridworld environ-
ment. The environment is populated with various entities of different colors, such as the agent,
balls, boxes, doors and keys (see Figure 1). Objects can be picked up, dropped and moved around
by the agent, doors can be unlocked with keys matching their color. At each step, the agent receives
a 7x7 representation of its field of view (the grid cells in front of it) as well as a Baby Language
instruction (textual string).

The MiniGrid environment is fast and lightweight. Throughput of over 3000 frames per second is
possible on a modern multi-core laptop, which makes experimentation quicker and more accessible.
The environment is open source, available online, and supports integration with OpenAI Gym. For
more details, see Appendix A.

3.2 BABY LANGUAGE

We have developed a synthetic Baby Language to give instructions to the agent as well as to auto-
matically verify their execution. Baby Language is a comparatively small yet combinatorially rich
subset of English that is designed to be easily understood by humans. In this language, the agent
can be instructed to go to objects, pick up objects, open doors, and put objects next to other objects.

3
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Acting to Guide 
Representation Learning
& Disentangling

• Some factors (e.g.	objects)	correspond	to	‘independently controllable’	aspects	of	
the	world
• Corresponds	to	maximizing mutual information		between intentions	(goal-
conditioned policies)	and	changes	in	the	state	(trajectories),	conditioned on	the	
current state.

• Can	only be discovered by	acting	in	the	world

• Control	linked to	notion	of	objects &	agents

• Causal	but	agent-specific &	subjective:	affordances

(E.	Bengio	et	al,	2017;	V.	Thomas	et	al,	2017;	more	recently	see	Warde-Farley	et	al	ICLR	2019,	Kim	et	al	ICML	2019)



Four Tools for More Compositional
Deep Learning

1. Meta-Learning	(to	adapt quickly to	changes	in	distribution)

2. Sparsely interacting mechanisms at	the	top	level (consciousness prior)

3. High-level variables	are	causal	and	their dependencies are	represented in	a	
modular way

4. System	1	and	system	2	together actively acquire a	world	model	and	
corresponding semantic concepts	(grounded language learning),	can be
composed for	reasoning and	planning,	and	representations of	actions	and	
state	are	linked (affordances)
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Looking Forward

• Build a	world	model	which meta-learns causal	effects in	
abstract	space of	causal	variables,	able	to	quickly adapt to	
changes	in	the	world	and	generalize out-of-distribution

• Acting	to	acquire that knowledge (exploratory behavior)

• Bridging the	gap	between system	1	and	system	2,	old
neural	nets	and	conscious reasoning,	all	neural


