
Multi-Robot Active Mapping via Neural Bipartite Graph Matching

Kai Ye1* Siyan Dong2,1* Qingnan Fan3† He Wang1 Li Yi4 Fei Xia5

Jue Wang3 Baoquan Chen1†

1Peking University 2Shandong University 3Tencent AI Lab
4Tsinghua University 5Stanford University

{siyandong.3, fqnchina, ericyi0124, xf1280, arphid, baoquan.chen}@gmail.com

{ye_kai, hewang}@pku.edu.cn

Abstract

We study the problem of multi-robot active mapping,
which aims for complete scene map construction in min-
imum time steps. The key to this problem lies in the goal
position estimation to enable more efficient robot movements.
Previous approaches either choose the frontier as the goal
position via a myopic solution that hinders the time effi-
ciency, or maximize the long-term value via reinforcement
learning to directly regress the goal position, but does not
guarantee the complete map construction. In this paper,
we propose a novel algorithm, namely NeuralCoMapping,
which takes advantage of both approaches. We reduce the
problem to bipartite graph matching, which establishes the
node correspondences between two graphs, denoting robots
and frontiers. We introduce a multiplex graph neural network
(mGNN) that learns the neural distance to fill the affinity
matrix for more effective graph matching. We optimize the
mGNN with a differentiable linear assignment layer by max-
imizing the long-term values that favor time efficiency and
map completeness via reinforcement learning. We compare
our algorithm with several state-of-the-art multi-robot active
mapping approaches and adapted reinforcement-learning
baselines. Experimental results demonstrate the superior
performance and exceptional generalization ability of our
algorithm on various indoor scenes and unseen number of
robots, when only trained with 9 indoor scenes.

1. Introduction
Constructing the map of indoor environments is of great

importance to a wide range of applications in the computer
vision and robotics communities. With the fast develop-
ment of range sensors (Kinect, RealSense), many scene
mapping approaches [23, 29, 11, 15] are developed to em-

*Joint first authors
†Corresponding authors

power scene traversal by human operators with handheld sen-
sors, yet incomplete or unaligned scene meshes are common
flaws for inexperienced users due to the noisy and unstable
scanned trajectory. To alleviate the inconvenience of human-
operated traversal, there emerges autonomous map construc-
tion [46, 17, 24, 32] via active sensor movement, also known
as active mapping. Previous works in this field mainly focus
on using a single robot, which is time-consuming for large-
scale environments. In this paper, we study the problem of
multi-robot active mapping: coordinating multiple robots for
the autonomous reconstruction of unknown scenes.

The goal of active mapping is mainly twofold: time effi-
ciency, and map completeness. The pioneering work for ac-
tive mapping [46] introduces the concept of frontier: regions
on the boundary between open space and unexplored space.
By continuously moving the robot to new frontiers, the scene
map can be completely constructed when no frontier can be
found. Many follow-up approaches in the following decades
[6, 16, 31] aim to improve the time efficiency of the process.
However, the problem of active mapping is highly ambigu-
ous, which makes a theoretically-optimal solution almost
impossible to be found in an unknown environment.

The key module of active mapping that influences time ef-
ficiency is the global planner that estimates the goal position
for path planning. The vast majority of literature for both
single robot [3, 37, 39, 1] and multiple robots [4, 30, 14, 16]
are frontier-based, which decides the goal position from a set
of frontiers. However, these approaches are mostly myopic
[6] and hence hinder the time efficiency, since they either
handcraft heuristics [46, 17, 21] to choose the frontier in the
shortest geodesic distance to the robot, or find the one that
maximizes the information gain over the next few actions
via information-theoretic optimization [37, 1]. The more re-
cent approaches adopt the reinforcement learning strategies
[13, 8, 31] as a replacement of the traditional approaches
to decide the goal position for single robot. These policy
learning approaches have dominated the active mapping field
lately, thanks to their potential to achieve more efficient solu-



tions by maximizing the long-term value [22, 25]. However,
as their goal positions are mostly regressed and may not lay
on the frontiers, it has no guarantee to construct the complete
map [13, 8]. When the setting of active mapping is extended
to the multi-robot scenario, the action space is linearly in-
creased with the robot number, which makes the problem
even more ambiguous. The past multi-robot approaches
[4, 30, 14, 16, 18] are mostly frontier-based myopic solu-
tions and are still limited in time efficiency.

In this paper, we propose a novel multi-robot active map-
ping approach that takes advantage of both the traditional
frontier-based and recent reinforcement learning solutions
for more efficient and complete map construction. To be
specific, we coordinate multiple robots to decide the goal
positions from a set of frontiers according to the neural
distance optimized by maximizing the long-term value via
reinforcement learning. To achieve this goal, we reduce
the multi-robot active mapping problem to bipartite graph
matching, which establishes node correspondences between
two graphs, denoting robots and frontiers separately. The
key issue for bipartite graph matching lies in the computa-
tion of the affinity matrix between two sets of nodes. The
traditional frontier-based approaches can be considered as
handcrafting the affinity matrix with the geodesic distance
between robots and frontiers, which limits the time efficiency
of active mapping. In our algorithm, we propose to learn
the neural distance with a multiplex graph neural network
(mGNN) to estimate the affinity matrix for graph matching.
The problem of graph matching is NP-hard in nature [5]
and often formulated as quadratic assignment programming,
which is expensive and complex to solve. Many recent works
relax graph matching as a linear assignment problem [42],
which can be efficiently tackled with a differentiable and
approximate solution [36]. Therefore, we optimize the graph
neural network with the differentiable linear assignment by
maximizing the long-term value that favors high time effi-
ciency and map completeness via reinforcement learning.

Our algorithm is trained with only 9 indoor scenes, and
exhibits exceptional generalization ability to various indoor
scene datasets and unseen number of robots. The experimen-
tal results demonstrate the superiority of our algorithm over
state-of-the-art multi-robot active mapping approaches and
a couple of adapted reinforcement-learning baselines.

All in all, our contributions can be summarized as follows:
• We reduce the multi-robot active mapping problem to

bipartite graph matching, which is solved by a novel
multi-robot active mapping algorithm that takes advan-
tage of both the traditional frontier-based and recent
reinforcement learning approaches.

