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Abstract

Estimating the 3DoF rotation from a single RGB im-
age is an important yet challenging problem. Recent works
achieve good performance relying on a large amount of
expensive-to-obtain labeled data. To reduce the amount
of supervision, we for the first time propose a general
framework, FisherMatch, for semi-supervised rotation re-
gression, without assuming any domain-specific knowledge
or paired data. Inspired by the popular semi-supervised
approach, FixMatch, we propose to leverage pseudo la-
bel filtering to facilitate the information flow from labeled
data to unlabeled data in a teacher-student mutual learn-
ing framework. However, incorporating the pseudo label
filtering mechanism into semi-supervised rotation regres-
sion is highly non-trivial, mainly due to the lack of a re-
liable confidence measure for rotation prediction. In this
work, we propose to leverage matrix Fisher distribution to
build a probabilistic model of rotation and devise a matrix
Fisher-based regressor for jointly predicting rotation along
with its prediction uncertainty. We then propose to use the
entropy of the predicted distribution as a confidence mea-
sure, which enables us to perform pseudo label filtering
for rotation regression. For supervising such distribution-
like pseudo labels, we further investigate the problem of
how to enforce loss between two matrix Fisher distribu-
tions. Our extensive experiments show that our method can
work well even under very low labeled data ratios on differ-
ent benchmarks, achieving significant and consistent per-
formance improvement over supervised learning and other
semi-supervised learning baselines. Our project page is at
https://yd-yin.github.io/FisherMatch.

1. Introduction
Incorporating deep neural networks to perform rotation

regression is exerting an ever-important influence in com-
puter vision, graphics and robotics. This is now one of the
key technology in enabling a multitude of applications such
as camera relocalization and visual odometry [8, 14], ob-
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ject pose estimation and tracking [48, 53], and 6DoF robot
grasping [7, 20]. One of the major obstacles to improv-
ing rotation regression is expensive rotation annotations.
Though many large-scale image datasets have been curated
with sufficient semantic annotations, obtaining a large-scale
real dataset with rotation annotations can be extremely la-
borious, expensive and error-prone [52]. With the amount
of labeled data being the bottleneck, there is a demand for
methods that can leverage unlabeled data.

Regarding training models with fewer labels, semi-
supervised learning (SSL) has been a powerful approach,
mitigating the requirement for labeled data by providing a
means of leveraging unlabeled data and thus attracting more
and more attention.

Recent years have witnessed many processes in semi-
supervised classification [5, 15, 26, 43, 44], semi-supervised
object detection [32, 47], and semi-supervised human and
hand pose estimation [22, 39]. However, only few works
address semi-supervised rotation regression, with most of
them leveraging domain-specific knowledge, e.g., tempo-
ral smoothness of object pose [31] and strong assumptions,
e.g., paired images from different viewpoints [34].

The underlying reason for little work in this field is that
rotation regression is very unique and challenging. First, it
is undesirable to turn the rotation regression into a classifi-
cation problem. Given that 3D rotation space is continuous,
discretizing the space into a small number of bins will lead
to limited accuracy, which is intolerable for many applica-
tions involving rotation estimation. Also, rotation regres-
sion is even not a standard regression problem. Given that
rotation space SO(3) is a non-Euclidean manifold [60], a
general regression algorithm needs to be tailored, taking the
nonlinear structure of the rotation space into account. This
further makes semi-supervised rotation regression a more
challenging and less studied topic.

In this work, for the first time, we propose a general
framework, namely FisherMatch, for semi-supervised rota-
tion regression. The problem we tackle is very general: us-
ing a neural network to regress rotation from a single RGB
image. Inspired by a popular semi-supervised learning ap-
proach, FixMatch [43], initially developed for classification
tasks, we attempt to process rotation regression problems in
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a similar flavor.
The key idea to the success of FixMatch is to filter out

the pseudo labels with low classification confidence and
only supervise the model outputs with highly confident la-
bels. This mechanism ensures the quality of pseudo labels
and thus significantly improves the performance of semi-
supervised learning. The underlying assumption is that the
more confident a pseudo label is, the more closed this label
is to the ground truth. Or, in other words, this system needs
to predict a confidence that can well indicate the correct-
ness of its prediction. Fortunately, a classification output
naturally carries the information: the probability of its pre-
diction can be used as its prediction confidence. We argue
that the availability of such a reliable confidence measure
is crucial to the success of FixMatch on semi-supervised
classification tasks. Similarly, when adopting FixMatch to
3D object detection, 3DIoUMatch [47] constructs a sepa-
rate branch to predict the 3D IoU between the predicted
bounding box and the ground truth bounding box as a local-
ization confidence to filter out poor predictions. Although
3D IoU estimation is a regression task, 3DIoUMatch can
move around the predicted bounding boxes as an augmen-
tation trick, thus creating an infinite amount of training data
for this confidence estimation module. This augmentation
is crucial for such a confidence estimation module since the
confidence estimation modules can only be trained using la-
beled data and must work on unlabeled data.

However, we argue that adopting FixMatch for rotation
estimation is highly non-trivial. The biggest obstacle is how
to estimate the prediction confidence for rotation regression.
For rotation regression, we don’t have the largest probabil-
ity from the bins as our confidence; also, for rotation es-
timation from a single RGB image, we can’t perform such
augmentation to change our rotation prediction; yet, we still
need this uncertainty estimation module to work on unla-
beled data with only training on a small set of labeled data.

As pointed out by [42], probabilistic modeling of rota-
tion is the correct way to model the uncertainty of rota-
tion regression. Parametric statistical methods for orienta-
tion statistics have long been established [12, 21, 24, 40]. In
order to better resort to SO(3) manifold which has a dif-
ferent topology than unconstrained values in RN , Deng et
al. [10] and Mohlin et al. [35] incorporate Bingham distri-
bution and matrix Fisher distribution respectively to auto-
matically learn uncertainties along with predictions, with-
out further supervision. Thus, such networks can provide
valuable information about the quality of the prediction. We
prefer matrix Fisher distribution to Bingham distribution,
since its rotation representation is continuous and its loss
is convex with bounded gradient magnitudes, resulting in a
stable training for neural networks [29, 35].

We thus devise a matrix Fisher-based rotation regressor
that takes input a single RGB image and outputs the param-

eter of a matrix-Fisher distribution. Given the predicted dis-
tribution, we propose to use the entropy of this distribution
as a confidence measure for pseudo label filtering. Basi-
cally, only pseudo labels with high confidence, i.e. lower
entropy than a threshold τentropy, will pass the filtering and
be used for supervising the model under training. Our ex-
periment consistently proves that entropy is an efficient in-
dicator of the prediction performance, not only in the case
of 100 percent labeled data, but also in low data ratio cases
down to 5 percent. Since FisherMatch outputs a distribution
rather than a single rotation, our pseudo labels become a
distribution, which requires research into the unsupervised
loss enforced between two distributions. In this work, we
investigate cross entropy loss and negative log likelihood
loss, draw a connection between them, and find their proper
usage in our experiments.

On common benchmark datasets of object rotation es-
timation from RGB images (ModelNet10-SO(3) and Pas-
cal3D+) under various labeled data ratios, our experi-
ment demonstrates a significant and consistent performance
improvement over supervised learning and other semi-
supervised learning baselines.

2. Related Work

Rotation regression The choice of rotation representa-
tion is one of the core issues concerning rotation regression.
The commonly used representations include Euler angles,
axis-angles, unit quaternions, etc. However, Euler angles
suffer from gimbal lock, and quaternions have a double em-
bedding giving rise to the existence of two disconnected lo-
cal minima. Moreover, [60] argues that representations less
than 4 dimensions are bound to have discontinuities and
are difficult for neural networks to learn. To this end, the
continuous 6D representation with Gram-Schmidt orthog-
onalization [60] and 9D representation with SVD orthogo-
nalization [29] have been proposed respectively, leading to
superior performance in rotation regression.

