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Abstract

Visual (re)localization addresses the problem of estimat-
ing the 6-DoF (Degree of Freedom) camera pose of a query
image captured in a known scene, which is a key building
block of many computer vision and robotics applications.
Recent advances in structure-based localization solve this
problem by memorizing the mapping from image pixels to
scene coordinates with neural networks to build 2D-3D cor-
respondences for camera pose optimization. However, such
memorization requires training by amounts of posed images
in each scene, which is heavy and inefficient. On the con-
trary, few-shot images are usually sufficient to cover the
main regions of a scene for a human operator to perform
visual localization. In this paper, we propose a scene region
classification approach to achieve fast and effective scene
memorization with few-shot images. Our insight is leverag-
ing a) pre-learned feature extractor, b) scene region classifier,
and c) meta-learning strategy to accelerate training while
mitigating overfitting. We evaluate our method on both in-
door and outdoor benchmarks. The experiments validate the
effectiveness of our method in the few-shot setting, and the
training time is significantly reduced to only a few minutesm

1. Introduction

Visual (re)localization is a key component of many com-
puter vision and robotics applications such as Augmented
Reality (AR) and navigation. It addresses the problem of
estimating the 6-DoF (Degree of Freedom) camera pose of a
query image captured in a known scene. There are mainly
two types of approaches: direct pose estimation by image
retrieval [41|5,37,144]] or pose regression [24}25],38,49,50],
and two-step pose estimation (also known as structure-based
localization) [[7HOl/15022128}[2933136143|51,/54] that first in-
fers correspondences between image pixels and scene points
and then solves camera pose by geometric optimization.
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Figure 1. Visualization of our estimated (red dots) and ground truth
(blue dots) camera poses in the scene CHESS [39]]. Our method
is trained with 20 images (green dots) uniformly sampled from
the original 4000 training images. We observe that the 20 images
are enough to cover the main regions of the scene and construct a
coarse 3D model (shown in the background) to support our method.

During the last decade, scene coordinate regression based
two-step approaches [9}22,28/43]] achieve state-of-the-art lo-
calization accuracy on public benchmarks [|25//39,{46[, which
is the main focus of this paper.

The essential concept of scene coordinate regression is
to memorize the mapping from image pixels to scene coor-
dinates under a variety of viewpoints. A common way is to
leverage convolutional neural networks (CNNs) and encode
the aforementioned mapping as the network parameters. As
a result, most of them require amounts of posed images to
train their models in each specific scene, therefore can hardly
be deployed in practice. On the contrary, few-shot images
are usually sufficient to cover the main regions of a scene,
as shown in Figure [T} and sufficient for a human operator
to memorize a scene for future localization purposes. One
hypothesis is that we humans have learned during daily life
the prior knowledge to extract robust visual features, and
only have to memorize the locations of different features in a
novel scene. Incorporating the aforementioned insights into
the scene coordinate regression based method, in this paper,
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we study the fast memorization of novel scenes with only
few-shot posed images as training data.

Introducing pre-learned visual feature extractors [[13]|15,
32,/42] is not new in the visual localization community. Es-
pecially, as another popular series of the two-step pose es-
timation, the feature matching based methods make use of
off-the-shelf feature detectors and descriptors to build scene
models from posed images, to match query image features
and scene coordinates. They are in nature generalized to dif-
ferent scenes as the visual features are scene-agnostic. How-
ever, they usually cost large memory and are not accurate
as the scene-specific coordinate regression based methods.
Therefore, we propose a new paradigm that combines scene-
agnostic features and scene-specific coordinate estimation.

Our key idea is that the scene-agnostic feature extractor is
helpful for fast scene memorization, while the scene-specific
training also helps with accuracy and efficiency. Such in-
sight motivates us to decouple the popular end-to-end scene
coordinate regression pipeline into a scene-agnostic feature
extractor and a scene-specific coordinate estimator. Further,
we propose a scene region classification paradigm instead of
direct coordinate regression for coordinate inference, so that
a meta-learning strategy is applied to accelerate training.

We summarize our contributions as follows:

* We propose a novel problem setting, i.e. visual localiza-
tion with only few-shot posed images as the database,
along with a simple and effective method designed for
the proposed few-shot setting.

* Leveraging both scene-agnostic and scene-specific in-
formation, we introduce scene region classification and
meta-learning strategy for fast scene memorization.

» Experiments validate the effectiveness of our method.
In the few-shot setting, we outperform the state-of-the-
art scene coordinate regression based methods, with
only a few minutes of training time.

