
Eurographics Symposium on Rendering (2005)
Kavita Bala, Philip Dutré (Editors)

Stippling and Silhouettes Rendering
in Geometry-Image Space

Xiaoru Yuan Minh X. Nguyen Nan Zhang Baoquan Chen

University of Minnesota at Twin Cities, MN, USA†

Abstract

We present a novel non-photorealistic rendering method that performsall operations in a geometry-image domain.
We first apply global conformal parameterization to the input geometry model and generate corresponding geom-
etry images. Strokes and silhouettes are then computed in the geometry-image domain. The geometry-image space
provides combined benefits of the existing image space and object spaceapproaches. It allows us to take advan-
tage of the regularity of 2D images and yet still have full access to the objectgeometry information. A wide range
of image processing tools can be leveraged to assist various operationsinvolved in achieving non-photorealistic
rendering with coherence.

Categories and Subject Descriptors(according to ACM CCS): I.3.3 [Computer Graphics]: Line and Curve Genera-
tion

Keywords: non-photorealistic rendering, geometry im-
age, stippling, silhouette, sampling

1. Introduction

Non-photorealistic rendering (NPR) has become an alter-
native to traditional photorealistic rendering in computer
graphics due to its effectiveness in conveying geometric in-
formation and directing attention. Existing NPR operations
are mostly performed in two domains: image space and ob-
ject space. Image space methods are normally fast due to
the image regularity. However, since the strokes are placed
in image space, undesirable effects (e.g. "shower door" ef-
fect [Mei96]) may appear. For object space methods, geom-
etry features are detected and depicted in 3D, hence they are
coherent during animation. These operations require travers-
ing the entire input geometry model, thus achieving interac-
tive rendering can be challenging.

In this paper, we present a novel non-photorealistic ren-
dering method that operates in geometry-image space. A ge-
ometry image is obtained by first parameterizing the geom-

† Email:{xyuan, mnguyen, nanzhang, baoquan}@cs.umn.edu

etry model and then resampling it based on the regular pa-
rameterization grids [GGH02, GY03, JWYG04, GWC∗04].
Hence, a geometry image resembles a conventional image
in terms of its storage regularity. In contrast to most algo-
rithms, which work in either object space or image space, or
a hybrid of both, our algorithm performs most computations
in thegeometry-image space. Here we focus on one type of
rendering in which shading tones and surface textures are
depicted using a significant numbers of primitives, mainly
stipples.

Our method is effective in achieving various NPR effects
including stippling and stroke hatching and silhouette ren-
dering. Compared with the image-space and object-space
methods, our 2D geometry-image domain based NPR ren-
dering method has the following advantages:

1. The computations of stroke primitive distribution and
silhouette detection are both computed in the same 2D
geometry-image domain. Part of their computation can
be shared.

2. Fast hierarchical sampling in the 2D geometry-image do-
main can be applied to achieve rendering coherence with
high performance.

3. Efficiency can be achieved by taking advantage of the 2D

c© The Eurographics Association 2005.



X. Yuan & M.X. Nguyen & N. Zhang & B. Chen / Stippling and Silhouettes Rendering in Geometry-Image Space

geometry-image regularity to leverage the programmabil-
ity of modern commodity graphics hardware.

4. 2D image processing techniques such as edge detec-
tion can be applied to assist various operations for non-
photorealistic rendering.

The remainder of this paper is organized as follows. In
Section2, we briefly review related work. After giving an
overview of our method in Section3, we describe major
operations involved: preprocessing (Section4), surface tone
depiction (Section5), silhouette rendering (Section6), and
visibility computation (Section7). Results are discussed in
Section8, and finally the paper is concluded in Section9.