Several works propose to use probability distributions
over rotations to further model prediction uncertainties
along with rotation regression. In Prokudin et al. [42], pa-
rameters of a mixture of Von Mises distribution using a
biternion network are estimated. Deng et al. [10] uses Bing-
ham distribution over unit quaternions to jointly predict the
rotation as well as the uncertainty. Estimation with ma-
trix Fisher distribution [35] learns to build the probability
distribution over rotation matrices with unconstrained pa-
rameters. To further express arbitrary rotation distributions
and better tackle rotation regression for symmetry objects,
Implicit-PDF [36] chooses to represent the distributions im-
plicitly by neural networks, instead of distribution parame-
ters, where the SO(3) space is uniformly discretized with
the help of Hopf fibration [56].



Semi-supervised classification Semi-supervised learn-
ing is a long-studied field with a diversity of approaches,
many in the field of classification. Consistency regulariza-
tion and pseudo labeling are two measures with in-depth ex-
ploration. Consistency regularization was first proposed in
[3] which enforces the model to predict consistently across
multiple perturbations [23, 26, 44, 54]. Pseudo labels [27]
are artificial labels generated by the model itself and are
used to further train the model, often applied along with
a confidence-based thresholding to ensure the pseudo label
quality. Mixmatch [5], ReMixmatch [4] and FixMatch [43]
are holistic methods utilizing various augmentation and la-
bel sharpening strategies.

More recently, SimPLE [18] proposes the paired loss
minimizing the statistical distance between confident and
similar pseudo labels. SemCo [38] considers label seman-
tics to prevent the degradation of pseudo label quality for
visually similar classes in a co-training manner. Dash [55]
and FlexMatch [58] propose dynamic and adaptive pseudo
label filtering, better suited for the training process.

Semi-supervised regression Semi-supervised regression
is a less-touched field compared with classification, where
most of the works deal with regressing Euclidean variables,
e.g., Parkinson’s disease rating scales from multiple tele-
monitoring data in UCI repository [2]. Early work of CoReg
[61] utilizes multiple k-nearest neighbor regressors with dif-
ferent distance metrics and leverages the predictions of one
regressor to label the other regressors in a co-training man-
ner. SSDKL [19] leverages the unlabeled data by minimiz-
ing predictive variance in the posterior regularization frame-
work through the composition of neural networks and the
probabilistic modeling of Gaussian processes.

Self-/semi- supervised rotation estimation Several
works tackle rotation estimation in a self-supervised
manner. Mustikovela et al. [37] leverages the analysis-
by-synthesis technique that requires a lot of extra images
for training a generative model. ViewNet [34] assumes
the availability of paired data (same object, different
poses). The most relevant semi-supervised learning work
is NVSM [46], which shares the same assumptions on data
and labels with us. In contrary to regression, NVSM builds
a category-level 3D cuboid mesh with feature vectors
and estimates the object rotation in a render-and-compare
technique through the distance-based rotation retrieval.
Less literature has been seen in the field of semi-supervised
rotation regression. Mariotti et al. [33] requires paired
images of an object and enforces cross-reconstruction in
an analysis-and-synthesis manner via rotating the encoded
neural latent variables.

Our work draws insight from both the orientation statis-
tics and the semi-supervised learning techniques introduced
above, dedicated to correlating the techniques in two well-

explored fields to tackle the problem in the general setting
of semi-supervised rotation regression.

3. Method
In this work, we tackle the problem of learning to pre-

dict 3D object rotation from single RGB images under a
semi-supervised setting, where we have only a (small) set
of labeled data

{
xl
i,y

l
i

}Nl

i=1
and a larger set of unlabeled

data {xu
i }

Nu

i=1. Here, xl and xu represent the labeled and
unlabeled RGB image respectively, and yl represents the
ground-truth rotation in SO(3) for a labeled data; Nl and
Nu are the number of labeled and unlabeled images, respec-
tively.

Following a popular semi-supervised learning approach,
FixMatch [43], we adopt the teacher-student mutual learn-
ing framework, which we summarize in Section 3.1. In
Section 3.2, we make use of two probabilistic models of
rotation for depicting the uncertainty in rotation prediction,
namely Bingham distribution and matrix Fisher distribu-
tion [10,35], and propose to use the entropy of the predicted
matrix Fisher distribution as the prediction confidence for
pseudo label filtering; In Section 3.4, for the purpose of en-
forcing loss between the teacher and the student, we con-
struct two loss functions between pseudo labels and pre-
dicted distributions; Finally, in Section 3.5, we introduce
our training protocol in detail.

3.1. Revisit FixMatch

The teacher-student mutual learning framework is a pop-
ular approach for semi-supervised learning. Mean Teacher
[44] proposes the first version, containing two jointly
learned models - a teacher and a student. The parameters
of the teacher model are the exponential moving average
(EMA) of the student model parameters that are updated by
the stochastic gradient descent. The student model is trained
by the ground-truth labels for the labeled data, and for the
unlabeled data, the predictions of the teacher model serve
as the pseudo labels and are used to supervise the student
network, through which, a history consistency is enforced
between the two models.

FixMatch [43] further develops this approach by propos-
ing two strategies: asymmetric data augmentation and
confidence-based pseudo label filtering. Asymmetric data
augmentation means that the teacher model is fed by weakly
augmented unlabeled samples while the student model takes
strongly augmented unlabeled samples which contributes to
the performance gap between the teacher and the student,
facilitating correct information flow to the student.

Arguably, the most important contribution of FixMatch
is to demonstrate the effectiveness of confidence-based
pseudo label filtering. For a non-trivial semi-supervised
learning task, previous works recognize that the pseudo la-
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Figure 1. Pipeline overview. Our matrix Fisher based-rotation regressor Φ takes an RGB image x as input and outputs the parameter
A of the predicted matrix Fisher distribution. We leverage a teacher-student mutual learning framework composed of a learnable student
model and an exponential-moving-average (EMA) teacher model. On labeled data, the student network is trained by the ground-truth
labels with the supervised loss; while on unlabeled data, the student model takes the pseudo labels from the EMA teacher. We leverage
an entropy-based filtering technique to filter out noisy teacher predictions. The distribution visualization is borrowed from [35] where x, y
and z shown in black axes correspond to the standard basis of R3, and the pdf is shown on the sphere with a jet color coding. See Appendix
Section D for details of the visualization method.

bels generated by the teacher output suffer from significant
noises [43, 47]. To this end, FixMatch proposes to filter
out low-quality predictions and only supervise the student
model with predictions with high confidence. This strat-
egy avoids wrong supervision to the student model and has
been proved to be very effective for challenging tasks, e.g.,
object detection [32, 47]. Given the difficulty of rotation
regression, we further propose to leverage FixMatch as the
basis of our framework for the rotation regression task.

3.2. Probabilistic Modeling of Rotation

To model the uncertainty of rotation estimation, we
leverage matrix Fisher distribution to build a probabilistic
model of rotation prediction, following Mohlin et al. [35].

Matrix Fisher distribution [24,41] MF(R;A) is a prob-
ability distribution over SO(3) for rotation matrices, whose
probability density function is in the form of

p(R) = MF(R;A) =
1

F (A)
exp

(
tr
(
ATR

))
(1)

where parameter A ∈ R3×3 is an arbitrary 3×3 matrix and
F (A) is the normalizing constant. The mode and disper-
sion of the distribution can be computed from computing
singular value decomposition of the parameter A. Assume
A = USVT and the singular values are sorted in descend-
ing order, the mode of the distribution is computed as

R̂ = U

 1 0 0
0 1 0
0 0 det(UV)

VT (2)

and the singular values S = diag(s1, s2, s3) indicates the
strength of concentration. The larger a singular value si is,
the more concentrated the distribution is along the corre-
sponding axis (the i-th column of mode R̂).

Another important probabilistic model for rotation is
Bingham distribution on S3 for unit quaternions. The prob-
ability density function is defined as

B(q;M,Z) =
1

F (Z)
exp

(
qTMZMTq

)
(3)

where M ∈ O(4) is a 4 × 4 orthogonal matrix and Z =
diag(0, z1, z2, z3) is a 4× 4 diagonal matrix with 0 ≥ z1 ≥
z2 ≥ z3. The first column of parameter M indicates the
mode and the remaining columns describe the orientation of
dispersion while the corresponding zi, (i ∈ 1, 2, 3) describe
the strength of the dispersion. F (Z) is the normalizing con-
stant.