2. Related Work

Direct pose estimation. This type of approach directly
estimates the camera pose based on the query image. An
effective direction is based on image retrieval methods [4,
5,137,44]]. They aggregate either hand-crafted or learned
local features into whole-image global descriptors to match
the query image against the database. PoseNet [25] and
its variants [24,|38l/49,/50] make use of neural networks
to directly regress camera pose. There are also RGB-D
based methods [[12120}/45] that encode both color and depth
information into global features. Although they are efficient,
the localization results are not as accurate as the two-step
pose estimation methods. Therefore, the approaches of direct
pose estimation are not compared in this paper.

Two-step pose estimation. This type of approach first in-
fers correspondences between image pixels and scene points
and then solves camera pose by optimization. To obtain
the aforementioned 2D-3D correspondences, conventional
feature matching based methods [15L[33H36]] leverage either
hand-crafted or learned keypoint features to explicitly con-
struct scene maps to match the query image’s keypoints.
Another popular direction is scene coordinate regression
based methods [7-9,22,28,29,|51]] that estimate the 2D-
3D correspondences implicitly by memorizing the mapping
from image pixels to scene coordinates. Such scene-specific
memorization designs usually achieve more accurate results
than scene-agnostic feature matching, while they need to be
trained for each novel scene. Recent works [43L|54] propose
to regress scene coordinate based on retrieved training image
coordinate. There are also RGB-D based visual localization
approaches [[10L|11}|14,/39,147] leveraging random forests or
point cloud based backbones, with 3D-3D correspondence
optimization algorithms, which is beyond our scope.

Few-shot learning. Few-shot learning, also known as
low-shot learning, is the learning paradigm with only a few
training data. There are roughly three types of approaches:
data hallucination based methods [3}21}/52] that leverage
generators to augment training data, metric learning based
methods [27,/41,/48]] that learn feature representations for
similarity comparisons, and meta-learning based methods
[2,/17,30] that aim to find a proper initialization for fast
training on a new task. In this paper, we adopt the meta-
learning strategy and obtain the initial network parameters
to perform fast memorization of novel scenes.

3. Method

Problem statement. Visual localization is a scene-
specific problem, with the requirement of a scene-specific
database as the reference for camera pose estimation. Specif-
ically, in each scene, a set of posed RGB-D images are
given as the database to estimate the 6 DoF camera pose
of single query RGB images. Different from the previous
settings [9,28]], there are only a few rather than thousands
of training images given in our problem. The assumption is
that tens of images are sufficient to cover the major regions
of a scene to support visual localization.

Method overview. Our method follows the two-step pose
estimation framework and is a variant of scene coordinate
regression. The framework first builds the 2D-3D corre-
spondences between image pixels and scene coordinates and
then optimizes the camera poses with a principled geometric
algorithm. Figure []illustrates our training pipeline, which
adopts a from-agnostic-to-specific structure. Given the few-
shot RGB-D training images, we first build a hierarchical
scene partition tree to label each image pixel a set of region
IDs. Then, instead of directly regressing the scene coordi-
nates, we employ a neural network to map the image pixels
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Figure 2. The training pipeline of our method. A hierarchical partition tree is built to divide the scene to regions, and then a neural network is
trained to map input image pixels to region labels. The network is designed to leverage both scene-agnostic priors (i.e. the feature extractor
SuperPoint ) and scene-specific memorization (i.e. the classifier that consists of hierarchical classification networks).

to their corresponding region IDs. Particularly, the network
is composed of two components: a scene-agnostic visual
feature extractor f (3.1I) and a scene-specific region classi-
fier ¢ (3.2). Figure[3]illustrates our camera pose estimation
pipeline. Through hierarchical classification, an input 2D
pixel is mapped to a leaf node, i.e. a region consisting of a
compact set of scene coordinates, as its 3D correspondences.
Such one-to-many correspondences are fed to a Perspective-
n-Point (PnP) algorithm inside a RANSAC

loop for camera pose optimization (3.3).