2. Related Work

To render a surface with stippling or hatching effects, which
are depicted by a significant number of primitives, there are
mainly two approaches. In the first approach, stroke textures,
which are collections of strokes arranged in different pat-
terns, are mapped to the surface of the input geometry. Prior-
itized stroke textures [WS94,SABS94], art maps [KLK ∗00],
and Tonal Art Maps (TAMs) [PHWF01] have been de-
veloped to render stroke textures on geometry surfaces to
obtain hatching effects. In the second approach, locations
of individual strokes are computed. Meier [Mei96] associ-
ated painterly strokes with actual locations on the model
to achieve frame-coherence. Cornish et al. [CRL01] de-
veloped a view-dependent particle system, where a hier-
archical clustering algorithm is used to regulate the den-
sity and placement of the strokes. Similarly, Pastor and
Strothotte [MS02,MFS03] considered every vertex of an in-
put model as the location of a potential stipple and dynami-
cally performed mesh simplification and subdivision accord-
ing to the shading changes. Secord et al. [SHS02] used a
probability density function (PDF) derived from the input
image to select a subset of pre-computed uniformly dis-
tributed random points. Voronoi diagrams with relaxation
have also been applied to generate evenly distributed stip-
pling image [DHvOS00,Sec02].

To render silhouettes, a school of methods have been de-
veloped. Existing silhouette generation algorithms for poly-
gon models can be divided into three categories based on
where the algorithm detects and draws the silhouettes: object
space, image space, and hybrid algorithms. In object space
methods, the silhouette of a free-form object is typically de-
fined as the set of points on the object’s surface where the
surface normal is perpendicular to the viewing ray [HZ00].
For triangle based surfaces, silhouettes can be detected in
object space by finding the edges in the mesh sharing both
front and back facing polygons. Such brute force approaches
require traversing every edge of the whole geometry model.
Some acceleration methods have been developed [MKT∗97,
GSG∗99]. For example, Buchanan and Sousa introduced
the data structure ofthe edge buffers[BS00] that assists in
finding all silhouettes by searching only faces of which the

number is less than edges. On the other hand, image space
methods avoid explicitly searching the 3D silhouette edges,
hence they are usually efficient. Discontinuities in the ren-
dered image buffer(s) are exploited by applying image pro-
cessing methods such as edge detection [ST90]. Northrup
and Markosian [NM00] applied a hybrid image/object space
method to apply stylization to strokes that follow the visual
silhouettes of the input object. However, these methods de-
pict only portions of silhouettes that contribute to the final
rendered image. The non-visible silhouettes cannot be de-
tected by image space methods. Readers can refer to an in-
depth review of silhouette detection algorithms by Isenberg
et al. [IFH∗03] for more information.

Temporal coherence is important for smooth animation.
Since the density of strokes reflects the surface tone, it
changes when view or illumination condition change. To
guarantee temporal coherence, strokes must be attached to
fixed locations on the object and incrementally added and
removed. Existing methods address this issue by first build-
ing a mesh hierarchy and then dynamically selecting nodes
of different levels during animation [CRL01, MS02]. For
silhouette rendering, most methods first parameterize sil-
houettes and then texture map them to obtain stylization.
To guarantee temporal coherence, parameterization between
frames must be consistent. This is achieved recently by
Kalnins et al. [KDMF03] by propagating silhouette parame-
terization from one image frame to another. We adapt a sim-
ilar approach in our method but perform the propagation in
the geometry-image domain.

3. Overview

We illustrate our NPR rendering method in Figure1. In the
preprocessing stage, we first apply global conformal param-
eterization to the input geometry model and generate a 2D
geometry image. Then, we compute auxiliary images de-
rived from the initial geometry image. These auxiliary im-
ages describe properties such as parameterization distortion,
principle direction, etc. The principle directions are used to
guide stroke orientations. All these images are both view and
illumination independent.

For each frame, we compute the illumination image in
geometry-image space. We perform hierarchical importance
sampling [ODJ04] based on the illumination intensity which
has been modulated by the distortion image. The output sam-
pling points in 2D geometry-image space are used for plac-
ing stipples or strokes in 3D.