It is well recognized that rotation matrix R and quater-
nion q are two different representations of rotation. Sim-
ilarly, as discussed in [41], matrix Fisher distribution and
Bingham distribution are equivalent to each other differ-
ing only in parameterizations and rotation representations.
However, given that quaternion is not a continuous repre-
sentation of rotation [60], using matrix representation to
learn a deep rotation estimation model has an intrinsic ad-
vantage and usually yields better performance. [35] further
shows that matrix Fisher distribution has a bounded gradi-
ent, which is favored by deep neural networks. Therefore,
9D rotation matrix is chosen as our representation, and ma-



trix Fisher distribution is used for building our probabilistic
rotation model.

3.3. Entropy-based Pseudo Label Filtering

Inspired by FixMatch, we only want the accurate predic-
tions from the teacher model to “teach” the student model.
Otherwise, noisy pseudo labels may slow down the training
procedure, or even do harm to the whole process.

For depicting the confidence of a predicted distribution,
we propose to use entropy, which is widely used in statis-
tics acting as the degree of disorder or randomness in the
system, as a measure of uncertainty. A lower entropy gen-
erally indicates a more peaked distribution which exhibits
less uncertainty and higher confidence.

In this work, we propose an entropy-based filtering
mechanism leveraging the probabilistic modeling of the ro-
tation estimation over SO(3). We devise a rotation regres-
sor Φ that takes a single RGB image x and outputs the pa-
rameter A ∈ R3×3 of a matrix Fisher distribution

A = Φ(x), (4)

which not only contains a predicted rotation as the mode
of this distribution, but also encode the information of the
distribution concentration. We then compute the entropy of
this predicted distribution (see Equation 9).

For pseudo label filtering, we set a fixed entropy thresh-
old τ , and only reserve the prediction as a pseudo label if its
entropy is lower than the threshold. Specifically, for unla-
beled data xu, assume pt = MF(Au

t ) is the teacher output
with Au

t = Φt(x
u) and ps = MF(Au

s ) is the student
output with Au

s = Φs(x
u) , the loss on unlabeled data is

therefore:

Lu (x
u) = 1 (H(pt) ≤ τ)L (pt, ps) (5)

We discuss the loss function enforced between two distri-
bution L (pt, ps) in Section 3.4.

3.4. Loss Function between Distributions

For the labeled set
{
xl
i,y

l
i

}Nl

i=1
, we adopt the most com-

mon loss function, negative log likelihood (NLL) loss, to
learn the probabilistic model of rotation, as in [10,35]. This
loss minimizes the negative log likelihood of the ground-
truth rotation in the predicted distributions, as shown below:

Ll

(
xl,yl

)
= − log

(
MF

(
yl;Al)

))
(6)

where A(xl) denotes the network output fed with input xl.
For unlabeled data, both our network predictions and

pseudo labels are distributions, and thus we need to enforce
loss between two distributions, which is rarely the case for a
regression problem. We investigate two types of losses, i.e.,
negative log likelihood (NLL) loss and cross entropy (CE)
loss.

Cross Entropy Loss LCE In classification problems, a
widely-used loss function between two discrete distribu-
tions is cross entropy loss LCE, whose gradient is equiva-
lent to the gradient of KL divergence between two distri-
bution [13]. We thus extend cross entropy loss LCE so as
to enforce the consistency between pseudo labels and the
student outputs:

LCE (pt, ps) = H (pt, ps) (7)

To compute LCE between two continuous distribution
on SO(3), we derive the analytical formula for the cross
entropy between two matrix Fisher distributions f ∼
MF(Af ) and g ∼ MF(Ag), as shown below:

Assume Af = UfSfV
T
f , Ag = UgSgV

T
g , γ is the

standard transform from unit quaternion to rotation matrix,
ei is the i-th column of I4, and Ei = γ(ei), then we can
derive

H(f, g) = logFg −
4∑

i=1

zgi

(
b2i +

4∑
j=1

(
a2
ij − b2i

) 1

Ff

∂Ff

∂zfj

)
(8)

where zgi = tr(ET
i Sg) zfj = tr(ET

j Sj)

aij = γ−1(UfEiV
T
f ) · γ−1(UgEjV

T
g )

bi = γ−1(UfEiV
T
f ) · γ−1(UgEiV

T
g )

and Ff and Fg are constant wrt. parameter Z. See Ap-
pendix Section B for the derivation. Note that when f = g,
we can also get the entropy H(f) for matrix Fisher distri-
bution, as shown below:

H(f) = logFf −
4∑

i=1

(
zfi

1

Ff

∂Ff

∂zfi

)
(9)

NLL Loss LNLL Another option of the loss is to consider
the negative log likelihood of the mode predicted by the
teacher in the distribution predicted by the student, which
is basically the NLL loss treating the teacher prediction as
ground truth, as in the case of labeled data.

LNLL (pt, ps) = − log ps(y
u
t ), (10)

where yu
t is the mode predicted by the teacher and can be

computed by SVD of Au
t (see Section 3.2).

Relationship between LNLL and LCE Here we intend to
make connection between LNLL and LCE. We find that LCE

becomes LNLL when we decreases the dispersion of the dis-
tribution pt to a Dirac distribution δ(R;yu

t ) with its mode
located at yu

t . We give a brief proof as below:

LCE (Dirac(pt), ps) = H (δ(yu
t ), ps)

= −
∫
SO(3)

δ(yu
t ) log psdR

= − log ps(y
u
t ) = LNLL (pt, ps) .



This exactly resembles the label sharpening technique used
in semi-supervised classification [5,43], where the teacher’s
output is either sharpened or turned into a hard label. To be
specific, when we turn a predicted distribution MF(Au

t )
into a hard label yu

t , LCE becomes LNLL. We use LCE in the
experiments and investigate the different behavior of these
two losses in Section 4.4.

3.5. Training Protocol

Our training is composed of two stages: a pre-training
stage, where we train our rotation regressor on the labeled
data, followed by an SSL stage where both the labeled and
the unlabeled data are utilized. Our matrix Fisher-based ro-
tation regressor is fed with an RGB image x and outputs
a 3 × 3 matrix A as the predicted parameter of the matrix
Fisher distribution. We take the mode of the distribution as
the predicted value.
Pre-training We start with a supervised training proce-
dure on the labeled set with the supervised loss as Eq. 6.
We clone the rotation regressor to obtain a pair of teacher
and student networks with the same initialization, once con-
verged.
Semi-supervised training In SSL stage, we utilize both
the labeled data and the unlabeled data. A training
batch contains a mixture of

{
xl
i

}Bl

i=1
labeled samples and

{xu
i }

Bu

i=1 unlabeled samples. The loss function is composed
of the supervised loss applied to the labeled samples and the
unsupervised loss for the unlabeled samples

L = Ll

(
xl,yl

)
+ λuLu (x

u) (11)

where Ll is computed as Eq. 6, Lu is as Eq. 7, and λu is
the unsupervised loss weight.

In this stage, We adopt asymmetric augmentation and an
exponential-moving-average teacher as stated in Sec. 3.1.

4. Experiment
4.1. Datasets

ModelNet10-SO(3) [30] is created by rendering 3D
models of ModelNet-10 [51] that are rotated by uniformly
sampled random rotations in SO(3). Following [9, 35], we
focus on the chair and sofa category which exhibit the
least rotational symmetries in the dataset. In the experi-
ments, we set the ratio of labeled data as 5% and 10% of
the training set.

Pascal3D+ [52] contains real images from Pascal VOC
and ImageNet of 12 rigid object classes. Following NVSM
[46], we evaluate 6 vehicle categories (aeroplane,
bicycle, boat, bus, car, motorbike) which have
relatively evenly distributed poses in azimuth angles, and
set the number of labeled images as 7, 20 and 50 for each
category respectively. We share the same selected 7 images
as NVSM such that they are spread around the pose space.