3.1. Scene-Agnostic Feature Extractor

Recent work interprets the direct pose regression
networks as linear combinations of embedded features. In
this work, we follow a similar hypothesis to interpret the typ-
ical scene coordinate regression network SCRNet [28]): the
first-to-middle layers serve as a descriptor extractor and the
rest layers serve as a coordinate regressor. The reason for re-
quiring amounts of training data is that the visual descriptors
should be learned to be robust under different viewpoints
(please refer to 4] scene coordinate regression). Since re-
cently learned descriptors achieve promising
visual feature embedding ability under viewpoint changes
and cross multiple scenes, we make use of the off-the-shelf
SuperPoint (without detector) as our feature extractor,
so that we can obtain robust semi-dense feature maps from
an input image. Such a feature extractor f is scene-agnostic
and can be directly deployed in novel scenes without any
training. Specifically, the feature extractor f is a VGG-
Style network that inputs an image I« and outputs
its feature map Fr, «w, = f(Igxw), where H, = H/8
and W, = W/8. The output features are regarded as robust
descriptors for 8 x 8 image patches and serve as the input
for our scene-specific region classifier.

3.2. Scene-Specific Region Classifier

What makes visual localization a scene-specific problem
is memorizing the scene-specific coordinate system. Direct
coordinate regression takes time to converge even with only
few-shot training images (please refer to[4.4]training times).
Instead, in this subsection, we introduce a hierarchical scene

region classification approach for fast memorization of the
mapping from image pixels to scene regions.

Scene partition tree. The goal of the scene partition is to
divide scene coordinates into clusters in order to convert the
task of coordinate regression to region classification. Given
a set of RGB-D training images, we first fuse a scene point
cloud according to their depth images and camera poses. On
top of the scene point cloud, we build a hierarchical partition
tree. Specifically, we run the classic K-Means algorithm to
obtain m clusters for the first level of region partition. By
iteratively executing region partition for each cluster, we
eventually obtain a n-level m-way tree. Each node in the
tree corresponds to a specific scene region, and each image
pixel is automatically labeled by hierarchical node IDs.

Hierarchical classification networks. The classifier ¢
aims to map a pixel to a leaf node. It consists of hierar-
chical classification networks, each of which performs a
m-class classification. The whole process is denoted by
P =c¢(f(I)), where P € {1,2,...,m"} i_xw, denotes the
final classification map for the input feature map. Specifi-
cally, each level [ in the tree corresponds to a classification
network ¢;. For the first level (the root node), the network
c; takes the image feature map as input and outputs m-class
probabilities:

P, 1=C (F )7 (1)
where P; € (0, 1),,xm,xw, denotes the classification prob-
ability map. For the rest levels, each network ¢; inputs both
image feature map and predicted classification probability
from previous levels:

P =c¢(F, Py . 1), 2

where P, € (0,1),,xm, xw,- The final classification for the
leaf nodes is computed by

P= Za(Pi) *m" ©)
i=1

where a(-) denotes the argmax operator at the first channel

to convert the one-hot probability to a class label.
Following recent works [[14,[28], the classification net-

works are implemented as base and hyper networks. As
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Figure 3. The camera pose estimation pipeline of our method. Given a query image, the trained network infers correspondences between
image pixels and scene regions. Since each scene region corresponds to a set of scene coordinates, 2D-3D correspondences are built between
image pixels and scene coordinates. Followed by a PnP algorithm with RANSAC, the camera pose is solved by optimization.
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Figure 4. Illustration of the scene-specific region classifier. It con-
sists of hierarchical classification networks. For the first level, it
is only a base network. For the rest levels, each network contains
both a base network and a hyper network.

shown in Figure[d] at the first level, the feature maps from the
previous extraction module are fed to a CNN to extract scene-
specific feature patterns, which are followed by a pixel-wise
MLP to output the classification probability map. Starting
from the second level, the feature patterns are modulated by
a hyper network, according to the classification probability
from previous levels. The intuition of the modulation is that
similar feature patterns appearing in different scene regions
should be classified under different labels. Since different
levels handle the feature patterns on different scales, the cor-
responding CNNs are implemented with different receptive
fields. Specifically, we make use of dilated convolutions to
control the receptive fields, and the dilation parameters are
computed according to the average cluster radius at each
level. Please refer to[4.2]for implementation details.

Training with meta-learning. We supervise the training
process at each classification output with a pixel-wise cross-
entropy loss. The loss term is formulated as:

Lossi7j(Pi(j), Y;(j)) _

m ()
exp (P )
_ Zlog#“d)(j)l(yim —d),
do1 Dok €XD (Pi,k)

“4)

where P-(j )

K2

€ (0,1),, denotes the m-class probability
prediction of pixel j at level 4, YZ—(] ) ¢ {1,2,..,m} denotes

the ground truth label, and 1(-) denotes a binary function.
Note that at the training stage, we use the ground truth label
map as the input for each hyper network. Therefore, the
multi-level classification network can be trained in parallel
at each branch to reduce the training time.