• Our algorithm employs a multiplex graph neural net-
work to estimate the affinity matrix, followed by a linear
assignment layer for graph matching. The entire pro-
cess is optimized by maximizing the long-term value

via reinforcement learning.
• While achieving the complete map construction, our

algorithm outperforms the existing multi-robot active
mapping approaches over time efficiency by a large
margin, and demonstrates exceptional generalization
ability to unseen robot numbers.

2. Related Works
Single-robot active mapping. The vast majority of past

works for active mapping lie in the single-robot scenario
[46, 17, 21, 26]. The pioneering work of Yamauchi [46] for
active mapping presents the concept of frontier and moves
the robot towards the nearest frontier in the occupancy map.
Dornhege and Kleiner [17] extend this idea with the new
concept of void, which is the unexplored volumes in the 3D
occupancy map. The other popular thread for active mapping
relies on the information theory [3, 37, 39, 1] to choose the
frontier based on instant information gain.

Unlike the above traditional approaches that decide the
goal position from a set of frontiers mainly with myopic
strategies, recent approaches [13, 8] directly employ a con-
volution neural network to regress the goal position by maxi-
mizing the long-term value via reinforcement learning. Ra-
makrishnan et al. [31] follow the above works and proposes
to broaden the map coverage beyond the visible area through
occupancy anticipation. Some other works explore the envi-
ronment by constructing a topological map [10] or semantic
map [9], which is beyond the scope of this work.

Multi-robot active mapping. The large variety of re-
lated works about multi-robot active mapping [16, 41, 2, 19,
4, 30, 14] share a lot of methodologies with the single-robot
approaches and differ mainly in how they coordinate multi-
ple robots for the goal assignment. Faigl et al. [19] have a
good summary of the common multi-robot active mapping
approaches. One solution [43] is to sort the robot-goal pairs
with the geodesic distance and traverse the ordered sequence
from the first element to assign the next not-assigned goal to
the robot. More recent approaches [16, 19] mainly rely on
solving an optimal mass transport problem between robots
and goals, such as multiple traveling salesman problem, for
goal assignments. All the aforementioned approaches are
myopic as analyzed [16, 6] since the goal positions are cho-
sen from the nearest target in the geodesic distance with
multi-robot coordination constraints. In this work, we pro-
pose to learn better neural distance via reinforcement learn-
ing to achieve more efficient map construction.

Graph neural networks. Graph neural networks [44]
enable learning on top of graph representations. Sykora et al.
[38] use graph neural network to solve the multi-agent graph
coverage problem. Zhang et al. [48] introduce multiplex
network structures for the multi-behavior recommendation.
In this work, we perform learning on multiple graphs, namely
multiplex graph neural network (mGNN), to estimate the



M
ap

pi
ng

 M
od

ul
e

Lo
ca

l P
la

nn
er

Occupancy Map 𝑀𝑀(𝑡𝑡) Moving Trajectories

Actions {𝐴𝐴𝑖𝑖
𝑡𝑡 |𝑖𝑖 = 1,2, … ,𝑁𝑁}

Goal Positions

A
ct

io
n 

C
on

tr
ol

le
r

Global 
Planner

Image 𝐼𝐼𝑖𝑖
(𝑡𝑡)

& Pose 𝑃𝑃𝑖𝑖
(𝑡𝑡)

Image 𝐼𝐼𝑁𝑁
(𝑡𝑡)

& Pose 𝑃𝑃𝑁𝑁
(𝑡𝑡)

Re-plan after a planning cycle.

Pipeline

The pipeline of our framework. In each planning cycle, mapping (Sec 4.1), local planning and action control (Sec 4.3) are conducted each step, while global
planning (Sec 4.2) is only conducted once at the beginning. We visualize starting and current robot poses along with the history trajectories, goal positions,
and navigation trajectories from robots to goal positions.

Figure 1. The entire pipeline of our framework. In each planning cycle, mapping (Section 4.1), local planning and action control (Section
4.3) are conducted at each step, while global planning (Section 4.2) is conducted only once at the beginning. Such a planning cycle is iterated
until meeting the termination criterion of active mapping.

affinity matrix for bipartite graph matching.

3. Problem Statement
In an unknown environment, the goal of multi-robot ac-

tive mapping is to construct a complete map in minimum
time steps. At each time step t, the robot i receives a first-
person depth image I

(t)
i and its corresponding camera pose

P
(t)
i as input, and estimates its action A

(t)
i for movement,

following the problem setting of the previous work closest
to ours [16]. We adopt the common TurtleBot model as
our robot, and it runs in the physically-realistic simulator
iGibson [35, 27], which contains the physical robot body
and simulates the realistic action noise and collisions.

For better comparison with previous works [16, 19], we
further consider the problem settings below. 1) Map com-
pleteness first: we value map completeness the most, hence
the map is continuously explored until no accessible fron-
tier is found. 2) Co-located robots: the pose information is
shared among all the robots, hence the global map can be
constructed by synchronizing the local maps from all the
robots. 3) Spatially-close initialization: all the robots are
randomly initialized in the traversable region of the map
with the constraint that the geodesic distance between every
two robots is smaller than a threshold λr. Note uniformly
sampling the robots in the entire map will save more scan-
ning effort for exploration, and we are working in a more
challenging setting with spatially-close robot initialization.

4. NeuralCoMapping
We introduce the entire framework (Figure 1) of our algo-

rithm below. The mapping module constructs the occupancy
map based on the current depth observations and camera
poses from all the robots. The global planner estimates the
goal position for each robot in the occupancy map by solving
a neural bipartite graph matching problem. To navigate to
the goal position, the local planner calculates an obstacle-
free moving trajectory for each robot, followed by the action
controller that performs the specific robot moves along the

trajectory. We define a planning cycle as a short period of a
fixed horizon. The global planner only estimates the goal po-
sitions at the beginning of the planning cycle, while mapping,
local planning, and action control are alternatively conducted
until the end of the planning cycle. Such a planning cycle is
iterated until meeting the termination criterion.