To render the silhouettes, we first compute the dot product
of normal (N) and view vector (V) for each pixel in the ge-
ometry image. The silhouette pixels are then detected, linked
and parameterized. 2D arc-length parameterization [Bou98]
is propagated from the previous frame to achieve frame co-
herence. The final rendering combines the stroke and silhou-
ette rendering.

c© The Eurographics Association 2005.



X. Yuan & M.X. Nguyen & N. Zhang & B. Chen / Stippling and Silhouettes Rendering in Geometry-Image Space

Stippling

Silhouette Detection

Parameterization

Geometry Image

Illumination

N V

Importance Sampling

Silhouettes.

Figure 1: The work flow of our non-photorealistic rendering method. The originalinput geometry model is first parameterized
using global conformal parameterization and converted to geometry image. For rendering stipples, the illumination of the
geometry image is computed. From that a set of samples are calculated and used to place stipples to reflect the tone of the
surface. For silhouette rendering, an N·V image is computed, from which silhouettes are detected, linked and parameterized.
The final rendering combines the stipples and silhouettes.

4. Preprocessing

In this stage we parameterize the input geometry. Properties
that are view and illumination independent are computed in
geometry-image space.

4.1. Parameterization

Parameterization of a connected 3D mesh is a one-to-one
mapping of the vertices of the input mesh onto a 2D space
called parameterization domain. In our implementation, we
choose a global conformal parameterization method [GY03,
JWYG04] that can handle arbitrary geometry topologies,
with or without boundaries. This parameterization guaran-
tees visual smoothness of iso-parametric lines and mini-
mizes the distortion. One issue to consider in this process
is the resolution of the geometry image which resamples the
original mesh. If the image resolution is not high enough,
highly curved shapes in the geometry may be missed. For
this purpose, with an assumption that the vertices in a geom-
etry mesh are distributed uniformly, we usually set the ge-
ometry image dimension tom×m wherem = ⌈c√n⌉ with
n being the number of vertices andc being a constant that
the user can specify. In practice, we setc to 2− 5, which
is usually sufficient for both quality and speed. For geome-
tries with highly non-uniform scaling of parameterization,
the factorc may be larger.

After the mesh parameterization is completed, we gener-
ate the corresponding geometry image [GGH02] of the input
mesh. The image is created by drawing all triangles of the
input mesh into a 2D domain, where the coordinate of each

vertex is its 2D parameterization value, and the color is its
3D coordinate.

4.2. Computing Auxiliary Images

We pre-compute mainly two auxiliary images with the same
resolution as the geometry image. Although distortion is
minimized in the global conformal parameterization method,
it still exists. We compute the distortion factor to compensate
for this effect for the later computation and rendering stages.
Since the global conformal parameterization merely affects
scaling, only isotropic distortion may be introduced. The dis-
tortion factor is approximated as the ratio of the local surface
area in the 3D space to the parameterized 2D area in the ge-
ometry image. The distortion image is used to modulate the
illumination image to obtain a correct sampling density for
surface tone representation (Section5).

We generate another auxiliary image denoting the vec-
tor field for orienting strokes. Principle directions have been
suggested as an effective means of defining the stroke orien-
tation following the underlying surface shape [Int97,HZ00].
We compute the principle directions on the original mesh
using the theory of normal cycles [CSM03] and then map
them to geometry-image space. However, the computation
of the principle directions is prone to error and not stable
for discrete triangle meshes. Computed principle direction
information can be unreliable, especially for isotropic re-
gions (e.g. flat or spherical surfaces). We smooth the direc-
tion field by only keeping regions with highly reliable prin-
ciple direction information and interpolating unreliable re-
gions using the 2D thin plate spline method [Mei79]. The

c© The Eurographics Association 2005.



X. Yuan & M.X. Nguyen & N. Zhang & B. Chen / Stippling and Silhouettes Rendering in Geometry-Image Space

thin plate spline interpolation method is a two-dimensional
analogy of the cubic spline in one dimension. It finds a “min-
imally bent” smooth surface that passes through all given
points. Hertzmann and Zorin [HZ00] used an optimization
procedure based on minimizing an energy function in 3D
for such a smoothing process. As our smoothing algorithm
is conducted entirely in 2D, it can be easily and efficiently
implemented. Figures2(a) and2(c) illustrate the direction
field on a geometry model before and after smoothing. Fig-
ures2(b) and2(d) are their corresponding color encodings
in 2D geometry-image space, respectively.