Inspired by the recent meta-learning idea, we apply Rep-
tile strategy to initialize the hierarchy network with
a pre-trained model. The pre-training aims to find proper
network parameters so that for a novel scene the network
can achieve fast convergence. This process makes use of ¢
individual scenes as a set of hierarchical classification tasks
T ={T;|i = 1,2,...,t}. The classifier parameters ¢y, are
randomly initialized and iteratively updated by the Reptile
gradient. For each iteration ¢, a task 7T; is randomly sampled
from T to perform k steps of stochastic gradient descent
(SGD) operation, starting with ¢;_1, and resulting in @_1.
The Reptile gradient G; is computed as

Gi=di-1— di1. )
Then, the network parameters are actually updated as
¢i = pi—1 + €G;. (6)

The iteration step is repeated until convergence. Although
there may be conflict among different tasks, Reptile gradients
make the training process converge and we obtain ¢, .
Then in each few-shot scene, we apply ¢.,q as our initial
network parameters to perform fast memorization.

3.3. Camera Pose Optimization

Our localization pipeline leverages the trained network
to build 2D-3D correspondences between image pixels and
scene regions to perform the camera pose optimization. Each
pixel is mapped to a leaf node in the scene partition tree,
which corresponds to a specific scene region with a set of 3D
coordinates. To limit the number of coordinates, we further
partition each leaf node to ¢ clusters by the K-Means algo-
rithm and utilize the cluster centers for final pose estimation.
Therefore, a 2D pixel z; € N? is corresponded to a set of ¢
3D coordinates X; = {X;, € R}k =1,2,...,q}.

Let M = {(z;, X;)|i = 1,2, ..., N} denote the set of 2D-
3D correspondences. In contrast to the recent works [8]/28]]



for applying the PnP solver, our camera pose optimization is
a variant of PnP-RANSAC algorithm to handle one-to-many
correspondences. Our algorithm consists of three stages,
which are introduced in detail below.

Hypotheses Generation. The goal is to generate a set of
camera pose hypothesis H = {H; € SE(3)|i = 1,2, ..., h}.
We first randomly sample 4 correspondences from M. For
each sampled pixel x;, we randomly select a 3D coordinate
X i from X to form a one-to-one match. The 4 one-to-one
matches formulate a minimal set for a PnP algorithm [[1923]
to solve a unique camera pose. This process is executed h
times to obtain the hypotheses set H.

Ranking. We then select the hypothesis that reaches the
most consensus with the input correspondences M. For each
generated hypothesis H;, we first compute the reprojection
error for each correspondence indexed by j as

Gj(Hi,Mj) = miHZZIHIj — PTO](H,XJ’k)HQ (7)

Then we apply a kernel function to the pixel-wise repro-
jection errors and sum them to obtain the consensus score:

Si(H;y M) =

i 1 @®)
= 1+ exp(—05 * (ej(Hi; Mj) - ’7')) ’

where 7 = 10 is a threshold in the pixel coordinate sys-
tem. We sort all the hypotheses by their scores and select the
one with the lowest score as the output camera pose.

Refinement. This is the post-processing of the selected
hypothesis to obtain a fine-grained camera pose as the fi-
nal output. The refinement is executed iteratively. In each
iteration, we recompute the reprojection error and select in-
lier correspondences whose error is less than the threshold
7. Then these inliers are fed into another PnP solver with
Levenberg-Marquardt optimization [16] to refine the cam-
era pose. The iteration terminates when the camera pose
converges, or until the iterations reach a max limit of 20
steps.

4. Experiments

In this section, we validate the effectiveness of our
method. We first introduce the few-shot version of datasets
(#.1), and describe implementation details (#.2)). Then we
perform comparisons with state-of-the-art methods (4.3).
Last but not the least, we analyze our method against our
motivation and conduct several ablation studies (4.4).

4.1. Datasets

We evaluate our method on two standard benchmarks, 7-
Scenes dataset [39] and Cambridge landmarks [25]. The

7-Scenes dataset consists of 7 indoor scenes with RGB-
D images while the Cambridge landmarks contain 6 out-
door scenes. As the scene STREET in Cambridge failed to
provide accurate 3D reconstruction, following the previous
work [9,28]], we conduct experiments only on the rest 5
scenes. Besides the two datasets, we leverage the 12-Scenes
dataset [46] to pre-train our classification network with Rep-
tile [[30] for model initialization.