4.1. Mapping Module

Provided the depth observations and the corresponding
camera poses from all the robots, the goal of the mapping
module is to construct the global map. We represent the
map at time step t as the occupancy grid, which is the top-
down view of the 3D scene, denoted as M (t) ∈ [0, 1]X×Y×2,
where X,Y are the map size. The two map channels indicate
the explored and occupied regions separately. Hence each
cell in the grid can be classified as one of the three classes,
open (explored but not occupied), occupied, and unknown
(unexplored). Frontier is defined as the open cells whose
adjacency contains unknown cells. The occupancy map
M (0) is unexplored and initialized as all zero. For robot i,
the pose of its mounted camera P

(t)
i ∈ SE(2) is represented

as (x, y, θ), where x ∈ [0, X − 1], y ∈ [0, Y − 1] denote the
robot position and θ ∈ [0, 2π) denotes the robot orientation
around the vertical axis.

To compute the occupancy map, the depth image I
(t)
i is

firstly back-projected as the point cloud in the world space
with known camera intrinsics and provided poses P (t)

i , then
the 3D points from all the robots are fused and projected
onto the 2D plane to overlay the overlapping region of the
existing occupancy map M (t−1) to obtain the new one M (t).
We consider a cell as occupied if there is any 3D point
(staying between two horizontal planes at the height of the
ground and robot head) that falls into the cell, and consider a
cell as open if it lies on the ray from the camera center to the
end of the definitively visible space [20]. The multi-robot
scenario creates a highly dynamic environment, where one
moving robot may be visually observed by the others. It
poses new challenges for obstacle-free path planning. To
tackle this issue, we label all the cells covered by any robot



𝑒𝑒𝑟𝑟𝑟𝑟_𝑖𝑖𝑖𝑖

Global Planner

Affinity Matrix

Multiplex Graph Neural Network

Iteration

Row & Col Normalization

Linear Assignment Layer

𝒢𝒢𝑟𝑟

𝒢𝒢𝑟𝑟

𝒢𝒢𝑔𝑔

𝒢𝒢𝑤𝑤

𝒢𝒢𝑟𝑟𝑤𝑤

𝒢𝒢𝑟𝑟𝑔𝑔

𝒢𝒢𝑟𝑟𝑟𝑟

history robots

robots

frontiers

history goals

goals

Iteration

sum=1

su
m

=
1

Illustration of global planner. It consists of a multiplex graph neural network (mGNN) that learns neural distance as cost measurement, and a linear
assignment layer to match frontiers (goal positions) and robots. The robot and frontier nodes are extracted from the occupancy grid. Further, the history
robot and goal nodes are input from the history planning cycle to enhance the mGNN. Over the learned edge features as neural distances, the linear
assignment layer performs bipartite graph matching to assign single frontiers to robots as goal positions.

Figure 2. Illustration of the global planner. It consists of a multiplex graph neural network (mGNN) that learns the affinity information
between robots and frontiers, and a linear assignment layer to match them. The robot and frontier nodes are extracted from the mapping
module, while the history robot and goal nodes are extracted from the past planning cycles. With the affinity matrix formed by the learned
directed edge features, the linear assignment layer conducts bipartite graph matching to assign each robot a unique frontier as the goal.

being observed as occupied, and label those cells as open
again once the robot leaves them.

4.2. Global Planner

With the constructed occupancy map and provided robot
positions, the global planner aims to estimate the optimal
goal positions for all the robots for efficient and complete
map construction. In this work, we formulate the problem of
goal position estimation as bipartite graph matching, which
establishes the correspondences between the robot and fron-
tier1 nodes extracted from the constructed occupancy map.
The affinity matrix for graph matching is not composed of
the geodesic distance as adopted in the traditional frontier-
based approaches [41, 2, 19, 16], yet is filled with the neu-
ral distance estimated by a graph neural network, which is
optimized with a differentiable linear assignment layer by
maximizing the long-term value via reinforcement learning.
We introduce the solution to bipartite graph matching via
the following two components, multiplex graph neural net-
work for affinity matrix estimation, and linear assignment
layer to pair the robot and frontier nodes. Figure 2 gives the
illustration of the aforementioned global planner.

4.2.1 Multiplex Graph Neural Network

Provided the constructed occupancy map and known robot
positions, we first construct two self-graphs Gr = (Vr, Er)
and Gf = (Vf , Ef ) that denote the robot and frontier sets
separately. We also build a cross-graph Grf = (Vr,Vf , Erf )
that connects the robots and frontiers, and Erf denotes the
affinity information we want to learn for graph matching.
The multiplex graph neural network (mGNN) learns such
information between robots and frontiers with iterative intra-
graph and inter-graph operations.

For sake of simplicity, we introduce the node feature
computation only for robots below, and it applies to the

1The frontier nodes are sampled from the frontier cells, and each frontier
node represents a frontier cell.

frontier nodes as well. For robot i, we represent the raw
robot information as sr_i ∈ R3, which includes the x, y
coordinates in the occupancy map and its semantic label
(robot, or frontier). We extract the initial high-dimensional
robot node feature v

(0)
r_i ∈ R32 from sr_i via a multi-layer

perception (MLP) finit:

v
(0)
r_i = finit(sr_i) (1)

Intra-graph operation. The intra-graph operation up-
dates the node and edge features for both the robot and fron-
tier self-graphs. We consider a fully connected self-graph,
hence each node will be updated by the messages received
from all the other nodes. Inspired by the attention mecha-
nism [40], such a node aggregation operation can be treated
as the retrieval process which maps your query against a set
of keys associated with candidate nodes in the graph and
finally presents the best matched nodes (values). Hence, we
first compute the query q

(l)
r_i ∈ R32, key k

(l)
r_i ∈ R32, and

value u
(l)
r_i ∈ R32 from the node feature v

(l)
r_i at layer l,

q
(l)
r_i = fquery(v

(l)
r_i), k

(l)
r_i = fkey(v

(l)
r_i), u

(l)
r_i = fvalue(v

(l)
r_i)
(2)

where fquery, fkey, fvalue are parameterized as linear projec-
tions. Then we represent the directed edge feature e(l)r_ij ∈ R1

from node j to node i as the attention weight scalar,

e
(l)
r_ij =

exp (q
(l)
r_i · k

(l)
r_j)∑

h:(i,h)∈Er
exp (q

(l)
r_i · k

(l)
r_h)

(3)

which is the softmax over all the query-key dot product
results directed to node i. Then the node feature v

(l+1)
r_i is

computed as

v
(l+1)
r_i = v

(l)
r_i + fnode(v

(l)
r_i,

∑
h:(i,h)∈Er

e
(l)
r_ihu

(l)
r_h) (4)

where fnode concatenates the input information and is pa-
rameterized as a multi-layer perception.