We follow the original train-test split and further divide
the training split into the labeled set with ground truth and
the unlabeled set without ground truth.

4.2. Evaluation setup

Baselines To the best of our knowledge, we are the first
to tackle semi-supervised rotation regression in this setting,
hence the comparisons are made with self-made baselines.
Supervised-L1 uses a normal regressor and only trains on
the labeled set with L1 loss with the 9D-SVD [29] rotation
representation, while Supervised-Fisher uses our matrix
Fisher regressor and also only go through the pretraining
stage. As an SSL baseline, SSL-L1-Consistency refers to
adopting FixMatch into the task with the EMA teacher and
asymmetric data augmentation preserved, but only applying
L1 loss as the consistency supervision between the student
and teacher predictions without filtering, due to lacking the
confidence measure. Here, for non-Fisher regressors, we
choose L1 instead of L2 loss, as [10] points out that L1 out-
performs L2 for rotation regression.

We find the most relevant work to ours is NVSM
[46], which, though not regression-based, tackles the same
task as ours and leverages a render-and-compare scheme
through distance-based rotation retrieval. We borrow
NVSM and their developed baselines as our compared base-
lines, including two supervised rotation estimation works
(StarMap [59] and NeMo [45]) and two standard classi-
fication networks (Res50-Gene and Res50-Spec), adapted
into semi-supervised learning, respectively. Due to the un-
availability of the training code , we exactly follow the
experiment settings of NVSM and evaluate on Pascal3D+
dataset. See Appendix Section A for more details.

Evaluation metrics We evaluate the experiments by the
mean error, the median error (in degrees) and the accuracy
within 30◦ between the prediction and the ground truth.

4.3. Results

Result comparison Table 1 shows the results of our
method compared with baselines on ModelNet10-SO(3) un-
der different labeled data ratios. We can see that the results
of supervised learning with the labeled data only perform
similarly, regardless of using a normal or a Fisher regressor.
Since these models are in fact the pre-trained models for the
SSL methods in the SSL stage, their similar performance
sets a common basis for a fair comparison in the SSL stage.
For methods that undergo a second SSL stage, our proposed
FisherMatch method consistently outperforms the baseline
SSL method SSL-L1-Consistency, which demonstrates the
importance of performing pseudo label filtering.

The experiment results on Pascal3D+ dataset are shown
in Table 2. The results illustrate that, with the effective
teacher-student mutual learning framework as well as the



Table 1. Comparing our proposed FisherMatch with the baselines on ModelNet10-SO(3) under different ratios of labeled data.

Category Method 5% 10%
Mean↓ Med.↓ Mean↓ Med.↓

Sofa

Sup.-L1 [29] 44.64 11.42 32.65 9.03
Sup.-Fisher [35] 45.19 13.16 32.92 8.83
SSL-L1-Consist. 36.86 8.65 25.94 6.81
SSL-FisherMatch 32.02 7.78 21.29 5.25
Full Sup. 18.62 5.77 18.62 5.77

Chair

Sup.-L1 [29] 40.41 16.09 29.02 10.64
Sup.-Fisher [35] 39.34 16.79 28.58 10.84
SSL-L1-Consist. 31.20 11.29 23.59 8.10
SSL-FisherMatch 26.69 9.42 20.06 7.44
Full Sup. 17.38 6.78 17.38 6.78

Table 2. Comparing our proposed FisherMatch with the baselines on the 6 categories of Pascal3D+ dataset with few annotations
(7, 20, 50 images). The results are averaged on 6 categories.

Method 7 20 50
Med.↓ Acc30◦↑ Med.↓ Acc30◦↑ Med.↓ Acc30◦↑

Res50-Gene 39.1 36.1 26.3 45.2 20.2 54.6
Res50-Spec 46.5 29.6 29.4 42.8 23.0 50.4
StarMap [59] 49.6 30.7 46.4 35.6 27.9 53.8
NeMo [45] 60.0 38.4 33.3 51.7 22.1 69.3
NVSM [46] 37.5 53.8 28.7 61.7 24.2 65.6
FisherMatch 28.3 56.8 23.8 63.6 16.1 75.7
Full Sup. 8.1 89.6 8.1 89.6 8.1 89.6
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Figure 2. The visualization of the training process of SSL-
FisherMatch on ModelNet10-SO(3) Sofa dataset with 5% labeled
data. The four plots, from left to right and from top to bottom,
show the mean errors of the predictions, the pseudo label cover-
age, the pseudo label quality represented by the mean errors of the
pseudo labels, and the mean errors between the student model and
the corresponding pseudo labels, in the process of training. All the
errors are measured in degrees.

entropy-based pseudo label filtering scheme, our algorithm
significantly outperforms the state-of-the-art baselines un-
der all different numbers of labeled images.

Training process analysis Here we show how our SSL
method works during the training. In Fig. 2, the upper
left plot shows that the performance of the unlabeled data

increases together with the test data, which indicates the in-
creasing quality of the teacher predictions. We can also note
that the performance on the unlabeled data is slightly better
than that of the test data, which is sometimes referred to as
transductive semi-supervised learning.

We also show the changes over the training process of
the pseudo label coverage, the pseudo label quality, and the
error between the student predictions and the corresponding
pseudo labels, respectively. Here, we refer to pseudo labels
as the teacher predictions that pass the entropy threshold.
The pseudo label coverage means the percentage of teacher
predictions that pass the confidence threshold. The pseudo
label quality simply means the error of the pseudo labels to
the ground truth.

As shown in the curves, as the SSL goes on, the improv-
ing model leads to more confident predictions indicated by
the decreasing entropy and increasing pseudo label cover-
age, which in return fuels the learning process. The cover-
age of pseudo labels increases by a large margin from 40%
to the final 70%, while the pseudo label quality still keeps
stable with a shaking around 2.5◦. This indicates that en-
tropy always acts as a good indicator of performance dur-
ing the whole process. The error of the student model to the
pseudo labels keeps decreasing, which further proves the
effectiveness of our unsupervised loss.

4.4. Ablation Study

Effect of Different Unsupervised Loss and Entropy
Threshold Here, we analyze the performance of our Fish-
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Figure 3. The performance of FisherMatch with CE or NLL
unsupervised losses with different entropy thresholds. The ex-
periments are done on ModelNet10-SO(3) Sofa dataset with 5%
labeled data.
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ing process with CE or NLL unsupervised losses and entropy
thresholds. The experiments are done on ModelNet10-SO(3)
Sofa dataset with 5% labeled data.
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Figure 5. Visualization of the indication ability of the distri-
bution entropy wrt. the performance. The horizontal axis is
the distribution entropy and the vertical axis is the number of data
points, color coded by the errors (in degrees). The experiments are
done on ModelNet10-SO(3) Sofa dataset with 10% labeled data.

erMatch with different unsupervised losses, LCE (Eq. 7) and
LNLL (Eq. 10), and how they are dependent on the entropy
threshold τ by sweeping the parameter τ . Shown in Fig.
3 and 4, the CE loss performs slightly better with a more
tolerant threshold, while the NLL loss encourages a higher
confidence of the network. The results verify that the NLL
loss is a sharpened version of CE loss, where all the pseudo
labels passing the threshold are seen as absolute confident
regardless of the actually predicted uncertainty. This behav-
ior results in a more- but maybe over- confident network,
especially with a tolerant entropy threshold. On the other
hand, since pseudo labels already exhibit much confidence
as they pass the threshold, further sharpening does not lead
to additional performance gains. Thus we believe CE loss
is a better choice in our task with broader compatibility.

Indication Ability of Distribution Entropy To clearly
exhibit the indication ability of the distribution entropy wrt.
the performance, we plot the relationship between the error
of the prediction and the corresponding distribution entropy
on test set in Fig. 5. The figure shows that the entropy
effectively captures the prediction error, even under a low

Table 3. Semi-supervised learning experiment based on the
Bingham distribution on ModelNet10-SO(3) Sofa dataset with
10% labeled data.

