
Footprint Area Sampled Texturing
Baoquan Chen, Member, IEEE Computer Society, Frank Dachille, and

Arie E. Kaufman, Fellow, IEEE

Abstract—We study texture projection based on a four region subdivision: magnification, minification, and two mixed regions. We

propose improved versions of existing techniques by providing exact filtering methods which reduce both aliasing and overblurring,

especially in the mixed regions. We further present a novel texture mapping algorithm called FAST (Footprint Area Sampled

Texturing), which not only delivers high quality, but also is efficient. By utilizing coherence between neighboring pixels, performing

prefiltering, and applying an area sampling scheme, we guarantee a minimum number of samples sufficient for effective antialiasing.

Unlike existing methods (e.g., MIP-map, Feline), our method adapts the sampling rate in each chosen MIP-map level separately to

avoid undersampling in the lower level l for effective antialiasing and to avoid oversampling in the higher level lþ 1 for efficiency. Our

method has been shown to deliver superior image quality to Feline and other methods while retaining the same efficiency. We also

provide implementation trade offs to apply a variable degree of accuracy versus speed.

Index Terms—Texture mapping, antialiasing, anisotropic filtering, forward mapping, backward mapping, footprint area sampling,

hardware.

�

1 INTRODUCTION

HIGH quality and efficiency are usually conflicting goals
in texture mapping. Many existing methods [2], [14],

[22] focus on delivering high quality and deemphasize
efficiency. These methods tend to consider either the exact
contribution of each texel or the exact filtering of each pixel.
(We call these techniques “exact antialiasing techniques.”)
Although exact texture filtering methods tend to generate
high image quality, they are not perfect; a problem
especially occurs for the mixed regions (to be defined below).
In this paper, we present a new framework to elucidate the
deficiency of existing exact texturing methods and provide
solutions for them. Another severe problem with the exact
texture filtering method is its arbitrary cost since the filter
for an infinite horizontal plane perpendicular to the image
plane must consider an infinite number of texels. A solution
to this is to prefilter the textures and conduct the texel
convolution or pixel filtering in some level of the prefiltered
textures rather than in the original textures. In fact, since
only discrete levels are pregenerated, two levels of the
prefiltered textures are chosen for computing the fractional
level in between the chosen two levels. While the existing
prefiltering methods deliver better efficiency than the exact
filtering methods, they compromise on the image quality. In
this paper, we further offer a novel algorithm to improve
the quality of the latest prefiltering method while main-
taining its efficiency.

Exact texture filtering methods compute the closest
estimate of the projection shape of texels/pixels from one
image domain to another—texture or screen image. The
elliptical weighted average (EWA) filter methods [12]

approximate the projection of a pixel circular footprint in
texture space with an ellipse. In Feibush et al.’s method [7],
a square-shaped pixel is backward projected to a quad-
rilateral in texel space. Glassner [11] adaptively approx-
imates this backward project shape using Crow’s [5]
summed-area table. Gangnet et al.’s method [9] uses the
major axis to determine the supersampling rate for both
axes and average the samples for each pixel. While the
above methods emphasize a backward projection, there are
other methods featuring a forward projection [4]. Ghazan-
farpour and Peroche [10] forward project each texel onto the
screen. At each pixel, a circular footprint with a Gaussian
profile is used to filter projected texels. Since a texture
image is two-dimensional, texels can be minified in one
axis, yet magnified in the other axis. Thus, a texture
mapped image can be subdivided into four regions based
on the minification factor in the two axes. The minification
factor determines and measures minification and magnifi-
cation, expressed in texels per pixel. If minification is greater
than one texel/pixel, we call it minification; otherwise, it is
termed magnification. Fig. 1 delineates four regions: The
cyan region is the magnification region having magnification
in both axes, the green and blue regions are themixed regions
having minification in one axis and magnification in the
other, and the red region is the minification region having
minification in both axes. We refer to the axis with the
smaller minification factor as the minor axis and the other as
the major axis. The ratio between the major and minor axes
is called the anisotropic ratio or eccentricity. Areas with the
same texel=pixel value in both axes are isotropic; otherwise,
they are anisotropic because of the oblique projection of
textures. Most previous texture mapping methods simply
assume that a texel is either minified or magnified and do
not specifically address the special anisotropic character-
istics of the mixed regions—a combination of minification
and magnification.

For example, EWA creates holes for pixels in the mixed
regions. A higher quality EWA method [15] increases the
elliptical pixel footprint axes by 1 unit, convolving more

230 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 10, NO. 2, MARCH/APRIL 2004

. B. Chen is with the Department of Computer Science and Engineering,
University of Minnesota at Twin Cities, 4-192 EE/CS Bldg, 200 Union St.
SE, Minneapolis, MN 55455. E-mail: baoquan@cs.umn.edu.

. F. Dachille and A.E. Kaufman are with the Department of Computer
Science, Stony Brook University, Stony Brook, NY 11794-4400. E-mail:
frank@visitronix.net, ari@cs.sunysb.edu.

Manuscript received 17 July 2002; accepted 2 Dec. 2002.
For information on obtaining reprints of this article, please send e-mail to:
tvcg@computer.org, and reference IEEECS Log Number 116974.