Inter-graph operation. The inter-graph operation up-
dates the node and edge features for the cross-graph. We
consider a complete bipartite graph, where each node in one
set is connected with all the nodes in the other set, yet not
connected with any nodes in the same set. The geodesic
distance is the shortest distance for traversal between two
points and implicitly encodes the underlying scene layout
information. We compute geodesic distances with the Fast
Marching Method (FMM) [34]. The geodesic distance be-
tween two nodes i, j is denoted as dij , which is incorporated
into the directed edge feature e

(l)
rf_ij ∈ R1 computation as

below,

e
(l)
rf_ij =

exp (fedge(q
(l)
r_i, k

(l)
f_j , dij))∑

h:(i,h)∈Erf
exp (fedge(q

(l)
r_i, k

(l)
f_h, dih))

(5)

where fedge concatenates the input information and is param-
eterized as a multi-layer perception. Then the node feature
v
(l+2)
r_i is computed similarly to Equation 4 by replacing the

directed edges in Er with Erf ,

v
(l+1)
r_i = v

(l)
r_i + fnode(v

(l)
r_i,

∑
h:(i,h)∈Erf

e
(l)
rf_ihu

(l)
f_h) (6)

History node module. For the problem of multi-robot
active mapping, not only do the current robots and fron-
tiers matter for the global planning, the robots and esti-
mated goals in the past should also serve as the guidance
to encourage consistent robot movements and discourage
the redundant traversal over explored regions. Therefore,
we further enhance mGNN with two sets of new nodes
with the semantic label of history robot or history goal,
which are derived from the robots and goals in the past
individually. To be specific, we construct two more self-
graphs Gw = (Vw, Ew), Gg = (Vg, Eg) that denote the his-
tory robots and history goals, and two more cross-graphs
Grw = (Vr,Vw, Erw), Gfg = (Vf ,Vg, Efg) that associate
robots with history robots, frontiers with history goals sepa-
rately. In this manner, we achieve the history node module by
applying the intra-graph operation to Gg,Gw, and the cross-
graph operation to Gfg,Grw as well. In the implementation,
instead of considering the history robot positions among all
the past steps, we only count in the history robot positions
at the beginning of each past planning cycle to balance the
number of history robot and history frontier nodes.

Therefore, the entire mGNN is composed of four self-
graphs Gr,Gf ,Gw,Gg and three cross-graphs Erf , Erw, Efg.
For each intra-graph operation, all the four self-graphs can be
simultaneously updated, while for each inter-graph operation,
the three cross-graphs need to be sequentially updated as the
robot and frontier nodes will be updated twice in two cross-
graphs. Note the cross-graph order for inter-graph operation
does not affect the final node feature, which is simply added

with the residual as computed in Equation 6. We consider
one block of graph operations as the composition of one intra-
graph and one inter-graph operation. The entire mGNN is
composed of Nl blocks of graph operations.

4.2.2 Linear Assignment Layer

For our bipartite graph matching problem, the affinity matrix
denotes the distance between the robot and frontier nodes.
The learned edge feature erf_ij emitted from robot j to fron-
tier i indicates how much the robot prefers the frontier and is
treated as the neural distance to form the affinity matrix for
graph matching2. With the cross-graph Grf = (Vr,Vf , Erf ),
the goal of multi-robot active mapping can be considered
as achieving a maximum matching in a bipartite graph. It
is required to conduct any many connections between robot
and frontier nodes as possible by assigning at most one
robot to one frontier, and also at most one frontier to one
robot, in such a way the summed affinity among all the
connections are maximized. It corresponds to the linear
assignment problem and can be solved efficiently with the
popular Sinkhorn algorithm [36]. It works by normalizing
the rows and columns of the affinity matrix alternatively
until convergence and is often treated as the approximate
and differentiable version of the Hungarian algorithm [28].
We implement the linear assignment layer as the Sinkhorn
algorithm, whose output decides the goal position as the
matched frontier for each robot.

4.3. Local Planner and Action Controller

With the robot position, estimated goal position, and con-
structed occupancy map, the local planner decides a moving
trajectory from the robot to the goal position. We adopt
Fast Marching Method (FMM) [34] to achieve this purpose.
However, due to the fact that the occupancy map is only a
rough representation of the scene world and the unavoidable
action noise when executing the moving trajectory, the robot
will collide with obstacles from time to time, for example,
in the narrow corridor, in which situation the fast march-
ing approach may not help free the robot from the collision
in the physically-realistic simulator iGibson [35, 27] and
hence time efficiency is significantly influenced. To alleviate
the above difficulty, we propose to improve FMM with an
obstacle-resistant strategy that plans the moving trajectory
away from the obstacles. To be specific, given the occupancy
map and robot positions at time step t, we first generate two
geodesic distance maps D(t)

r , D
(t)
o whose zero contour lies

in the robot positions and obstacles separately with FMM,
then update the robot distance value D

(t)
r_i at position i as,

D
(t)
r_i = D

(t)
r_i/(ϵ+min(τ,D

(t)
o_i)× λo) (7)

2Experimentally we observe the directed edge feature from the frontier
to robot makes the similar effect.



where τ = 0.001, τ = 4, λo = 0.25. It means amplifying
the robot distance values whose positions are close to obsta-
cles. Then D

(t)
r is used to calculate the moving trajectory

from the robot to its goal position.
The robot is able to perform three actions, A =

{move_forward, turn_left, turn_right}. Given the
next waypoint in the moving trajectory, the robot controls
its actions via a simple heuristic [12]: if the robot faces the
waypoint, it moves forward; otherwise, it rotates towards the
waypoint. To be specific, we compute the relative angle θa
by subtracting the robot orientation from the orientation of
the directed robot-to-waypoint edge, the action A

(t)
i at time

step t for robot i is decided as,

A
(t)
i =


move_forward if θa > −λa or θa < λa

turn_left if θa ≤ −λa

turn_right if θa ≥ λa

(8)

where λa is the threshold that controls the forward and rota-
tion movement.