Method Mean↓ Med.↓
Sup.-Bingham 39.61 12.68
Sup.-Fisher 32.92 8.83
SSL-BinghamMatch 27.01 6.77
SSL-FisherMatch 21.29 5.25

labeled data ratio.

Comparison with Bingham-based Regressor Our de-
signed algorithm is agnostic to the choice of the rotation
representation as well as the distribution model. We further
test our framework based on the Bingham distribution and
report the results in Table 3.

As shown in the table, the Bingham-based framework is
also able to utilize the unlabeled data and significantly im-
prove the performance of rotation estimation. However, for
both its supervised and semi-supervised version, its rotation
errors are in general larger than those of matrix Fisher-based
framework, since its rotation representation, quaternion, is
not a continuous rotation representation, as pointed in [60],
thus leading to inferior performance. See Appendix Section
A for detailed settings for SSL-BinghamMatch.

5. Conclusion and Limitations

In this paper, we tackle the problem of semi-supervised
rotation regression from single RGB images in a general
way. Without requiring any domain-specific knowledge
or paired images, we leverage the teacher-student mutual
learning framework and propose an entropy-based pseudo
label filtering strategy based on the probabilistic modeling
of SO(3). Our experiments demonstrate the effectiveness
and advantage of our method on both ModelNet10-SO(3)
and Pascal3D+ datasets.

The performance of our method may degrade when both
the numbers of labeled and unlabeled data are not sufficient.
In this case, the uncertainty predicted by our network can be
under-estimated due to over-fitting in the small labeled data,
leading to reduced effectiveness in the pseudo label filtering
and thus the mutual learning.

Acknowledgements

We thank the anonymous reviewers for the insightful
feedback. We would like to credit Jiangran Lv from DUT
for the fruitful discussions and valuable help in experiments
and Yang Wang from PKU for the help in the derivation of
maths. This work is supported in part by grants from the
Joint NSFC-ISF Research Grant (62161146002).



References
[1] Adel Ahmadyan, Liangkai Zhang, Artsiom Ablavatski, Jian-

ing Wei, and Matthias Grundmann. Objectron: A large
scale dataset of object-centric videos in the wild with pose
annotations. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 7822–
7831, 2021. 15

[2] Arthur Asuncion and David Newman. Uci machine learning
repository, 2007. 3

[3] Philip Bachman, Ouais Alsharif, and Doina Precup. Learn-
ing with pseudo-ensembles. Advances in neural information
processing systems, 27, 2014. 3

[4] David Berthelot, Nicholas Carlini, Ekin D Cubuk, Alex
Kurakin, Kihyuk Sohn, Han Zhang, and Colin Raffel.
Remixmatch: Semi-supervised learning with distribution
alignment and augmentation anchoring. arXiv preprint
arXiv:1911.09785, 2019. 3

[5] David Berthelot, Nicholas Carlini, Ian Goodfellow, Nicolas
Papernot, Avital Oliver, and Colin A Raffel. Mixmatch: A
holistic approach to semi-supervised learning. Advances in
Neural Information Processing Systems, 32, 2019. 1, 3, 6

[6] Christopher Bingham. An antipodally symmetric distribu-
tion on the sphere. The Annals of Statistics, pages 1201–
1225, 1974. 12

[7] Michel Breyer, Jen Jen Chung, Lionel Ott, Siegwart Roland,
and Nieto Juan. Volumetric grasping network: Real-time 6
dof grasp detection in clutter. In Conference on Robot Learn-
ing, 2020. 1

[8] Mai Bui, Tolga Birdal, Haowen Deng, Shadi Albarqouni,
Leonidas Guibas, Slobodan Ilic, and Nassir Navab. 6d cam-
era relocalization in ambiguous scenes via continuous mul-
timodal inference. In Computer Vision–ECCV 2020: 16th
European Conference, Glasgow, UK, August 23–28, 2020,
Proceedings, Part XVIII 16, pages 139–157. Springer, 2020.
1

[9] Jiayi Chen, Yingda Yin, Tolga Birdal, Baoquan Chen,
Leonidas Guibas, and He Wang. Projective manifold gra-
dient layer for deep rotation regression. arXiv preprint
arXiv:2110.11657, 2021. 6, 11

[10] Haowen Deng, Mai Bui, Nassir Navab, Leonidas Guibas,
Slobodan Ilic, and Tolga Birdal. Deep bingham networks:
Dealing with uncertainty and ambiguity in pose estimation.
arXiv preprint arXiv:2012.11002, 2020. 2, 3, 5, 6, 11, 15

[11] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. Ieee, 2009. 11

[12] Thomas D Downs. Orientation statistics. Biometrika,
59(3):665–676, 1972. 2

[13] Jared Marshall Glover. The quaternion Bingham distribu-
tion, 3D object detection, and dynamic manipulation. PhD
thesis, Massachusetts Institute of Technology, 2014. 5, 12

[14] Zan Gojcic, Caifa Zhou, Jan D Wegner, Leonidas J Guibas,
and Tolga Birdal. Learning multiview 3d point cloud reg-
istration. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 1759–1769,
2020. 1

[15] Chengyue Gong, Dilin Wang, and Qiang Liu. Alphamatch:
Improving consistency for semi-supervised learning with
alpha-divergence. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
13683–13692, 2021. 1

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 11

[17] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-
dreetto, and Hartwig Adam. Mobilenets: Efficient convolu-
tional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861, 2017. 11

[18] Zijian Hu, Zhengyu Yang, Xuefeng Hu, and Ram Neva-
tia. Simple: Similar pseudo label exploitation for semi-
supervised classification. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 15099–15108, 2021. 3

[19] Neal Jean, Sang Michael Xie, and Stefano Ermon. Semi-
supervised deep kernel learning: Regression with unlabeled
data by minimizing predictive variance. Advances in Neural
Information Processing Systems, 31, 2018. 3

[20] Zhenyu Jiang, Yifeng Zhu, Maxwell Svetlik, Kuan Fang, and
Yuke Zhu. Synergies between affordance and geometry: 6-
dof grasp detection via implicit representations. Robotics:
science and systems, 2021. 1

[21] Peter E Jupp and Kanti V Mardia. Maximum likelihood es-
timators for the matrix von mises-fisher and bingham distri-
butions. The Annals of Statistics, 7(3):599–606, 1979. 2

[22] Atul Kanaujia, Cristian Sminchisescu, and Dimitris
Metaxas. Semi-supervised hierarchical models for 3d human
pose reconstruction. In 2007 IEEE Conference on Computer
Vision and Pattern Recognition, pages 1–8. IEEE, 2007. 1

[23] Zhanghan Ke, Daoye Wang, Qiong Yan, Jimmy Ren, and
Rynson WH Lau. Dual student: Breaking the limits of the
teacher in semi-supervised learning. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 6728–6736, 2019. 3

[24] CG Khatri and Kanti V Mardia. The von mises–fisher matrix
distribution in orientation statistics. Journal of the Royal Sta-
tistical Society: Series B (Methodological), 39(1):95–106,
1977. 2, 4, 13

[25] Plamen Koev and Alan Edelman. The efficient evaluation of
the hypergeometric function of a matrix argument. Mathe-
matics of Computation, 75(254):833–846, 2006. 15

[26] Samuli Laine and Timo Aila. Temporal ensembling for semi-
supervised learning. arXiv preprint arXiv:1610.02242, 2016.
1, 3

[27] Dong-Hyun Lee et al. Pseudo-label: The simple and effi-
cient semi-supervised learning method for deep neural net-
works. In Workshop on challenges in representation learn-
ing, ICML, volume 3, page 896, 2013. 3

[28] Taeyoung Lee. Bayesian attitude estimation with the matrix
fisher distribution on so (3). IEEE Transactions on Automatic
Control, 63(10):3377–3392, 2018. 14, 15, 16

[29] Jake Levinson, Carlos Esteves, Kefan Chen, Noah Snavely,
Angjoo Kanazawa, Afshin Rostamizadeh, and Ameesh