(a) (b)

(c) (d)

Figure 2: (a) A direction field on a Venus model defined
as major axis or principle direction. (c) Direction field af-
ter applying thin plate spline smoothing. (b) and (d), Corre-
sponding color encoded direction fields of (a) and (c) in 2D
geometry-image space, respectively.

Figure 3: Importance sampling for stroke distribution. Left
column from top to bottom: illumination image, distortion
image and importance image. The large image on the right
shows sample locations.

(a) (b) (c)

Figure 4: (a) Bunny model with parameterization texture.
Stippling without (b) and with (c) distortion compensation.
The change in the ear region is apparent.

5. Surface Tone Depiction

The density of strokes is changed to depict the surface tone.
To compute the stroke distribution, we first compute the il-
lumination of each pixel in the geometry-image domain us-
ing OpenGL diffuse shading. Because higher stroke den-
sity reflects darker surface tone, we invert the illumination
image. To further discount the parameterizations distortion,
the inverted illumination image is multiplied with the pre-
computed distortion image to obtain animportance image.
Note that when using strokes instead of points for stippling,
a constant factor is used to globally modulate the importance
image, hence tuning the stippling density to better match
the original shading tone. The constant is proportional to the
area of the stroke used.

To generate strokes with appropriate distribution, Salis-
bury et al. [SWHS97] applied an updating procedure to
match the rendered output image with the importance im-
age by incrementally adding more strokes. This process is
very expensive to perform. Because our algorithm operates
in the geometry-image domain, we apply a fast hierarchical
importance sampling method developed by Ostromoukhov
et al. [ODJ04]. This method is based on Penrose tiling and
the Fibonacci number system to distribute samples accord-
ing to the local importance density. In this method, sample
points generated for brighter levels are always a subset of
darker levels, hence, coherence is guaranteed. The generated
points are floating points with 2D space coordinates. Their
corresponding 3D locations can be computed by interpolat-
ing geometry image. In the original work of Ostromoukhov
et al., each generated point has a changing offset (although
small) to Penrose tiling grids in order to optimize the lo-
cal distribution with the blue noise property. This causes the
stipples to slightly move during the animation. We choose to
disablethe offsetting during animation for guaranteed coher-
ence, butenableit to achieve better random distribution for
static rendering. It is worth pointing out that using geometric
properties instead of illumination for the importance sam-
pling can lead to other applications such as remeshing of the
geometry; a relevant work is done by Alliez et al. [AMD02].

Figure3 illustrates importance sampling using the fast hi-
erarchical method. Figure4 demonstrates the necessity of
distortion compensation. In Figure4(a), the ear region of

c© The Eurographics Association 2005.



X. Yuan & M.X. Nguyen & N. Zhang & B. Chen / Stippling and Silhouettes Rendering in Geometry-Image Space

the bunny has been expanded in the geometry-image space.
The tone of the ears is too dark when point sampling is only
based on the shading illumination (Figure4(b)). By applying
the distortion compensation, sampling density reflects cor-
rect tone (Figure4(c)).

The sampling density is also affected by the projected
screen size of the geometry model. To compensate for this
effect, the computation of the sampling density takes into
consideration the distance of the model from the viewer. The
distance and its effect on the importance image are computed
on every pixel in the geometry image during rendering. As
shown in Figure5, the sampling densities are consistent with
the screen projection area change.

Figure 5: The density of stipples is adjusted to achieve con-
sistent tone when object size on the screen changes.

6. Silhouette Rendering

In addition to stippling and hatching, line drawings effec-
tively convey shapes using minimal strokes. We enhance our
hatching/stippling drawings by rendering silhouettes. Our al-
gorithm extracts silhouettes in the 2D geometry-image do-
main. We first compute theN ·V image, then use the March-
ing Squares algorithm to extract the silhouette segments. A
contour tracking algorithm is then applied to connect the sil-
houettes into polylines.