In our few-shot setting, we uniformly sample 0.5 ~ 1.0%
images from the original training set. The selected training
numbers are presented in Table[T]and Table[2]

4.2. Implementation Details

For all the scenes, we apply the hierarchical K-Means
algorithm [31]] and implement our scene partition as 2-level
trees. Therefore, each scene-specific region classifier con-
sists of two levels of classification networks. By default, we
set m = 64 for 7-Scenes dataset, and m = 100 for Cam-
bridge landmarks. Therefore, each indoor scene is divided
into 4096 regions, and each outdoor scene is divided into
10000 regions. To construct the partition tree, we make use
of the few-shot depth images and their camera poses to fuse
the scene point cloud. Specifically, we use original depth
images for 12-Scenes, calibrated depth images for 7-Scenes,
and rendered depth images for Cambridge. The calibrated
and rendered depth images are provided by DSAC++ [8]].

The input image resolution to our feature extractor f is
fixed to 480 x 640 (default resolution of 12-Scenes and 7-
Scenes datasets). The images from Cambridge landmarks
are resized to 480 x 852 and randomly cropped to 480 x 640
for training, and centered cropped for inference. The output
feature map from extractor f is of shape 256 x 60 x 80, where
256 is the dimension of the features. Then, the extracted map
is fed to the scene-specific region classifier ¢ and outputs
the region predictions with the shape of m x 60 x 80. Each
classification module consists of a 2-layer CNN and a 2-
layer MLP. The dilation of each Convolution layer is set
to 5 for the first level, 3 for the second level. The hyper
network consists of two 2-layer MLPs to generate feature
normalization parameters y and /3 (-, 3 € R2°6x60%80) The
feature modulation is implemented as

Fout:’y*Fin"'ﬁ- 9

Except for the final output layer, each layer is followed by a
layer normalization [6,/53] and a ReLLU activation [|1]].

We set the batch size to 1 and the learning rate to 5e — 4
in all of the training procedures. For Reptile pre-training
on the 12-Scenes dataset, the number of tasks ¢ is set to 12.
We use k = 2 SGD steps, and ¢ = 5e — 4. For the fast
memorization on 7-Scenes and Cambridge, we apply the
Adam optimization algorithm [26]]. As for inference, the
number of leaf coordinates is limited to ¢ = 10 for both
7-Scenes and Cambridge. The number of hypotheses is set



Original training (median pose error in cm/°)

Few-shot training (median pose error in cm/°)

Methods # Images 136]° [33/34] SCRNet [28] HSCNet [28] DSAC* [9]  # Images [33)34] DSAC* [9] HSCNet [28] SP+Reg Ours
CHESS 4000 3/0.87 2/0.85 2/0.7 2/0.7 2/1.10 20 4/1.42 3/1.16 4/1.42 4/1.28  4/1.23
FIRE 2000 2/1.01 2/0.94 2/0.9 2/0.9 2/1.24 10 4/1.72 5/1.86 5/1.67 5/1.95  4/1.53
HEADS 1000 1/0.82 1/0.75 1/0.8 1/0.9 1/1.82 10 4/1.59 4/2.71 3/1.76 3/2.05  2/1.56
OFFICE 6000 4/1.15 3/0.92 3/0.9 3/0.8 3/1.15 30 5/1.47 9/2.21 9/2.29 7/1.96  5/1.47
PUMPKIN 4000 7/1.69 5/1.30 4/1.1 4/1.0 4/1.34 20 8/1.70 7/1.68 8/1.96 T 1.5
REDKITCHEN 7000 5/1.72 4/1.40 5/1.4 4/1.2 4/1.68 35 7/1.89 7/2.02 10/2.63 8/2.19  6/1.93
STAIRS 2000 4/1.01 5/1.47 4/1.0 3/0.8 3/1.16 20 10/2.21 18/4.8 13/4.24 120/27.37 5/1.47

Table 1. Visual localization results on the 7-Scenes dataset. Left: original training images as database. Right: the few-shot training images as
database. For each part of the results, we first list the nunmbers of training images in each scene. The feature matching based methods are
labeled to orange. The best and the second best results among the few-shot setting are labeled to red and blue, respectively.

