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Current AI is far from Human-Level AI

Sample complexity is high for supervised learning, even more for RL
— Real-world actions can be lethal, experience is limited & costly
— We don’t have a good simulator of the real world (esp. involving humans)

High-level concepts provided by human designers or labelers

Errors made by trained systems reveal that their ‘understanding’ is
very shallow and superficial

The dream of deep learning discovering and disentangling high-level
explanatory variables is far from achieved
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Learning Multiple Levels of Abstraction

(Bengio & LeCun 2007)

* The big payoff of deep learning is to allow learning higher
levels of abstraction

* Higher-level abstractions would disentangle the factors

of variation, which allows much easier generalization,
transfer, reasoning, and language understanding

* These factors are composed to form observed data



How to Discover Grood
Disentangled Representations

e How to discover abstractions?

« What is a good representation? (Bengio et al 2013)

* Need clues (= priors) to help disentangle the underlying
factors (not necessarily statistically independent), such as

* Spatial & temporal scales
* Marginal independence
* Simple dependencies between factors

* Consciousness prior
* Causal / mechanism independence

e Controllable factors




System 1 vs System 2 Cognition

Two systems (and categories of cognitive tasks):

* System1

» Cortex-like (state controller and representations)
* intuitive, fast heuristic, UNCONSCIOUS, non-linguistic

 what current DL does quite well

* System 2
» Hippocampus (memory) + prefrontal cortex
* slow, logical, sequential, CONSCIOUS, linguistic, algorithmic
 what classical symbolic Al was trying to do

* Grounded language learning: combine both systems

Manipulates high-level /
semantic concepts, which

can be recombined
combinatorially



Compositionality to b pass the
curse of di.mehsmv\at'iv

We need to build compositionality into our ML models

Just as human languages exploit compositionality to give
representations and meanings to complex ideas

Exploiting compositionality can give an exponential gain
in representational power

Deep architecture: multiple levels of feature learning

Prior assumption: compositionality is useful to L=<\
describe the world around us efficiently O O @ ¥



Missing from Current ML:
Understanding & Greneralization
Beyond the Trammg Distribution

e Learning theory only deals with generalization
within the same distribution

 Models learn but do not generalize well (or
have high sample complexity when adapting) to
modified distributions, non-stationarities, etc.

e Poor reuse, poor modularization of knowledge:
humans are good at systematic generalization
(e.g., combining known words in new ways
unlikely under the training distribution)

e A
/.
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The Need for
Meta-Learning



Meta-Learning / Learning to Learn

Generalize the idea of hyper-parameter optimization
* Inner loop optimization (normal training), a fn of meta-params

0;(w) = approxmin,C(0,w, D} . )

train

e Outer loop optimization (meta-training), optimize meta-params
_ : t
w = approxmin,, g L(0:(w),w, Dy, ;)
t

Meta-parameters can be the learning rule itself (Bengio et al 1991; Schmidhuber
1992), learn 2 optimize

Meta-learn an objective or reward function, or a shared encoder
Meta-learning can be used to learn to generalize or transfer
Can backprop through ‘975' use RL, evolution, or other tricks
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Learning to Generalize and Adapt End-to-End

* We can optimize through the sequence
* see regular training data (and learn from it)
* see (a few) out-of-distribution examples (and optionally fine-tune / adapt to them)

* if these steps involve some meta-parameters which can be tuned so that we optimize
the generalization performance in the second step

* 0-shot generalization = out-of-distribution generalization

* k-shot generalization: the learner is allowed to use a few examples of the modified
distribution, we are doing transfer learning transfer learning

indico




Beyond iid: Hypotheses about how
the environment changes,

Independent Mechanisms and
the Small Change ijbéhesis

* Independent mechanisms:
* changing one mechanism does not change the others (Peters, Janzig & Scholkopf 2017)

e Small change:

* Non-stationarities, changes in distribution, involve few mechanisms at a time (e.g. the
result of a single-variable intervention)

e How can we discover these independent mechanisms, i.e., factor
knowledge?
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The Need for
Sparsely Interacting
odules