As illustrated in Figure6, we detect pixels with zero-
crossing in the renderedN ·V image. These pixels are on
silhouettes and are then linked and parameterized into an an-
alytical form to facilitate stylization. Figure6 shows the sil-
houette lines detected from theN ·V image (red channel) in
the geometry-image domain. To void negative values,N ·V
values are shifted to(N ·V + 1)/2. In the right column of
Figure6, the top image is the rendering of the detected sil-
houettes. The bottom image shows the model viewed from a
different angle and mapped with the left image.

Silhouettes are closed curves in the geometry-image space
for closed geometry objects (silhouettes may intersect each
other in cusps regions) and evolve when the viewing param-
eters change. We utilize the method proposed by Bourdev et
al. [Bou98] to achieve coherent silhouette parameterization.
We conduct and propagate 2D arc-length parameterization
in geometry-image space instead of image space. When the
first frame is created, the silhouette pixels in geometry im-
age are connected and parameterized. Each silhouette line is
then segmented by placing sample points. Starting from the
second frame, silhouette lines are parameterized using frame

Figure 6: Left: silhouettes detected in the geometry-image
space; top-right: rendering of silhouettes; bottom-right:
model viewed from a different direction; the model is mapped
with the left image.

coherence. We assume that the view changes are moderate
and the new silhouette lines are usually not far from the sil-
houette lines of the previous frame. For each sample point
on the current silhouette line, its parameterization value is
derived by finding its nearest sample on the silhouette of
the previous frame. Usually we use a tolerance of 1 pixel
in searching the sampling neighborhood but this tolerance
value can be varied. When a proper reference sample cannot
be found for a sample point, a tag is recorded on this point.
Its parameterization value is inferred from its neighboring
sample points. Often times, the parameter values are not
monotonically increasing or decreasing, such as the cases
when the topology of the silhouette lines changes. In such
cases, we split the silhouette lines in the questioned areas.

7. Visibility Computation

We compute the visibility mask of the model, including self
occlusion and window clipping. With the visibility mask,
the system is able to distinguish the visible and occluded
portions of the silhouettes and render them into different
styles. It also helps improving the efficiency of the impor-
tance sampling process by avoiding processing the occluded
and clipped surface regions.

The visibility mask is computed in the programmable
graphics hardware. First, the model is rendered and its depth
image is stored into a texture. Then, the model is rendered
in geometry-image space. For each pixel in the geometry-
image, its depth value is computed and compared with the
corresponding depth value in the texture obtained from the
first pass rendering. Visibility caused by depth occlusion is
thus determined. We also compute the visibility based on the
view frustum culling.

Figure7 shows the color coded visibility information. The
green channel is used to encode visibility caused by depth
occlusion and the blue channel is used to encode visibility

c© The Eurographics Association 2005.



X. Yuan & M.X. Nguyen & N. Zhang & B. Chen / Stippling and Silhouettes Rendering in Geometry-Image Space

Visible Regions

Occluded Regions

Viewport 

Clipped Regions

Silhouettes

Viewport 

Clipped RegionsOccluded

Regions

Visible Regions

Occluded Regions

Viewport 

Clipped Regions

Silhouettes

(a) (b)

Figure 7: (a) Visibility encoded in 2D geometry-image space
(red: N ·V; green: visibility by depth occlusion; blue: visi-
bility by view frustum culling). (b) Model mapped with (a)
viewed from a different angle. The image in the square is the
model rendered in 3D.

by view frustum culling (1 indicates visible; 0 indicates in-
visible). The previously computedN ·V values are stored in
the red channel. The silhouettes coincide with the boundaries
of visible and invisible regions. Note that in our implemen-
tation, we are able to render theN ·V and shading images
with visibility mask in one single pass. Utilizing the modern
commodity programmable graphics hardware, the fragment
shader can render theN ·V and shading intensity into two
color channel simultaneously.