Makadia. An analysis of svd for deep rotation estima-
tion. Advances in Neural Information Processing Systems,
33:22554–22565, 2020. 2, 6, 7, 11

[30] Shuai Liao, Efstratios Gavves, and Cees GM Snoek. Spher-
ical regression: Learning viewpoints, surface normals and
3d rotations on n-spheres. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 9759–9767, 2019. 6

[31] Shaowei Liu, Hanwen Jiang, Jiarui Xu, Sifei Liu, and Xi-
aolong Wang. Semi-supervised 3d hand-object poses es-
timation with interactions in time. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 14687–14697, 2021. 1

[32] Yen-Cheng Liu, Chih-Yao Ma, Zijian He, Chia-Wen Kuo,
Kan Chen, Peizhao Zhang, Bichen Wu, Zsolt Kira, and Pe-
ter Vajda. Unbiased teacher for semi-supervised object de-
tection. In Proceedings of the International Conference on
Learning Representations (ICLR), 2021. 1, 4

[33] Octave Mariotti and Hakan Bilen. Semi-supervised view-
point estimation with geometry-aware conditional genera-
tion. In European Conference on Computer Vision, pages
631–647. Springer, 2020. 3, 15

[34] Octave Mariotti, Oisin Mac Aodha, and Hakan Bilen.
Viewnet: Unsupervised viewpoint estimation from condi-
tional generation. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pages 10418–10428,
2021. 1, 3

[35] David Mohlin, Josephine Sullivan, and Gérald Bianchi.
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A. Implementation and Experiment Details
A.1. Baselines in NVSM

In the main paper, we compare our algorithm with
NVSM [46] and their developed baselines, i.e., StarMap,
NeMo, Res50-Gene and Res50-Spec. We briefly introduce
these methods in this section, and more details can be found
in [46].

StarMap [59] and NeMo [45] are two state-of-the-art su-
pervised approaches for 3D pose estimation. For NeMo, the
same single mesh cuboid is used as NVSM does. In addi-
tion, two baselines that formulate the object pose estimation
problem as a classification task are adopted. To be specific,
Res50-Gene formulates the pose estimation task for all cate-
gories as one single classification task, whereas Res50-Spec
learns one classifier per category.

All baselines are evaluated using a semi-supervised pro-
tocol in a common pseudo labeling strategy. Specifically, all
baselines are first trained on the annotated images and use
the pretrained models to label the unlabeled data by pseudo
labels. The final models are trained on both the annotated
data and the pseudo-labeled data.

A.2. Experiment Settings of BinghamMatch

In Table 3 of the main paper, we experiment our algo-
rithm based on the Bingham distribution B(M,Z), namely
BinghamMatch. We use the same experiment settings as
FisherMatch, except that we choose unit quaternion as our

rotation representation and use Bingham distribution for
building the probabilistic rotation model. The rotation re-
gressor outputs the parameters of the Bingham distribution.
Specifically, following [10], the regressor outputs a 7-d vec-
tor (o1,o2) where the first 4-d vector o1 are first normalized
and used to construct the parameter M via Birdal Strategy

M(o1) ≜


o11 −o12 −o13 o14
o12 o11 o14 o13
o13 −o14 o11 −o12
o14 o13 −o12 −o11


and the last 3-d vector o2 are applied by softplus activation
and accumulation sum to construct the parameter Z, with

z1 = −ϕ (o21)

z2 = −ϕ (o21)− ϕ (o22)

z3 = −ϕ (o21)− ϕ (o22)− ϕ (o23)

where ϕ(·) is the softplus activation.

A.3. Implementation Details

We run all the experiments with the unsupervised loss
weight λu as 1. In the pre-training stage, we train with the
batch size of 32, and for the SSL stage, a training batch is
composed of 32 labeled samples and 128 unlabeled sam-
ples. Both the weak and strong augmentations consist of
random padding, cropping, resizing and color jittering (for
real-world images) operations with different strengths. On
ModelNet10-SO(3) dataset, we use MobileNet-V2 [17] ar-
chitecture following [9, 29]. We use the Adam optimizer
with the learning rate as 1e-4 without decaying. The entropy
threshold τ is set as around -5.3. On Pascal3D+ dataset,
we follow NVSM [46] to use ResNet [16] architecture pre-
trained on ImageNet [11] dataset. We use the Adam op-
timizer with the learning rate as 1e-4 in pre-training stage
and 1e-5 in the Semi-supervised training stage, without de-
caying. Due to the extremely small amount of data, we find
a large variation among experiments of different categories
and #labeled images on Pascal3D+ dataset, thus choose dif-
ferent confidence thresholds in the SSL stage.

B. Review of Bingham Distribution and Matrix
Fisher Distribution

B.1. Unit Quaternion and Rotation Matrix

Unit quaternion and rotation matrix are two commonly
used representations for rotation elements from SO(3).
Unit quaternion q ∈ S3 is a double-covered representation
of SO(3), where q and −q represent the same rotation. Ro-
tation R ∈ R3×3 satisfies RTR = I and det(R) = +1. For
a quaternion q = [w, x, y, z], we use the standard transform
function γ to compute its corresponding rotation matrix:



γ(q) =

 1− 2y2 − 2z2 2xy − 2wz 2xz + 2wy
2xy + 2wz 1− 2x2 − 2z2 2yz − 2wx
2xz − 2wy 2yz + 2wx 1− 2x2 − 2y2


The inverse transform γ−1 is

γ−1(R) =


√
1 +R00 +R11 +R22/2

(R21 −R12)/2
√
1 +R00 +R11 +R22

(R02 −R20)/2
√
1 +R00 +R11 +R22

(R10 −R01)/2
√
1 +R00 +R11 +R22


Note that we here only cover one hemisphere of S3.

B.2. Bingham Distribution

Bingham distribution [6,13] is an antipodally symmetric
distribution. Its probability density function B : Sd−1 → R
is defined as

pB(q) = B(q;M,Z) =
1

F (Z)
exp

(
qTMZMTq

)
(12)

where M ∈ O(4) is a 4 × 4 orthogonal matrix and Z =
diag(0, z1, z2, z3) is a 4× 4 diagonal matrix with 0 ≥ z1 ≥
z2 ≥ z3. The first column of parameter M indicates the
mode and the remaining columns describe the orientation of
dispersion while the corresponding zi, (i ∈ 1, 2, 3) describe
the strength of the dispersion. F (Z) is the normalizing con-
stant.

Proposition 1. Given f ∼ B(M,Z), the entropy of Bing-
ham distribution is computed as

HB(f) = logF − Z
∇F

F
. (13)

Proof. Denote C = MZMT

HB(f) = −
∮
q∈S3

f(q) log f(q)dq

= −
∮
q∈S3

1

F
exp

(
qTCq

) (
qTCq− logF

)
dq

= logF − 1

F

∮
q∈S3

qTCq exp
(
qTCq

)
.

Writing f in standard form, and denoting the hyperspherical
integral by g(Z),

g(Z) =

∮
q∈S3

qTCq exp
(
qTCq

)
dq,

Then

g(Z) =

∮
q∈S3

4∑
i=1

zi
(
vT
i q
)2

exp

 4∑
j=1

zj
(
vj

Tq
)2dq

=

4∑
i=1

zi
∂F

∂zi
= Z · ∇F.

Thus, the entropy is logF − Z∇F
F

Proposition 2. Given f ∼ B(Mf ,Zf ) and g ∼
B(Mg,Zg), the cross entropy between Bingham distribu-
tions (f to g) is computed as

HB(f, g) = logFg−
4∑

i=1

zgi

b2i +

4∑
j=1

(
a2ij − b2i

) 1

Ff

∂Ff

∂zfj

 .

(14)
where aij is the entries of Â = MT

f Mg and bi is the entries
of b = µT

f Mg (µf is the mode of distribution f ).

Proof.

HB(f, g) = −
∮
q∈S3

f(q) log g(q)dq

= −
∮
q∈S3

f(q)

(
4∑

i=1

zgi
(
vT
giq
)
− logFg

)
dq

= logFg −
4∑

i=1

zgiEf

[(
vT
giq
)]

.