On the Relation between Abstraction, Thought and
Attention

* Athoughtis a low-dimensional object, few aspects of the state
e Attention allows us to focus on a few elements out of a large set

* Soft-attention allows this process to be trainable with gradient-based optimization and
backprop

. Top-down
Attention focuses on a few attention

appropriate abstract or concrete
elements of mental
representation

0""(*)\ M
% Mila
13



The Attention Revolution in Deep Learning

e Attention mechanisms exploit GATING units, have unlocked a
breakthrough in machine translation:
Neural Machine Translation (ICLR’2015)

0000000Q0000000000 | .. Attention enables:
* Differentiable
Softmax over lower
locations conditioned memory access
on context at lower and .
higher locations ¢ Operatlng on sets
* Long-term
dependencies
* Self-attention,
000000V00O00000000 .
transformers,
: SOTA NLP
* |In Google Translate since 2016: ... )
neural net * Consciousness
n-gram. translation human )
translation translation
Human
: : : ! ) evaluation Z:::%Mila
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The Cownsciouswness Prior
Bengio 2017, arXiv:1709,0556%

e 2 levels of representation:

* High-dimensional abstract representation space (all known
concepts and factors) h

* Low-dimensional conscious thought ¢, extracted from h

conscious state c>
"
attentIOI‘r-»

unconscious state h

1
input x

e cincludes names (keys) and values of factors
15




ka do I call ik a Prior?

e There is something very special about the
kind of high-level variables which we
manipulate with language:

* we can predict some given very few
others

e E.g."if | drop the ball, it will fall on the ground"
* corresponds to a sparse factor graph

* Each factor captures an independent
piece of knowledge

EMila Strong interactions between few variables
16’

P(V) o< ][ o(Va)
k

where Vs, is
the subset of V
with indices sk



Learn Grenerative Models in Latent Space,
not Pixel Space

* For human-like brains, generative models are useful for
planning (model-based RL), imagination, counterfactuals,
inference over causes and explanations, high-level credit Encoder
assignment

T
* NONE OF THIS REQUIRES WORKING IN PIXEL SPACE i al
e Current generative models are trained wrt pixel-space T o E""redic‘t\ gobol nomox
objectives, how to train purely in the space of abstract L :

representations? We want the encoder mapping pixel space to
abstract space to be trained wrt the high-level goals too.

* There is an issue of possible collapse of representations if we
maximize predictability (e.g. max likelihood) in latent space
R Deep InfoMax or DIM
s2oMila _ .
17 (Hjelm et al & Bengio ICLR 2019)



Integrating System 1 and System 2

18

System 2 model is very coarse and imperfect, unlike system 1
System 2 abstract concepts need to be grounded via system 1

System 2 thinking allows counterfactual reasoning, i.e.,
imagining scenarios which did not and will not happen, as an
exercise (e.g. for credit assignment, if | had done that...), allows
generalization far from the training data, imagine dangerous
scenarios without having to take the actual risks

System 2 is too slow and inefficient, compile to system 1 into
habits and intuitive behavior
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Separating Knowledge in Small
Re-Usable Pieces

* Pieces which can be re-used combinatorially

* Pieces which are stable vs nonstationary,
subject to interventions

-)

Change due
to intervention



Wrong Knowledge Factorization
Leads to Poor Transfer

* With the wrong factorization P(B) P(A|B), a
change in ground truth P(A) influences both
modules, all the parameters

e poor transfer: all the parameters must be adapted

 This is the normal situation with standard neural nets:
every parameter participates to every relationship
between all the variables

* this causes catastrophic forgetting, poor transfer,
difficulties with continual learning or domain
$oMila adaptation, etc



Recurrent Iudepev\deh!: Mechawnisms

Goyal et al, arXiv:1909.10893

Default Sparse Default Sparse
dynamics Communication dynamics Communication
) ﬂ\ )

Multiple recurrent
sparsely interacting
modules, each with
their own dynamics,
with object
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input/outputs
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Recurrent Iv\depeuden!: Mechawnisms

Goyal et al, arXiv:1909.10893
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, , Sequential MNIST 16x16 | 19x19  24x24
Train(50) | Test(200