The image in7(a) is mapped to the model and viewed in a
different angle in Figure7(b). The image in the square is the
model rendered in its original 3D viewing direction. With the
visibility mask available, we disable the z-buffer and directly
draw visible and invisible silhouettes with desired styles.

8. Results and Discussion

Figures8-10 demonstrate some NPR effects generated by
our method. In Figure8, we demonstrate rendering a torus
model in various non-photorealistic styles. Three different
silhouette stroke textures are applied to parameterized sil-
houettes in Figures8(a) through8(c). In Figure8(d), we also
render the invisible silhouettes determined by the visibility
mask described in Section7 as dotted lines. In Figure8(e),
silhouettes are rendered together with surface stippling. Stip-
ple points are directly rendered as OpenGL points at the lo-
cations generated by the importance sampling. By replacing
stipples with directional strokes and applying a texture on
each stroke, we produce various hatching effects, shown in
Figures8(f)-8(h). The orientation of the strokes follows the
calculated direction field. Figure9 depicts four models illus-
trated in stippling and hatching styles. In Figure10, a Venus
model is rendered using stippling and hatching of different
stroke textures.

Finally, our method also promises rendering efficiency.
The sizes of geometry images and rendering images are
512×512. All the results shown in the paper and the com-
panion video are generated interactively on a PC with one
Xeon 3.2GHz CPU and Geforce 6800 Ultra GPU. Most op-

erations are performed on GPU except the silhouette extrac-
tion and the hierarchical sampling. The preprocessing of our
method involves harmonic parameterization of the geometry
models. Depending on model size, this step takes between
1 to 10 minutes. The runtime performance of our method is
shown in Table1. We achieve frame rate of around 10 fps
for various models.T1, time of rendering illuminance and
N ·V, is proportional to the mesh size.T2, silhouette detec-
tion and parameterizing, is independent of mesh size. The
bottleneck of our method is performing the importance sam-
pling on CPU (T3). The frame rate is roughly inversely pro-
portional to the number of generated stipples. The size of the
original model has very little impact on the over all perfor-
mance.

9. Concluding Remarks

In this paper, we have presented a non-photorealistic ren-
dering method in geometry-image space. By transforming
the 3D geometry into 2D parameterization domain, we gain
both efficiency and flexibility on the computation of stroke
primitive distribution and silhouettes. We ease the computa-
tion without resorting to complex 3D operations. Like other
methods (e.g. [AMD02]) that have effectively taken advan-
tage of geometry image, our work provides another evidence
of the benefits of shifting 3D operations from conventional
geometry to geometry image. This method opens the door to
a rich set of well established 2D image processing methods,
which can be utilized to achieve various non-photorealistic
rendering effects. We plan to pursue further investigation to-
wards this direction.

Acknowledgments: Support for this work includes a Uni-
versity of Minnesota Computer Science Department Start-
up funds, NSF ACI-0238486 (CAREER), and NSF EIA-
0324864 (ITR). We especially thank Xianfeng (David) Gu
and Miao Jin for their help on mesh parameterization and
valuable discussions. We also thank the anonymous review-
ers for helpful suggestions; Nathan Gossett and Amit Shesh
for proofreading and audio production of the video; and Hui
Xu and Lijun Qu for discussions and suggestions.

References

[AMD02] A LLIEZ P., MEYER M., DESBRUN M.: In-
teractive geometry remeshing. InSIGGRAPH(2002),
pp. 347–354.

[Bou98] BOURDEV L.: Rendering nonphotorealistic
strokes with temporal and arc-length coherence.Master’s
thesis, Brown University.(1998).

[BS00] BUCHANAN J. W., SOUSA M. C.: The edge
buffer: a data structure for easy silhouette rendering. In
NPAR ’00(2000), pp. 39–42.

[CRL01] CORNISH D., ROWAN A., LUEBKE D.: View-
dependent particles for interactive non-photorealistic ren-
dering. In Proceeding of Graphics Interface(2001),
pp. 151–158.

c© The Eurographics Association 2005.