4.4. Reinforcement Learning Design

We treat the mGNN as the policy network, which is op-
timized with the differentiable linear assignment layer to-
gether by maximizing the accumulated reward in the entire
episode via reinforcement learning. Despite the multi-robot
scenario, as our global planner adopts the centralized deci-
sion setting, we directly use the off-policy learning approach
Proximal Policy Optimization (PPO) [33] as the policy opti-
mizer.

Reward function. The goal of active mapping is to pur-
sue high time efficiency and map completeness. To achieve
this goal, we design a time reward R̂time and a coverage
reward R̂coverage. The time reward punishes unnecessary
time steps to encourage high exploration efficiency, hence is
defined as,

R̂time = −0.015 (9)

Coverage C(M (t)) at time step t is the area of the open
space in the occupancy map M (t). The coverage reward
R̂coverage is defined as the coverage increment measured in
m2,

R̂coverage = C(M (t))− C(M (t−1)) (10)

Then the entire reward R̂ is computed as the weighted sum-
mation of the two above two rewards,

R̂ = R̂time + λcR̂coverage (11)

where λc is the hyper-parameter that balances the two re-
wards.

5. Experiments
5.1. Experimental Setup

Data processing. Our algorithm is trained on the Gibson
dataset [45] and evaluated on both the Gibson and Matter-
port3D datasets [7]. Our algorithm runs in the physically-
realistic iGibson [35, 27] simulator. We adopt the TurtleBot
model as our robot, which has a physical body and can be
visually observed in the simulator to create a more realistic
multi-robot scenario. To demonstrate the robustness of our
algorithm on training scenes and the extraordinary general-
ization ability of our algorithm to novel scenes, we collect
only 9 scenes randomly sampled in the Gibson dataset for
training3 and use the other scenes for evaluation.

Termination criterion. We aim for complete map con-
struction, however, in the iGibson environment, all the robots
have physical bodies and get stuck occasionally [47]. Hence
following [16], our algorithm terminates when there is no
accessible frontier in the environment.

Parameter setting. X = 480; Y = 480; Nl = 3; λa =
12.5 degrees; λr = 3 meters; λc = 0.005. Each cell in the
grid represents a 0.01m2 region. The bandwidth between
robots is 10-20 KB. The move_forward action advances
6.5 cm, and the turn_left/turn_right action rotates 12.5
degrees. The horizon of the planning cycle is 25 steps.

Evaluation metrics. We evaluate the map completeness
via the coverage ratio (Cov. (%)) that calculates the percent-
age of explored open space over the ground truth open space
in the environment. We measure the time efficiency (Time
(#steps)) as the number of steps taken for map construction.

5.2. Compared Approaches

We compare our algorithm with several state-of-the-art
multi-robot active mapping approaches (Greedy, VorSEG,
mTSP, CoScan) [16, 41, 2, 19], which are mostly frontier-
based and rely on the geodesic distance to choose the goal
position. Inspired by the past reinforcement learning solu-
tions for single-robot active mapping [13, 8, 31], we also
design two multi-robot baselines (ANS-DeCen, ANS-Cen)
that directly regress the coordinates of goal positions. To
justify the effectiveness of our global planner, we compare
with these approaches by only replacing our global planner
with the alternatives in these approaches while leaving the
mapping, local planner, action controller and termination
criterion the same for everyone. We elaborate on all these
methods below.
• Greedy [41]. It assigns the frontiers to all the robots in

a greedy manner. Each robot chooses the closest frontier
among its assigned ones as the goal position.

• VorSEG [2]. It performs a Voronoi segmentation over all
the frontiers. Each robot chooses the closest segmented
region and scans its frontiers in a greedy manner.
3The training is once for all and takes about 1 day.



Small Scenes (< 35m2) Middle Scenes (35− 70m2) Large Scenes (> 70m2)

Method Cov. (%) Time (#steps) Cov. (%) Time (#steps) Cov. (%) Time (#steps)

Greedy [41] 98.7 420.6 98.8 669.4 99.4 1057.0
VorSEG [2] 98.5 350.8 98.8 570.3 99.6 1080.5
mTSP [19] 98.8 351.4 98.6 564.5 98.9 1029.0
CoScan [16] 98.6 304.2 99.0 496.1 99.5 985.0

NeuralCoMapping (Ours) 98.6 302.5 (-0.6%) 98.8 471.7 (-4.9%) 98.9 882.0 (-10.5%)

Table 1. Numerical results on the Gibson dataset [45]. Parentheses: %steps reduced against the best competitor (blue) for our algorithm (red).

Small Scenes (< 100m2) Middle Scenes (100− 300m2) Large Scenes (> 300m2)

Method Cov. (%) Time (#steps) Cov. (%) Time (#steps) Cov. (%) Time (#steps)

Greedy [41] 95.9 801.2 95.1 2043.1 91.3 3345.4
VorSEG [2] 95.5 652.7 94.7 1693.2 91.0 2852.0
mTSP [19] 96.6 712.5 95.6 1742.6 91.4 2963.6
CoScan [16] 97.1 581.7 96.1 1505.5 92.1 2781.0

ANS-DeCen 85.1 1860.4 59.9 3229.8 48.5 5639.6
ANS-Cen 89.7 1536.8 64.3 2781.3 52.2 4961.3

NeuralCoMapping (Ours) 96.7 506.1 (-13.0%) 96.0 1217.3 (-19.1%) 92.4 1874.8 (-32.6%)

Table 2. Generalization to the unseen Matterport3D dataset [7], which is consistently larger than the Gibson dataset. Note our algorithm is
trained only on 9 scenes in the Gibson dataset, while the ANS variants are trained on the entire Gibson dataset.