COp),::g kxR am(cé est( CFE kt ka  hsize | Accuracy | Accuracy | Accuracy

6 5 600 0.01 3.5 6 6 600 85.5 56.2 30.9

6 4 600 0.00 0.00 6 5 600 88.3 43.1 22.1

RIMs "6 3 600 0.00 000 RIMs ¢, ¢ 90.0 73.4 38.1
6 2 600 0.00 0.00

5 3 500 0.00 0.00 - - 300 86.8 42.3 25.2

_ 0 oo T o M 600 84.5 52.2 21.9

LSTM ’ '

- 600 0.00 336 EntNet - - - | 89.2 | 524 | 23.5

NTM - - -] 0] 25 Tenie - - S| 8958 | 5423 | 2775

RMC - - - | 0.00 | 0.13 872 441 198

- - 0.00 | 054 DNC - - ) ' ’ '

Transformers | : : Transformers - - 91.2 51.6 22.9

RIMs generalize better than SOTA methods for sequential learning to
out-of-distribution data (longer sequences, larger images).
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The Need for
Causal Understanding



Learning « How the world ticks »

* Solong as our machine learning models « cheat » by relying only on
superficial statistical regularities, they remain vulnerable to out-of-
distribution examples

e Humans generalize better than other animals thanks to a more
accurate internal model of the underlying causal relationships

 To predict future situations (e.g., the effect of planned actions) far
from anything seen before while involving known concepts, an
essential component of reasoning, intelligence and science
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Deep Learning Objective:
discover high-level representation
capturing cause and effect variables

* What are the right representations?
* Causal variables explaining the data
* Pixels are not causal variables
e How to discover them? (learn the mythical encoder)

e How to discover their causal relationship, the causal graph?



Turning a Hindrance inko a Useful Signal

A Meta-Transfer Objective for Learning to Disentangle Causal Mechanisms

e Changes in distribution (nonstationarities in agent learning,
transfer scenarios, etc) are seen as a bug in ML, a challenge

e Turn them into a feature, an asset, to help discover causal
structure, or more generally to help factorize knowledge:

 Tune knowledge factorization (e.g. causal structure) to
maximize fast transfer

 “Nature does not shuffle environments, we shouldn’t”
L. Bottou
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Small Change >
Small Sa mp Compl,exil'j

Few parameters need to change = small L2 change = fe«o
examples needed to recover from the change

-)

Under the right parametrization = fast adaptation to interventions
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E‘mptricai. Confirmabion:
Correct Causal Structure Leads
to Faster Ada Féa tion

— A-B
— B A
—427 A->B is the
correct
4.4 - causal
f structure:
§ —4.61 faster online
g adaptation
e to modified
distribution
o = lower NLL
regret

0
.../._. [
'.:.:Z_%Mlla Number of examples



A Novel Apfroach to Causatiéy:
Disentangling the Causes

A Meta-Transfer Objective for Learning to Disentangle Causal Mechanisms

e Realistic settings: causal variables are not directly observed
* Need to learn an encoder which maps raw data to causal space

e Consider both the encoder parameters and the causal graph
structural parameters as meta-parameters trained together wrt

proposed meta-transfer objective

» X W

Implicit Decoder Encoder
(A.B) (X,Y) v,v)

:Mlla Experiments successful in 2-D with simple linear mappings, Bengio et al 2019.



Learning Neural Causal Models

from Unlanowin Inkerventions:

Avoiding Super-exponential Search
Ke et al & Bengio arXiv:1910.01075

 Most causal induction methods search over super-exponential
number of possible graphs
o Difficult to scale to larger graphs

e How to bypass the super-exponential search?
O Learn ensemble of structured causal models (SCM)
O More efficient, does not have to search through super-
exponential set of possible DAGs.