Original training (median pose error in cm/°)

Few-shot training (median pose error in cm/°)

Methods # Images 136]° [33]34] SCRNet [28] HSCNet [28] DSAC*[9]  # Images [33/34] DSAC* [9] HSCNet [28] SP+Reg Ours

GREATCOURT 1531 24/0.13 16/0.11 125/0.6 28/0.2 49/0.3 - 16 72/0.27 NA NA NA 81/0.47
KINGSCOLLEGE 1220 13/0.22 12/0.20 21/0.3 18/0.3 15/0.3 13 30/0.38 156/2.09 47/0.74 111/1.77 39/0.69
OLDHOSPITAL 895 20/0.36 15/0.30 21/0.3 19/0.3 21/0.4 9 28/0.42 135/2.21 34/0.41 116/2.55 38/0.54
SHOPFACADE 229 4/0.21 4/0.20 6/0.3 6/0.3 5/0.3 3 27/1.75 NA 22/1.27 NA 19/0.99
STMARYSCHURCH 1487 8/0.25 7/0.21 16/0.5 9/0.3 13/0.4 15 25/0.76 NA 292/8.89 NA 31/1.03

Table 2. Visual localization results on the Cambridge landmarks. NA indicates that the method fails (median translation error larger than
500cm) in the scene. The results of AST come from the paper PixLoc [35]]. DSAC* is trained with 3D models. HLoc uses SuperPoint for
keypoint detection & description, and SuperGlue [34] for feature matching.

to h = 256 for 7-Scenes, and h = 512 for Cambridge. All
the experiments are run on NVIDIA GeForce RTX 2080 Ti
GPU and AMD Ryzen Threadripper 2950x CPU.

4.3. Comparison

We compare our method with state-of-the-art two-step
pose estimation methods. We consider both feature match-
ing based methods (AS [36] and HLoc [33}34]]) and scene
coordinate regression based methods (SCRNet [28]], HSC-
Net [28]], and DSAC* [9]]) as our competitors. We also set up
a baseline, named SP+Reg, that equips SuperPoint [[13]] as
a feature extractor while employing the regression network
instead of classification for the coordinate estimation.

Quantitative results. The quantitative results are shown
in Table [T]and Table 2} For each dataset, we list the local-
ization results trained by the original training set in the left
part, as the reference to compare with results in the few-shot
setting. We first compare the results between the original
and the few-shot training. All of the methods suffer an obvi-
ous performance drop as the few-shot setting is challenging.
The results of scene coordinate regression based methods
on Cambridge landmarks are overall worse than the feature
matching based ones, as the ground truth depth images used
for training are rendered from 3D reconstruction and not as
accurate as 7-Scenes measured depth images.

When compared with the scene coordinate regression
based methods in the few-shot setting, our method achieves

the best performance on both the 7-Scenes dataset and Cam-
bridge landmarks. Note that for fair comparisons, all SCR-
Net, HSCNet, SP+Reg, and our method are trained with 9K
iterations for 7-Scenes and 30K for Cambridge to ensure the
aforementioned methods converge. DSAC* is trained with
100K iterations in the initialization step and 20K iterations
in the end-to-end training, and the average training time
for each scene is around 2 hours. Besides, the regression-
only methods (DSAC* and SP+Reg) fail in several outdoor
scenes, the hybrid method (HSCNet) fails fewer, while the
classification-only method (Ours) achieves reasonable re-
sults across all the scenes.

We also notice that in the few-shot setting, our method
overall falls behind the state-of-the-art method HLoc on the
Cambridge landmarks. It is reasonable since feature match-
ing based methods do not require the rendered depth for
supervision. Nevertheless, our method consumes low mem-
ory storage (~40 MB) and fast inference time (~200ms). In
addition, the main purpose of this paper is to analyze the
scene coordinate regression architecture and design a sim-
ple and effective scene memorization pipeline to increase
the generalisability for novel scenes. Exploring the method
combinations of feature matching and coordinate regression
in the few-shot setting is worth more research.

Qualitative results. In Figure[5] we visualize the camera
poses on the 7-Scenes dataset. We are glad to see that the
estimated poses overall overlap their ground truth in the



challenging few-shot setting. Howeyver, for the regions which
are far from training viewpoints, our method shows large
jitters in pose estimation. Following recent works [9}28]],
we also render the color images with the estimated poses for
intuitive comparisons. The rendered and query images are
well aligned, which validates the localization accuracy of
our method. Please refer to the supplementary for the visual
results on Cambridge landmarks.