• mTSP [19]. It constructs a frontier graph where the edge
weights are defined as the geodesic distance between two
frontiers, then it solves a multiple traveling salesman prob-
lem based on the frontier graph for the goal assignment.

• CoScan [16]. It performs a k-means clustering over all
the frontiers and assigns each robot a frontier cluster by
solving an optimal mass transport problem based on the
geodesic distance. Then for each robot, it computes an
optimal traverse path over its assigned frontiers.

• ANS-DeCen. Following the recent reinforcement learn-
ing solution, Active Neural SLAM (ANS) [8], we replace
our global planner with their global policy, which learns
a convolution neural network that consumes an egocen-
tric local map and a geocentric global map as input, and
regresses the goal estimation for path planning. We de-
sign a fully decentralized setting where multiple robots
construct the map independently without communication.

• ANS-Cen. We design a simple centralized setting of the
ANS [8] approach. To adapt to the global policy, we
modify the input by stacking the local maps together with
the information of all robots to fuse the global map and
reform the output by regressing the goal positions of all
the robots together.

5.3. Results

We run all the approaches in the 3-robot scenario. The
learnable approaches (ANS variants and our approach) are
both trained and evaluated with 3 robots. The two ANS
variants directly extract features from the raw map with a
convolution neural network, which is more sensitive to the

variance of the map distribution and needs to be trained
in a larger set of training scenes (72 scenes in ANS [8]),
unlike 9 scenes in our setting. Hence it would be unfair for
the ANS variants to directly compare to our approach with
our Gibson train/test split. During the implementation, we
choose to train the ANS variants on the entire Gibson dataset
and compare with them directly on the Matterport3D dataset.

We demonstrate the results of our algorithm and the four
multi-robot active mapping approaches on the Gibson dataset
in Table 1. All the approaches are able to achieve the roughly
complete map construction, as also observed in [16], while
our algorithm achieves superior performance over all the
other approaches regarding time efficiency. The scenes in
the Gibson dataset are relatively small, where the time effi-
ciency tends to saturate in the multi-robot scenario, hence the
performance difference between our approach and the best
competitor is less significant. In Table 2, when we evaluate
the approaches on the Matterport3D dataset, which contains
consistently larger scenes than the ones in the Gibson dataset,
our algorithm exhibits more significant superiority compared
to the best competitor, especially in the large area interval
(> 300m2) we save more than 30% steps. We count time
step rather than running time for the efficiency evaluation,
while we take only 0.04s for each global planning, which is
much faster than the best competitor CoScan 0.4s. The re-
sults also demonstrate the outstanding generalization ability
of our algorithm to novel indoor scenes. Note the ANS vari-
ants do not guarantee a complete map construction as their
goal positions are regressed and may not lay on frontiers.
Therefore, to obtain a reasonable number for comparison, we



Final

OursGreedy CoScanmTSPVorSEG ANS-Cen

(800 steps)(1200 steps) (1000 steps)(1275 steps)(1225 steps) (3000 steps)

(925 steps)(1575 steps) (1175 steps)(1125 steps) (3000 steps)(2075 steps)

Figure 3. Visual results of our algorithm compared with state-of-the-art approaches on two scene samples from the Matterport3D dataset.

Train with 2 robots Train with 3 robots Train with 4 robots

Test number of robots Cov. (%) Time (#steps) Cov. (%) Time (#steps) Cov. (%) Time (#steps)

2 robots 96.7 1002.6 96.4 1005.0 97.1 1019.7
3 robots 96.7 680.0 96.3 661.7 96.1 683.7
4 robots 97.1 617.2 96.7 626.3 96.7 614.6

Table 3. Generalization to unseen numbers of robots evaluated on the Matterport3D dataset.

Method Cov. (%) Time (#steps)

Affinity: geodesic distance 96.9 785.5
Affinity: node correlation 94.3 1045.6
w/o history module 96.1 729.5
w/o obstacle-resistance 96.8 792.7

NeuralCoMapping (Ours) 96.3 661.7

Table 4. Ablation study on the Matterport3D dataset.
set a maximum horizon (5000 steps as default, 10000 steps
for scenes > 300m2), which is sufficiently large for most
approaches to complete the map construction. We visualize
the moving trajectories in Figure 3.

5.4. Generalization to Unseen Number of Robots

We evaluate how our algorithm generalizes to the unseen
number of robots in Table 3. Our algorithm is trained with
2, 3, and 4 robots separately, and evaluated with different
robot numbers on the Matterport3D dataset. From the re-
sults, we observe that our algorithm achieves very close time
efficiency to its upper bound (trained and evaluated on the
same number of robots). We consider such a good general-
ization ability mainly stems from three aspects. 1) Our entire
framework contains only one learnable module, the global
planner, while the other modules are non-learnable and can
naturally generalize to the unseen number of robots. 2) The
multiplex graph neural network in the global planner decom-
poses the goal estimation into many small and independent
tasks, where the robot nodes are only partially involved in the
entire network. 3) For the inter- and intra- graph operations
in mGNN, the node feature is updated as the weighted sum
of its neighborhood features, and hence relatively invariant
to the number of its neighborhood (robots).

5.5. Ablation Study

We conduct an ablation study to evaluate the importance
of each component of our algorithm to the multi-robot active
mapping problem, as shown in Table 4. We firstly validate
the design of the affinity matrix, by replacing the neural dis-
tance (edge feature) with 1) the geodesic distance between
robots and frontiers and 2) the node correlation computed as
the dot product between robot and frontier node features. We
further justify the effectiveness of the history node module in
mGNN and the obstacle-resistance strategy in the local plan-
ner by removing them separately from the entire framework
for ablation study. Experimentally, we observe that our full
framework achieves the best time efficiency. One of the ma-
jor arguments in this paper is that the pure geodesic distance
is not the optimal measurement to choose a reasonable goal
position, which motivates our algorithm to learn the neural
distance via reinforcement learning. Such an argument is
validated in the experiment, where our neural distance is
superior to the pure geodesic distance by a large margin.