Since
[

A
bT

]
=

[
MT

f

µT
f

]
Mg and

[
MT

f

µT
f

]
is orthogo-

nal, Mg =
[
Mfµf

] [ A
bT

]
, so vgi = Mfai + biµf .

Thus,

Ef

[
vT
giq
]
= Ef

[((
Mfai + biµf

)T
q
)2]

= b2iEf

[(
µT

f q
)2]

+

4∑
j=1

a2ijEf

[(
vT
fjq
)2]

by linearity of expectation, and since all the odd projected
moments are zero. Since

Ef

[(
µT

f q
)2]

= 1−
4∑

j=1

Ef

[(
vT
fjq
)2]

and

Ef

[(
vT
fjq
)2]

=
1

Ff

∂Ff

∂zfj
,

then

H(f, g) = logFg−
4∑

i=1

zgi

b2i +

4∑
j=1

(
a2ij − b2i

) 1

Ff

∂Ff

∂zfj

 .



B.3. Matrix Fisher Distribution

Matrix Fisher distribution [24,41] MF(R;A) is a prob-
ability distribution over SO(3) for rotation matrices, whose
probability density function is in the form of

pF (R) = MF(R;A) =
1

F (A)
exp

(
tr
(
ATR

))
(15)

where parameter A ∈ R3×3 is an arbitrary 3×3 matrix and
F (A) is the normalizing constant. The mode and dispersion
of the distribution can be computed from the singular value
decomposition of the parameter A. Assume A = USVT

and the singular values are sorted in descending order, the
mode of the distribution is computed as

R̂ = U

 1 0 0
0 1 0
0 0 det(UV)

VT

and the singular values S = diag(s1, s2, s3) indicates the
strength of concentration. The larger a singular value si is,
the more concentrated the distribution is along the corre-
sponding axis (the i-th column of mode R̂).

Entropy and Cross Entropy Given f ∼ MF(Af ) and
g ∼ MF(Ag), we can start with the definition,

HF (f) = −
∫
R∈SO(3)

f(R) log f(R)dR

and

HF (f, g) = −
∫
R∈SO(3)

f(R) log g(R)dR.

However, note the equivalence of matrix Fisher distribution
and Bingham distribution (see Section B.4), and doing inte-
grals over S3 (with 4 dimensions and 1 constraint) is easier
than that over SO(3) (with 9 dimensions and 6 constraints),
we first convert a matrix Fisher distribution to its equivalent
Bingham distribution, and compute the properties via the
formula of Bingham distribution.

Let pF be the pdf of a matrix Fisher distribution, and pB
be the pdf of its equivalent Bingham distribution. Based on
Eq. 19 and 29 in Section B.4, we have

HF (pF ) = −
∫
R∈SO(3)

pF log pFdR

= −
∮
q∈S3

2π2pB
(
log(2π2) + log(pB)

) 1

2π2
dq

= − log(2π2)

∮
q∈S3

pBdq−
∮
q∈S3

pB log dq

= HB(pB)− log(2π2).
(16)

And similarly,

HF (f, g) = HB(f, g)− log(2π2). (17)

B.4. Equivalence of Bingham Distribution and Ma-
trix Fisher Distribution

As discussed in [41], for a random rotation matrix vari-
able R, it follows a matrix Fisher distribution if and only
if its corresponding unit quaternion q = γ−1(R) (γ is de-
fined in Section B.1) follows a Bingham distribution, i.e.,
the matrix Fisher distribution is a reparameterization of the
Bingham distribution.

In this section, we derive the fact of the equivalence
of Bingham distribution and matrix Fisher distribution and
clarify the relationships between the various parameters.

In measure theory, the Lebesgue measure [50] assigns a
measure to subsets of n-dimensional Euclidean space, and
the Haar measure [49] assigns an “invariant volume” to
subsets of locally compact topological groups, in our case,
the Lie group SO(3). We define dq based on Lebesgue
measure and dR based on Haar measure.

Proposition 3. The scaling factor from unit quaternions to
rotation matrices is constant, and satisfies

dR =
1

2π2
dq (19)

Proof. Define S as the Lebesgue measure on S3 and T as
the Haar measure on SO(3). Generally we can write

T (dR) = α(q)S(dq)

where α(q) is the scaling factor from unit quaternions to
rotation matrices, or specifically,

T (dR1) = α(q1)S(dq1)

T (dR2) = α(q2)S(dq2)
(20)

Due to the invariance of measure S on S3, we have

S(dq1) = S(dq2) (21)

Define ν as the mapping from S3 to SO(3), i.e., dR =
ν(dq). Define h as an element in S3 satisfying

hdq1 = dq2

we then induce ĥ = ν ◦ h ◦ ν−1 which is an element in
SO(3), which thus satisfies

ĥν (dq1) = ν (dq2)

Due to the invariance of measure T on SO(3) [49], we have

T (ĥν (dq1)) = T (ν (dq1)) = T (ν (dq2))

i.e.,
T (dR1) = T (dR2) (22)



A = U1S
′VT

1 = U1

 1 0 0
0 1 0
0 0 det (U1)


︸ ︷︷ ︸

U

 s′1 0 0
0 s′2 0
0 0 det (U1V1) s

′
3


︸ ︷︷ ︸

S

 1 0 0
0 1 0
0 0 det (V1)


︸ ︷︷ ︸

VT

VT
1 = USVT (18)

Considering arbitrary dq1 and dq2, and based on Eq. 20,
21 and 22, we can derive that α(q) is a constant, i.e.,

dR = αdq. (23)

Known that the Haar measure is uniquely specified by
adding the normalization condition [49], we have∫

R∈SO(3)

dR = 1

and based on the definition of unit quaternions,∮
q∈S3

dq =
∣∣S3
∣∣ = 2π2

According to Eq. 23, we can derive that

dR =
1

2π2
dq

as claimed.

Let In be the n-dimensional identity matrix, and ϵi, i =
1, 2, . . . , n be the columns of In. Let Ei = 2ϵiϵ

T
i − I3, i =

1, 2, 3 and E4 = I3. Define Q(X) for a 3×3 rotation matrix
as

4Q(X) = 4xxT − I4 (24)

where x = γ−1(X). Apply proper singular value decom-
position [28, 35] to A as Eq. 18

A = USVT

where U and V are guaranteed to be rotation matrices and
S contains the proper singular values with s1 ≥ s2 ≥ |s3|.
Define T (A) for any real 3× 3 matrix A as

4T (A) =

4∑
i=1

ziQ(UEiV). (25)

Let z1, z2, z3, z4 denote the entries of Z and
m1,m2,m3,m4 denote the columns of M.

Proposition 4. Suppose the parameters satisfy the follow-
ing relationships

Z = 4T (S) (26)

mi = γ−1(UEiV
T ), i = 1, 2, 3, 4 (27)

and the inputs
R = γ(q),

matrix Fisher distribution is equivalent to Bingham distri-
bution with the relationship

tr(ART ) = qTMZMTq (28)

and
pF (R) = 2π2pB(q) (29)

Proof. Assume S = diag(s1, s2, s3) then we may write

4A =

4∑
i=1

ziUEiV
T

uniquely, with

z1 = s1 − s2 − s3

z2 = s2 − s1 − s3

z3 = s3 − s1 − s2

z4 = −z1 − z2 − z3.

Also, since 4Ei = 3Ei −
∑

j Ej , i ̸= j, Eq. 25
agrees with Eq. 24 on SO(3). Assmue γ(mi) =
UEiV

T , i = 1, 2, 3, 4, then mi are mutually orthogonal,
since tr

(
γ(mi)γ(mj)

T
)
= −1 if i ̸= j. Hence we may

write
4T (A) = MZMT

where Z = diag(z1, z2, z3, z4) has a zero trace and M =
(m1,m2,m3,m4) in SO(4). Note that

4T (S) = Z

and

4 tr(ART ) =

4∑
i=1

zi tr(UEiV
TRT ),

we have
tr(ART ) = qTMZMTq (30)

Due to the scaling factor from unit quaternions to rota-
tion matrices is constant (See Prop. 3), matrix Fisher distri-
bution is equivalent to Bingham distribution. Based on Eq.
30 and 19, and the conservation of the total probability, it
can be shown that

pF (R) = 2π2pB(q)

as claimed.