4.4. Analysis

Scene coordinate regression. This paragraph provides
an analysis of a typical scene coordinate regression network,
SCRNet [28]], to further explain our inspiration. Our hypoth-
esis is that the first-to-middle layers of SCRNet serve as a
feature extractor for robust visual descriptors under different
viewpoints while the rest layers memorize the mapping from
descriptors to scene-specific coordinates. The features from
the former become less effective when the number of train-
ing data decreases. To validate this hypothesis, we conduct
feature matching experiments using the intermediate feature
map of SCRNet. Three examples are shown in Figure [6]
where we train the model on CHESS and employ the middle
layer’s output feature map as visual descriptors. The top
row shows that when trained with full training images it
obtains hundreds of correct matches. When the model is
trained with only few-shot images, we observe a significant
decrease in the correct matches, as shown in the middle row,
which indicates that the visual descriptors require amounts
of training data. On the bottom row, if the model is applied
to extract features in a novel scene STAIRS, the number of
correct matches is further decreased. These experiments
demonstrate that although the first-to-middle layers of SCR-
Net have the ability to extract visual descriptors, they require
huge training data and hardly be generalized to novel scenes.
Consequently, we adopt the decoupled hypothesis of scene
coordinate regression and employ an off-the-shelf feature
extractor SuperPoint to handle the few-shot setting.

Off-the-shelf feature extractors. We apply Super-
Point [13]] as our default feature extractor in Table [T] and
Table[2] The results in Table 3]demonstrate that the extrac-
tor can also be replaced by other visual descriptors. We
apply two state-of-the-art learned features D2-Net [15] and
R2D2 [32] as alternatives. Similar to SuperPoint, for the two
methods, we take only their semi-dense visual descriptors
without detectors. Since these learned features have differ-
ent dimensions, we slightly change the input channels of
the followed classification network to align with different
visual descriptors. The results show that the different feature
extractors have similar performance in pose estimation.

Scene region partitions. To explore the impact of differ-
ent scene region partitions, we train and evaluate our model
with a different number of region classes. We perform ex-
periments on two selected scenes, REDKITCHEN for indoor

Scene D2-Net [15] R2D2 [32]

t(em) 7 () |tm) ()
CHESS 4 1.20 5 1.57
FIRE 4 1.46 4 1.55
HEADS 2 1.44 2 1.50
OFFICE 5 1.52 6 1.72
PUMPKIN 7 1.69 6 1.48
REDKITCHEN 6 1.93 7 1.89
STAIRS 7 1.96 7 1.95

Table 3. Impact of different feature extractors. We replace our
feature extractor with state-of-the-art alternatives and evaluate these
variants on the 7-Scenes dataset. The median errors of estimated
camera poses are comparable with the results in Table

# Classes REDKITCHEN GREATCOURT
tem) () |tem) ()
30 x 30 =900 7 2.09 - -
50 x 50 = 2500 6 1.92 124 0.68
80 x 80 = 6400 6 1.90 101 0.58
90 x 90 = 8100 6 1.85 99 0.56
120 x 120 = 14400 - - 72 0.40

Table 4. Impact of different scene region partitions. We report the
median errors of estimated camera poses in two scenes from the
7-Scenes dataset and Cambridge landmarks.

and GREATCOURT for outdoor. As shown in Table 4} we ob-
serve that more classes result in more accurate camera pose
estimation. The results from REDKITCHEN indicate that the
effectiveness of the finer region partition is limited since the
current regions are sufficient for the pose estimation. The
improvements are significant in GREATCOURT. Especially,
when the regions increase to 120 x 120, the translation er-
ror decreases to 72cm, which is more than 40% lower than
124cm. However, the fine-grained region partition suffers
from heavy computation costs, and the processing time sig-
nificantly exceeds our training time with 14400 regions.
Training times. The key feature of our method is the fast
memorization ability with few-shot images. As shown in
Figure[7| we compare our training time with SCRNet, HSC-
Net, and several baselines in REDKITCHEN. For fair com-
parisons, we train our classifier from random initialization
without the meta-learning based pre-training. The results
show that our method achieves the fastest convergence with
only a few minutes of training time. The baseline named
Ours w/o SP denotes a randomly initialized feature extractor
instead of SuperPoint, and the comparison with it demon-
strates the effectiveness of pre-learned visual descriptors. As
we expect, SCRNet is the slowest to converge. Applying
SuperPoint to SCR (i.e. SP+Reg) significantly accelerates
the convergence and makes it approach HSCNet. HSCNet
achieves a not-bad convergence speed as it also applies hi-
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Figure 5. Visual results on the 7-Scenes dataset. Top: we visualize the camera poses of training images (green dots), test images (blue dots)
and our estimates (red dots). Bottom: we select the image with the median pose error in each scene and visualize the accuracy by overlay the
query image (left) with a rendered image (right) using the estimated pose and the ground truth 3D model.

erarchical classifications besides coordinate regression. To
conclude, these experiments validate the effectiveness of our
decoupled design with scene region classification.