6. Conclusion
In this work, we propose a novel multi-robot active map-

ping algorithm to achieve efficient and complete map con-
struction. We formulate the problem as neural bipartite graph
matching, which is solved via the proposed multiplex graph
neural network and a differentiable linear assignment layer.
The entire framework is optimized by maximizing the long-
term value via reinforcement learning.

Acknowledgements. We thank the anonymous reviewers
for their valuable comments. This work was supported by
NSFC (62161146002).



References
[1] Shi Bai, Jinkun Wang, Fanfei Chen, and Brendan Englot.

Information-theoretic exploration with bayesian optimization.
In 2016 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 1816–1822. IEEE, 2016.

[2] Subhrajit Bhattacharya, Robert Ghrist, and Vijay Kumar.
Multi-robot coverage and exploration on riemannian man-
ifolds with boundaries. The International Journal of Robotics
Research, 33(1):113–137, 2014.

[3] Frederic Bourgault, Alexei A Makarenko, Stefan B Williams,
Ben Grocholsky, and Hugh F Durrant-Whyte. Information
based adaptive robotic exploration. In IEEE/RSJ international
conference on intelligent robots and systems, volume 1, pages
540–545. IEEE, 2002.

[4] Wolfram Burgard, Mark Moors, Cyrill Stachniss, and Frank E
Schneider. Coordinated multi-robot exploration. IEEE Trans-
actions on robotics, 21(3):376–386, 2005.

[5] Tibério S Caetano, Julian J McAuley, Li Cheng, Quoc V
Le, and Alex J Smola. Learning graph matching. IEEE
transactions on pattern analysis and machine intelligence,
31(6):1048–1058, 2009.

[6] Chao Cao, Hongbiao Zhu, Howie Choset, and Ji Zhang. Tare:
A hierarchical framework for efficiently exploring complex 3d
environments. In Robotics: Science and Systems Conference
(RSS), Virtual, 2021.

[7] Angel Chang, Angela Dai, Thomas Funkhouser, Maciej Hal-
ber, Matthias Niessner, Manolis Savva, Shuran Song, Andy
Zeng, and Yinda Zhang. Matterport3d: Learning from rgb-d
data in indoor environments. International Conference on 3D
Vision (3DV), 2017.

[8] Devendra Singh Chaplot, Dhiraj Gandhi, Saurabh Gupta, Ab-
hinav Gupta, and Ruslan Salakhutdinov. Learning to explore
using active neural slam. In International Conference on
Learning Representations (ICLR), 2020.

[9] Devendra Singh Chaplot, Dhiraj Prakashchand Gandhi, Abhi-
nav Gupta, and Russ R Salakhutdinov. Object goal navigation
using goal-oriented semantic exploration. Advances in Neural
Information Processing Systems, 33, 2020.

[10] Devendra Singh Chaplot, Ruslan Salakhutdinov, Abhinav
Gupta, and Saurabh Gupta. Neural topological slam for visual
navigation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 12875–
12884, 2020.

[11] Jiawen Chen, Dennis Bautembach, and Shahram Izadi. Scal-
able real-time volumetric surface reconstruction. ACM Trans-
actions on Graphics (ToG), 32(4):1–16, 2013.

[12] Kevin Chen, Junshen K Chen, Jo Chuang, Marynel Vázquez,
and Silvio Savarese. Topological planning with transform-
ers for vision-and-language navigation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 11276–11286, 2021.

[13] Tao Chen, Saurabh Gupta, and Abhinav Gupta. Learning ex-
ploration policies for navigation. In International Conference
on Learning Representations, 2019.

[14] Micah Corah and Nathan Michael. Efficient online multi-
robot exploration via distributed sequential greedy assign-
ment. In Robotics: Science and Systems, volume 13, 2017.

[15] Angela Dai, Matthias Nießner, Michael Zollöfer, Shahram
Izadi, and Christian Theobalt. Bundlefusion: Real-time glob-
ally consistent 3d reconstruction using on-the-fly surface re-
integration. ACM Transactions on Graphics 2017 (TOG),
2017.

[16] Siyan Dong, Kai Xu, Qiang Zhou, Andrea Tagliasacchi,
Shiqing Xin, Matthias Nießner, and Baoquan Chen. Multi-
robot collaborative dense scene reconstruction. ACM Trans-
actions on Graphics (TOG), 38(4):1–16, 2019.

[17] Christian Dornhege and Alexander Kleiner. A frontier-void-
based approach for autonomous exploration in 3d. Advanced
Robotics, 27(6):459–468, 2013.

[18] Jan Faigl and Miroslav Kulich. On determination of goal can-
didates in frontier-based multi-robot exploration. In 2013 Eu-
ropean Conference on Mobile Robots, pages 210–215. IEEE,
2013.

[19] Jan Faigl, Miroslav Kulich, and Libor Přeučil. Goal assign-
ment using distance cost in multi-robot exploration. In 2012
IEEE/RSJ International Conference on Intelligent Robots and
Systems, pages 3741–3746. IEEE, 2012.

[20] Christian Häne, Torsten Sattler, and Marc Pollefeys. Obstacle
detection for self-driving cars using only monocular cam-
eras and wheel odometry. In 2015 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages
5101–5108. IEEE, 2015.

[21] Dirk Holz, Nicola Basilico, Francesco Amigoni, and Sven
Behnke. Evaluating the efficiency of frontier-based explo-
ration strategies. In ISR 2010 (41st International Symposium
on Robotics) and ROBOTIK 2010 (6th German Conference
on Robotics), pages 1–8. VDE, 2010.

[22] Jiayi Huang, Mostofa Patwary, and Gregory Diamos.
Coloring big graphs with alphagozero. arXiv preprint
arXiv:1902.10162, 2019.

[23] Shahram Izadi, David Kim, Otmar Hilliges, David
Molyneaux, Richard Newcombe, Pushmeet Kohli, Jamie
Shotton, Steve Hodges, Dustin Freeman, Andrew Davison,
et al. Kinectfusion: real-time 3d reconstruction and inter-
action using a moving depth camera. In Proceedings of the
24th annual ACM symposium on User interface software and
technology, pages 559–568, 2011.