X. Yuan & M.X. Nguyen & N. Zhang & B. Chen / Stippling and Silhouettes Rendering in Geometry-Image Space

Model Faces(K) Nstipple T1(sec) T2(sec) T3(sec) T4(sec) T5(sec) Frames/sec
Torus 9600 2974 0.0087 0.010 0.0834 0.00065 0.0021 9.5
Face 13606 5383 0.0107 0.011 0.142 0.0017 0.0027 5.9

Bunny 26057 2442 0.0204 0.014 0.073 0.0034 0.0014 8.9
Fandisk 13250 1914 0.0100 0.011 0.061 0.0021 0.0012 11.7
Venus 5780 2441 0.0077 0.0098 0.0700 0.0020 0.0014 11.0

Table 1: Performance of our rendering method for various models. Nstipple is the number of stipples rendered. T1 is the time for
rendering the illuminance and computing the N·V in the geometry image space. T2 is the time for detecting and parameterizing
the silhouette. T3 is the time for sampling point on the importance map. T4 and T5 are the time for rendering silhouettes and
points, respectively.

[CSM03] COHEN-STEINER D., MORVAN J.-M.: Re-
stricted delaunay triangulations and normal cycle. InSCG
(2003), pp. 312–321.

[DHvOS00] DEUSSENO., HILLER S., VAN OVERVELD

C., STROTHOTTET.: Floating points: A method for com-
puting stipple drawings.Computer Graphics Forum 19, 3
(2000).

[GGH02] GU X., GORTLER S. J., HOPPEH.: Geometry
images. InSIGGRAPH(2002), pp. 355–361.

[GSG∗99] GOOCH B., SLOAN P.-P., GOOCH A.,
SHIRLEY P., RIESENFELD R.: Interactive technical il-
lustration. pp. 31–38.

[GWC∗04] GU X., WANG Y., CHAN T., THOMPSONP.,
YAU S.-T.: Genus zero surface conformal mapping and
its application to brain surface mapping.IEEE Transac-
tion on Medical Imaging 23, 7 (2004), 949–958.

[GY03] GU X., YAU S.-T.: Global conformal surface pa-
rameterization. InSGP(2003), pp. 127–137.

[HZ00] HERTZMANN A., ZORIN D.: Illustrating smooth
surfaces. InSIGGRAPH(2000), pp. 517–526.

[IFH∗03] ISENBERG T., FREUDENBERG B., HALPER

N., SCHLECHTWEG S., STROTHOTTE T.: A devel-
oper’s guide to silhouette algorithms for polygonal mod-
els. IEEE Comput. Graph. Appl. 23, 4 (2003), 28–37.

[Int97] INTERRANTE V.: Illustrating surface shape in vol-
ume data via principal direction-driven 3D line integral
convolution. InSIGGRAPH(1997), pp. 109–116.

[JWYG04] JIN M., WANG Y., YAU S.-T., GU X.: Opti-
mal global conformal surface parameterization. InIEEE
Visualization(2004), pp. 267–274.

[KDMF03] K ALNINS R. D., DAVIDSON P. L.,
MARKOSIAN L., FINKELSTEIN A.: Coherent styl-
ized silhouettes. ACM Trans. Graph. 22, 3 (2003),
856–861.

[KLK ∗00] KLEIN A. W., L I W., KAZHDAN M. M.,
CORREA W. T., FINKELSTEIN A., FUNKHOUSERT. A.:
Non-photorealistic virtual environments. InSIGGRAPH
(2000), pp. 527–534.

[Mei79] MEINGUET J.: Multivariate interpolation at arbi-

trary points made simple.J. Appl. Math. Phys. 30(1979),
292–304.

[Mei96] MEIER B. J.: Painterly rendering for animation.
In SIGGRAPH(1996), pp. 477–484.