Figure 6. We visualize the correct matches. The correctness is
determined by their ground truth coordinates with 5cm tolerance.
Top: the model is trained with original training images and tested in
the same scene. Middle: the model is trained with few-shot images
and tested in the same scene. Bottom: the model is trained with
original training images and tested in a novel scene.

Effectiveness of meta-learning. In Figure [§] we report
the training curves of our method in REDKITCHEN. We com-
pare three setups: training from random initialization, from
pre-trained models by Reptile with k£ = 2 (approximation of
MAML [17]) and k& = 5. We observe that the pre-training
accelerates the training convergence, while different types
of Reptile gradients do not make much difference.
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Figure 7. The camera pose median errors vs. training time.
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Figure 8. Our training curves with and without meta-learning.

5. Conclusion

In this paper, we propose a novel problem setting that per-
forms visual localization with only few-shot posed images as
the database, along with a simple and effective method based
on hierarchical scene region classification. Experiments and
analysis validate the design of our method, which achieves
fast scene memorization with low localization error. Despite
the high efficiency, our method suffers from a performance
drop due to the few-shot setting. Improving the camera pose
accuracy worth more explorations in future works.
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Appendix

In this appendix, we report the details of our few-shot
version of datsets 7-Scenes [39]] and Cambridge [25] in sec-
tion[A] the additional results of SCRNet [28]] based feature
matching in section |B| the qualitative results on Cambridge
in section[C] the efficiency of our method in section D} and
the impact of leaf granularity in section [E]

A. Few-Shot Datasets

We perform few-shot experiments on the 7-Scenes dataset
and the Cambridge landmarks in the main paper. To avoid
bias, the few-shot training set is uniformly sampled from the
original training set, as shown in Figure 9]

B. SCRNet Based Feature Matching

The main paper showcases examples that feature maps
from SCRNet can match amounts of correct points in the
same scene, and match fewer points in another scene. In this
section, we perform a cross validation and report quantitative
results. As shown in Table[5] we build image pairs by skip-
ping every 30 images, and we count the average number of
correct matches. We observe that the test results in another
scene achieve consistently less correct matches than those
in the same scene. Note that STAIRS is a very challenging
scene with repetitive patterns and textureless regions, there-
fore the numbers of correct matches are overall less than
those in CHESS.

Training scene
Test scene
CHESS  STAIRS
CHESS 746 564
STAIRS 336 486

Table 5. The number of correct matches. The model is trained
separately in CHESS and STAIRS and tested in the same scene and
Cross scenes.

C. Qualitative Results on Cambridge

In the main paper, we show the qualitative results on the
7-Scenes dataset. The qualitative reuslts on the Cambridge
landmarks are shown in Figure[I0] We observe that in overall
cases, the estimated poses overlap their ground truth.

D. Time Consumption

In this section, we provide detailed time consumption.
Our method takes ~63 ms for each training iteration (SCR-
Net ~100 ms, and HSCNet [28] ~125 ms). The meta-
learning based pre-training takes about 5 hours and is once
for all. The few-shot memorization converges with about 2
minutes. For inference, our method runs (~ 200 ms) slower

than scene coordinate regression based methods (SCRNet
~130 ms) and faster than feature matching based methods
(HLoc [33,134] ~ 500 ms). This is because of the more
complexity of the one-to-many PnP-RANSAC mechanism.

E. Leaf Granularity

We report the running time and pose accuracy using differ-
ent granularities of clustering in leaf nodes shown in Table|[6]
The choice of granularity is a trade-off between accuracy
and efficiency. In general, the accuracy improves when using
finer-grained granularities. However, an overly high cluster
number, e.g. ¢ = 50, may causes more randomness for
RANSAC, leading to performance reduction.

# Clusters q=1|q¢q=10| ¢=30 q =50
RANSAC time (ms) 20-50 | 80-230 | 180-500 | 400-700
Median error (cm/°) | 8/2.00 | 6/1.93 6/1.89 6/1.95

Table 6. Impact of the number of leaf node clusters. Experiments
are conducted in the scene REDKITCHEN.
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