Note that the proposition can also be verified by the re-
lationships between the normalization constant FB(Z) and
FF (A). As discussed in [10, 28, 35], when Z satisfies Eq.
26, the constant

FB(Z) =

∮
q∈S3

exp
(
qTMZMTq

)
dq =

∣∣S3∣∣ 1F1

(
1

2
, 2,Z

)
= 2π2

1F1

(
1

2
, 2,Z

)
and

FF (A) =

∫
R∈SO(3)

exp
(
tr
(
ATR

))
dR = 1F1

(
1

2
, 2,Z

)
where 1F1(·, ·, ·) is the generalized hypergeometric function
[25] of a matrix argument. So

FF (Z) =
1

2π2
FF (A).

Considering Eq. 30, we have

pF (R) = 2π2pB(q)

B.5. Normalization Constant of Matrix Fisher Dis-
tribution

We follow [35] to compute the normalization constant.
As pointed in [28], the normalizing constant of matrix
Fisher distribution can be expressed as a one dimensional
integral over Bessel functions as

c(S) =

∫ 1

−1

1

2
I0

[
1

2
(si − sj) (1− u)

]
× I0

[
1

2
(si + sj) (1 + u)

]
exp (sku) du

and

∂c(S)

∂si
=

∫ 1

−1

1

4
(1− u)I1

[
1

2
(si − sj) (1− u)

]
× I0

[
1

2
(si + sj) (1 + u)

]
exp (sku)

+
1

4
(1 + u)I0

[
1

2
(si − sj) (1− u)

]
× I1

[
1

2
(si + sj) (1 + u)

]
exp (sku) du

∂c(S)

∂sj
=

∫ 1

−1

−1

4
(1− u)I1

[
1

2
(si − sj) (1− u)

]
× I0

[
1

2
(si + sj) (1 + u)

]
exp (sku)

+
1

4
(1 + u)I0

[
1

2
(si − sj) (1− u)

]
× I1

[
1

2
(si + sj) (1 + u)

]
exp (sku) du

∂c(S)

∂sk
=

∫ 1

−1

1

2
I0

[
1

2
(si − sj) (1− u)

]
× I0

[
1

2
(si + sj) (1 + u)

]
u exp (sku) du

for any (i, j, k) ∈ I.
We approximate this integral using the trapezoid rule,

where in experiments, 511 trapezoids are used. We use stan-
dard polynomials to approximate the Bessel function using
Horner’s method.

Please see Section 5 of [35]’s supplementary for more
details.

C. More Experiment Results
C.1. Results on ModelNet10-SO(3) Dataset with

100% Labeled Data

Although out of the scope of semi-supervised learning,
following [33, 47], we also report the results on 100% la-
beled data on ModelNet10-SO(3) dataset, where we simply
make a copy of the full training data as unlabeled data and
train our model. All the other settings are kept the same as
Table 1 in the main paper.

As shown in Table 4, our proposed FisherMatch is able
to further encourage a better performance with 100% la-
beled data compared with the supervised learning and con-
sistently outperforms other baselines. The results further
demonstrate the importance of filtering high-quality pseudo
labels even with much training data. The improvements can
be seen as a result of label smoothing [57].

C.2. Experiments and Results on Objectron Dataset

Dataset Objectron [1] is a newly-introduced dataset cap-
tured in the real world. The dataset contains a collection of
short, object-centric video clips, as well as the correspond-
ing camera poses, sparse point clouds, and manually anno-
tated 3D bounding boxes for each object.

In this experiment, we mainly focus on the bike and
camera categories which exhibit more rotational varia-
tions and less rotational symmetries in the dataset [1]. Since
the real-world images are mostly captured from limited
viewpoints, we found a smaller generalization gap between
the train/test data. Thus, we choose a more challenging sce-
nario to only adopt 1% labeled data to train the network.
We adopt the official train-test split of the dataset, where
we grab all the frames of the training videos and uniformly
sample 10% frames from the test videos. We further divide
the training split into the labeled set with ground truth and
the unlabeled set without ground truth.
Data preprocessing To leverage this dataset for ob-
ject pose regression, we need to obtain the paired data,



Table 4. Comparing our proposed FisherMatch with the base-
lines on ModelNet10-SO(3) dataset under 100% labeled data.

Category Method 100%
Mean↓ Med.↓

Sofa

Sup.-L1 19.28 6.64
Sup.-Fisher 18.62 5.77
SSL-L1-Consist. 17.18 5.27
SSL-FisherMatch 14.37 4.32

Chair

Sup.-L1 17.65 7.48
Sup.-Fisher 17.38 6.78
SSL-L1-Consist. 14.78 6.19
SSL-FisherMatch 13.01 5.35

Table 5. Comparing our proposed FisherMatch with the base-
lines on Objectron dataset with 1% labeled data.

Category Method 1%
Mean↓ Med.↓

Bike

Sup.-L1 53.6 21.2
Sup.-Fisher 51.2 24.0
SSL-L1-Consist. 38.0 14.3
SSL-FisherMatch 36.0 13.8
Full sup. 26.7 9.7

Camera

Sup.-L1 46.0 22.8
Sup.-Fisher 39.0 18.7
SSL-L1-Consist. 40.9 19.0
SSL-FisherMatch 33.6 15.9
Full sup. 24.4 9.5

i.e., object-centered images with their corresponding ob-
ject poses. We thus first project the eight corners of 3D
bounding box annotations onto the 2D image plane, fit a
minimum 2D square bounding box covering all the pro-
jected corners, and finally crop the image with the fitted 2D
bounding box. To avoid the naive cropping-resizing flaws
pointed out in [35], we directly crop square images to meet
the shape requirement of the network. We pad the images
with a black background to cover the out-of-plane projected
keypoints and images with more than 4 (out of 8) keypoints
out of the image plane are discarded. To obtain the ground-
truth object poses, we compute the rotation of the annotated
3D object bounding box wrt. the box with the same size in
the canonical orientation.
Experiment settings The baselines, evaluation metrics
and implementation details are the same as experiments on
ModelNet10-SO(3) dataset.
Results The results are shown in Table 5. Our Fisher-
Match significantly increases the regression performance
even with a really low labeled data ratio, further demon-
strating the efficiency of our model.

D. Visualization of Matrix Fisher Distribution
Visualizing matrix Fisher distribution is non-trivial over

SO(3). Following [28, 35], we visualize the probabilistic
distribution function via color-coding on the sphere.

(a) diag(5, 5, 5) (b) diag(20, 20, 20) (c) diag(20, 1, 1)

Figure 6. Visualization of the pdf of matrix Fisher distribution
with jet color-coding. The captions below the plots indicate the
parameter A of the distribution.

(a) diag(5, 5, 5) (b) diag(20, 20, 20) (c) diag(20, 1, 1)

Figure 7. Visualization of the pdf of matrix Fisher distribution
with the visualization method proposed in Implicit-PDF [36]. The
captions below the plots indicate the parameter A of the distribu-
tion.

Remember that for the parameter A in matrix Fisher dis-
tribution, the singular values indicate the strength of con-
centration. The larger a singular value si is, the more con-
centrated the distribution is along the corresponding axis.
Fig 6 shows three distributions with the same mode as the
identity matrix, differing only in the strength of concentra-
tion. For both (a) and (b), the distributions of each axis are
identical and circular, while the distribution in (b) is more
concentrated than (a). In (c), the distribution is more con-
centrated in x-axis, and the distributions for the other two
axes are elongated.

Implicit-PDF [36] proposes a new visualization method
to display distributions over SO(3) by discretizing SO(3)
with the help of Hopf fibration [56]. It projects a great circle
of points on SO(3) to each point on the 2-sphere and uses
the color wheel to indicate the location on the great circle.
We re-draw Figure 6 with this visualization in Figure 7.
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