[MFS03] MERUVIA PASTOR O., FREUDENBERG B.,
STROTHOTTE T.: Real-time animated stippling.IEEE
Comput. Graph. Appl. 23, 4 (2003), 62–68.

[MKT ∗97] MARKOSIAN L., KOWALSKI M. A.,
TRYCHIN S. J., BOURDEV L. D., GOLDSTEIN D.,
HUGHESJ. F.: Real-time nonphotorealistic rendering. In
SIGGRAPH(1997), pp. 415–420.

[MS02] MERUVIA-PASTOR O., STROTHOTTE T.:
Frame-coherent stippling. InEurographics, Short
Presentations(2002), pp. 145–152.

[NM00] NORTHRUPJ. D., MARKOSIAN L.: Artistic sil-
houettes: a hybrid approach. InNPAR(2000), pp. 31–37.

[ODJ04] OSTROMOUKHOV V., DONOHUE C., JODOIN

P.-M.: Fast hierarchical importance sampling with blue
noise properties.ACM Trans. Graph. 23, 3 (2004), 488–
495.

[PHWF01] PRAUN E., HOPPE H., WEBB M., FINKEL -
STEIN A.: Real-time hatching. InSIGGRAPH(2001),
pp. 579–584.

[SABS94] SALISBURY M. P., ANDERSON S. E.,
BARZEL R., SALESIN D. H.: Interactive pen-and-ink il-
lustration. InSIGGRAPH(1994), pp. 101–108.

[Sec02] SECORD A.: Weighted voronoi stippling. In
NPAR(2002), pp. 37–43.

[SHS02] SECORD A., HEIDRICH W., STREIT L.: Fast
primitive distribution for illustration. InEGRW(2002),
pp. 215–226.

[ST90] SAITO T., TAKAHASHI T.: Comprehensible ren-
dering of 3-D shapes. pp. 197–206.

[SWHS97] SALISBURY M. P., WONG M. T., HUGHES

J. F., SALESIN D. H.: Orientable textures for image-
based pen-and-ink illustration. InSIGGRAPH(1997),
pp. 401–406.

[WS94] WINKENBACH G., SALESIN D. H.: Computer-
generated pen-an-ink illustration. pp. 91–100.

c© The Eurographics Association 2005.



X. Yuan & M.X. Nguyen & N. Zhang & B. Chen / Stippling and Silhouettes Rendering in Geometry-Image Space

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8: A torus model rendered in various styles. (a) - (c) There different silhouette styles using different textures. (d)
Invisible silhouettes are drawn in dotted lines. (e) Stippling; (f) - (h) Three hatching styles using different hatching strokes.
Silhouettes are also rendered in (e) - (h).

(a) (b) (c) (d)

Figure 9: Various rendering effects on different models: (a) male face; (b) fandisk; (c) pear; (d) bunny.

(a) (b) (c)

Figure 10: A Venus model rendered with different styles.

c© The Eurographics Association 2005.



X. Yuan & M.X. Nguyen & N. Zhang & B. Chen / Stippling and Silhouettes Rendering in Geometry-Image Space

(a) (b) (c) (d)

Figure 2: (a) A direction field on a Venus model defined as major axis or principle direction. (c) Direction field after applying
thin plate spline smoothing. (b) and (d), Corresponding color encoded direction fields of (a) and (c) in 2D geometry-image
space, respectively.

Figure 6: Left: silhouettes detected in the geometry-image
space; top-right: rendering of silhouettes; bottom-right:
model viewed from a different direction; the model is mapped
with the left image.

Visible Regions

Occluded Regions

Viewport 

Clipped Regions

Silhouettes

Viewport 

Clipped RegionsOccluded

Regions

Visible Regions

Occluded Regions

Viewport 

Clipped Regions

Silhouettes

(a) (b)

Figure 7: (a) Visibility encoded in 2D geometry-image space
(red: N ·V; green: visibility by depth occlusion; blue: visi-
bility by view frustum culling). (b) Model mapped with (a)
viewed from a different angle. The image in the square is the
model rendered in 3D.

c© The Eurographics Association 2005.