Mulbivariate Categorical MLP Conditionals
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Campamélve Results

Asia graph, CE on ground truth edges, comparison against other
causal induction methods

Our method (Eaton & Murphy, 2007a) (Peters et al., 2016) (Zheng et al., 2018)
0.0 0.0 10.7 3.1

Evaluating the consequences of a previously unseen intervention

fork3 chain3 confounder3 collider3

Our Model -0.4502 -0.3801 -0.2819 -0.4677
Baseline  -0.5036 -0.4562 -0.3628 -0.5082

Ke et al & Bengio arXiv:1910.01075
Learning Neural Causal Models from

*<>Mila Unknown Interventions



Observing Other Agents

Can infants figure out causal structure in spite of being
almost passive observers?

Yes, if they exploit and infer the interventions made by
other agents

Our approach does not require the learner to know
what the action/intervention was (but it could do
inference over interventions)

But more efficient learning if you can experiment and
thus test hypotheses about cause & effect



The Need for
the Agent Perspective in

Deep Learning



The Agent Perspective for Deep Learning

Classical deep learning and ML only considered a fixed data distribution

* Agents can modify their environment through their actions

* There may be multiple agents, also leading to non-stationarities, changing distribution
e Difficult to generalize out-of-distribution

* Need for the agents to "really understand" their environment

e Acting purposely can help to gather knowledge, discover good representations

35 s Mila



Jointly Learning Natural Language and a World Model

* Should we first learn a world model and then a natural language description of it?
* Or should agents jointly learn about language and about the world?
* | lean towards the latter.

* Consider top-level representations from supervised ImageNet classifiers. They tend to
be much better and easier to learn than those learned by unsupervised learning. Why?

* Because language (here object categories) provides to the learner clues about relevant
semantic high-level factors from which it is easier to generalize.

* See my earlier paper on cultural evolution, which posits that culture can help a learner
escape from poor optimization, guide (through curricula) the learner to better
explanations about the world.
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Grounded Language Learning
BabyAl Platform chevalier-Boisvert et al & Bengio ICLR 2019
Purpose: simulate language learning from a human and study data efficiency
Comprises:

e a gridworld with partial observability (Minigrid)

e a compositional natural-looking Baby language
with over 10719 instructions

e 19 levels of increasing difficulty =

e a heuristic stack-based expert that can solve all levels

(b) PutNextLocal:
"put the blue key next
to the green ball"

qgithub.com/mila-udem/babyai
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Early Steps in Babv Al Project

(a) GoToObj: "go to
the blue ball"

(b) PutNextLocal:
"put the blue key next
to the green ball"
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(c) BossLevel: "pick up the grey box behind you, then go
to the grey key and open a door". Note that the green door
near the bottom left needs to be unlocked with a green key,
but this is not explicitly stated in the instruction.

* Designing and training experts
for each level, which can serve
as teachers and evaluators for
the Baby Al learners

* Partially observable, 2-D grid,
instructions about objects,
locations, actions

go to the red ball
open the door on your left
put a ball next to the blue door
open the yellow door and go to the key behind you

put a ball next to a purple door after you put a blue box next to a grey
box and pick up the purple box

37



Acting to Guide —
Re resanka&mv\ Learning
tsentangling

(E. Bengio et al, 2017; V. Thomas et al, 2017; more recently see Warde-Farley et al ICLR 2019, Kim et al ICML 2019)

 Some factors (e.g. objects) correspond to ‘independently controllable’ aspects of
the world

e Corresponds to maximizing mutual information between intentions (goal-
conditioned policies) and changes in the state (trajectories), conditioned on the
current state.

e Can only be discovered by acting in the world

* Control linked to notion of objects & agents

* Causal but agent-specific & subjective: affordances



Four Tools for More Compositional

40

Deep Learning
Meta-Learning (to adapt quickly to changes in distribution)

Sparsely interacting mechanisms at the top level (consciousness prior)

High-level variables are causal and their dependencies are represented in a
modular way

System 1 and system 2 together actively acquire a world model and
corresponding semantic concepts (grounded language learning), can be
composed for reasoning and planning, and representations of actions and

state are linked (affordances)
$oMila



Loolking Forward

e Build a world model which meta-learns causal effects in
abstract space of causal variables, able to quickly adapt to
changes in the world and generalize out-of-distribution

* Acting to acquire that knowledge (exploratory behavior)

* Bridging the gap between system 1 and system 2, old
neural nets and conscious reasoning, all neural
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