[24] Ayoung Kim and Ryan M Eustice. Active visual slam for
robotic area coverage: Theory and experiment. The Interna-
tional Journal of Robotics Research, 34(4-5):457–475, 2015.

[25] Wouter Kool, Herke Van Hoof, and Max Welling. At-
tention, learn to solve routing problems! arXiv preprint
arXiv:1803.08475, 2018.

[26] Miroslav Kulich, Jan Faigl, and Libor Přeučil. On distance
utility in the exploration task. In 2011 IEEE International
Conference on Robotics and Automation, pages 4455–4460.
IEEE, 2011.

[27] Chengshu Li, Fei Xia, Roberto Martín-Martín, Michael Lin-
gelbach, Sanjana Srivastava, Bokui Shen, Kent Vainio, Cem
Gokmen, Gokul Dharan, Tanish Jain, Andrey Kurenkov,
Karen Liu, Hyowon Gweon, Jiajun Wu, Li Fei-Fei, and Silvio
Savarese. igibson 2.0: Object-centric simulation for robot
learning of everyday household tasks. In Conference on Robot
Learning (CoRL), 2021.



[28] James Munkres. Algorithms for the assignment and trans-
portation problems. Journal of the society for industrial and
applied mathematics, 5(1):32–38, 1957.

[29] Richard A Newcombe, Shahram Izadi, Otmar Hilliges, David
Molyneaux, David Kim, Andrew J Davison, Pushmeet
Kohi, Jamie Shotton, Steve Hodges, and Andrew Fitzgib-
bon. Kinectfusion: Real-time dense surface mapping and
tracking. In 2011 10th IEEE international symposium on
mixed and augmented reality, pages 127–136. IEEE, 2011.

[30] Carlos Nieto-Granda, John G Rogers III, and Henrik I Chris-
tensen. Coordination strategies for multi-robot exploration
and mapping. The International Journal of Robotics Research,
33(4):519–533, 2014.

[31] Santhosh K Ramakrishnan, Ziad Al-Halah, and Kristen Grau-
man. Occupancy anticipation for efficient exploration and
navigation. In European Conference on Computer Vision,
pages 400–418. Springer, 2020.

[32] María L Rodríguez-Arévalo, José Neira, and José A Castel-
lanos. On the importance of uncertainty representation in
active slam. IEEE Transactions on Robotics, 34(3):829–834,
2018.

[33] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Rad-
ford, and Oleg Klimov. Proximal policy optimization algo-
rithms. arXiv preprint arXiv:1707.06347, 2017.

[34] James A Sethian. A fast marching level set method for
monotonically advancing fronts. Proceedings of the National
Academy of Sciences, 93(4):1591–1595, 1996.

[35] Bokui Shen, Fei Xia, Chengshu Li, Roberto Martín-Martín,
Linxi Fan, Guanzhi Wang, Claudia Pérez-D’Arpino, Shya-
mal Buch, Sanjana Srivastava, Lyne P. Tchapmi, Micael E.
Tchapmi, Kent Vainio, Josiah Wong, Li Fei-Fei, and Silvio
Savarese. igibson 1.0: a simulation environment for interac-
tive tasks in large realistic scenes. In IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2021.

[36] Richard Sinkhorn and Paul Knopp. Concerning nonnegative
matrices and doubly stochastic matrices. Pacific Journal of
Mathematics, 21(2):343–348, 1967.

[37] Cyrill Stachniss, Giorgio Grisetti, and Wolfram Burgard. In-
formation gain-based exploration using rao-blackwellized
particle filters. In Robotics: Science and systems, volume 2,
pages 65–72, 2005.

[38] Quinlan Sykora, Mengye Ren, and Raquel Urtasun. Multi-
agent routing value iteration network. In International Confer-
ence on Machine Learning, pages 9300–9310. PMLR, 2020.

[39] Wennie Tabib, Micah Corah, Nathan Michael, and Red Whit-
taker. Computationally efficient information-theoretic explo-
ration of pits and caves. In 2016 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages
3722–3727. IEEE, 2016.

[40] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In Advances in neural
information processing systems, pages 5998–6008, 2017.

[41] Arnoud Visser, Julian De Hoog, Adrian Jiménez-González,
and J-R Martinez de Dios. Discussion of multi-robot explo-
ration in communication-limited environments. In Workshop”
Towards Fully Decentralized Multi-Robot Systems: Hardware,

Software and Integration” at the ICRA Conference. Citeseer,
2013.

[42] Runzhong Wang, Junchi Yan, and Xiaokang Yang. Learning
combinatorial embedding networks for deep graph matching.
In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 3056–3065, 2019.

[43] Barry Brian Werger and Maja J Matarić. Broadcast of lo-
cal eligibility for multi-target observation. In Distributed
Autonomous Robotic Systems 4, pages 347–356. Springer,
2000.

[44] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long,
Chengqi Zhang, and S Yu Philip. A comprehensive survey on
graph neural networks. IEEE transactions on neural networks
and learning systems, 32(1):4–24, 2020.

[45] Fei Xia, Amir R Zamir, Zhiyang He, Alexander Sax, Jitendra
Malik, and Silvio Savarese. Gibson env: Real-world per-
ception for embodied agents. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 9068–9079, 2018.

[46] Brian Yamauchi. A frontier-based approach for autonomous
exploration. In Proceedings 1997 IEEE International Sym-
posium on Computational Intelligence in Robotics and Au-
tomation CIRA’97.’Towards New Computational Principles
for Robotics and Automation’, pages 146–151. IEEE, 1997.

[47] Joel Ye, Dhruv Batra, Abhishek Das, and Erik Wijmans. Aux-
iliary tasks and exploration enable objectgoal navigation. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 16117–16126, 2021.

[48] Weifeng Zhang, Jingwen Mao, Yi Cao, and Congfu Xu. Mul-
tiplex graph neural networks for multi-behavior recommen-
dation. In Proceedings of the 29th ACM International Con-
ference on Information & Knowledge Management, pages
2313–2316, 2020.