1077-2626/04/$20.00 � 2004 IEEE Published by the IEEE Computer Society
Authorized licensed use limited to: Peking University. Downloaded on October 06,2021 at 10:09:29 UTC from IEEE Xplore. Restrictions apply.

texels. The side effect of enlarging the axes is overblurring
along the major axis (minification direction). Similar to
EWA, the backward mapped quadrilateral of Feibush et al.
and Glassner’s methods may cover no texels in magnifica-
tion and mixed regions. For that reason, it is suggested by
Feibush et al. that, for the magnification region, the pixel
color be computed using backward bilinear interpolation.
However, for the mixed region, this would cause aliasing
for the minification direction. Gangnet et al.’s method
oversamples along the minor axis, which worsens in mixed
regions. Ghazanfarpour and Peroche’s method, however,
generates holes in mixed regions. They thus propose to
check for holes and perform backward bilinear interpola-
tion. Yet, this may cause aliasing for the minification
direction just as in the method of Feibush et al. All these
methods, having arbitrary cost, create an inaccurate
textured image by either introducing holes, blurring, or
aliasing. Here, we elucidate the deficiencies of existing
antialiasing methods by examining them in the context of
the four region subdivision. We further contribute by
proposing improved versions of the existing methods by
solving the problem of holes in mixed regions (Section 2).
For the most part, only a small “fix” is needed to make a
significant improvement on the visual quality. Section 2 also
provides a framework to evaluate and guide new texture
mapping algorithm design, as the one proposed in this
paper (Section 3).

Exact texture filtering is arbitrarily costly since the filter
for an infinite horizontal plane perpendicular to the image
plane must consider an infinite number of texels. Prefilter-
ing methods solve this by prefiltering the textures into
discrete levels and choose the most appropriate level(s) for
texturing. For example, the MIP-map method [20] trades
memory (a prefiltered texture pyramid of about one-third
more storage) for constant time and isotropic filtering that
trades reduced aliasing for increased blurring. Because of
the isotropic filtering, MIP-mapping exhibits very poor
behavior in the anisotropic transformation regions. To
remedy this problem, the NIL-maps method [8] provides
a technique to approximate a space-variant filter kernel
surface in texture space using a sum of suitably chosen basis
functions. The convolution of these functions with a texture
can be precomputed and stored in a pyramidal structure
called NIL-maps. Although the pyramid structure helps to
bound the computation cost, this method is still considered
expensive. On average, an arbitrary filter requires a large
number of basis functions to approximate. Heckbert further

suggested the integration of an EWA implementation with a
MIP-map image pyramid [15]. Here, the minor rather than
major axis of the projected ellipse (or parallelogram
approximation) determines the MIP-map level on which
the EWA filter is then applied. Both NIL-maps and
MIP-map EWA generate superior quality than that of
MIP-map. However, they are still too costly to use because
they both strive to approximate the exact filter shape in
texture space. The footprint assembly algorithm [17] strives
to achieve anisotropic filtering through multiple isotropic
filters. Rather than sampling according to the exact elliptic
footprint shape, each pixel is supersampled along its major
axis direction, using the sample rate determined by the
eccentricity value. Similar to MIP-map EWA, the minor axis
determines the MIP-map level. Footprint assembly provides
higher visual quality than the MIP-map method, but less
complexity than NIL-maps and MIP-map EWA. However,
to facilitate hardware implementation, footprint assembly
simplifies the approximation of ellipse parameters, leading
to noticeable artifacts. A recent method, called Feline [16],
aiming to improve the footprint assembly, optimizes the
computation of the major axis direction, the eccentricity
value, and the sample distribution. Feline represents the
most recent technique which can be efficiently implemented
by hardware and delivers high visual quality. Nevertheless,
Feline is still far from alias-free. As the number of samples
used in Feline is computed to guarantee sufficient sampling
on the fractional level of MIP-maps, however, this sampling
rate will lead to undersampling in the chosen lower level (l),
but oversampling in the chosen higher level (lþ 1). In the
second part of this paper, we present a solution to
guarantee minimum but sufficient sampling rate at both
levels for effective antialiasing. Significantly, we employ an
area sampling scheme and adapt the number of samples
separately at the two chosen MIP-map levels. Integrating
with several other techniques such as utilizing the
coherence between neighboring pixels, we present a novel
method called FAST (Footprint Area Sampled Texturing) to
address issues of processing efficiency, image quality, and
the feasibility of hardware implementation (Section 3).

2 EXACT ANTIALIASING TECHNIQUES

The key issue for antialiased texture mapping is for each
screen pixel to determine the contributing texels and to
convolve the texels with a proper filter to obtain the final
pixel color. This filtering can be applied in either screen
space on pixels using forward mapping or texture space on
texels using backward mapping. We present a framework
that allows either forward or backward mapping using both
footprint or point projections. We analyze the behavior of
these methods using the four region subdivision, especially
in the critical mixed regions of Fig. 1. The fundamental
problem of these regions can be illustrated by a simple
example of image scaling. When an image is scaled without
ratio constraint, it can be magnified in one direction but
minified in the other direction. Here, we use an example of
scaling a 5� 5 resolution image to a resolution of 9� 3. As a
convention in the following illustrations, all pixels and
texels are placed on the grid points. We also assume a
circular footprint.

CHEN ET AL.: FOOTPRINT AREA SAMPLED TEXTURING 231

Fig. 1. Four regions of a texture mapped checkerboard plane:
magnification (cyan), minification (red), and mixed regions (green and
blue).

Authorized licensed use limited to: Peking University. Downloaded on October 06,2021 at 10:09:29 UTC from IEEE Xplore. Restrictions apply.

2.1 Forward Footprint Projection

First, we consider each texel as a circle and apply forward
projection, creating a screen space conic. We then scan
convert the conic, convolving the energy of the texel with a
filter. This effectively “splats” the energy of the texel to the
pixels within its projected footprint. In the magnification
and mixed regions, the entire conic may actually fall in
between the pixels, as shown in Fig. 2. We propose to
expand the conic so that it splats to at least one pixel by
clamping the axes and diagonals to a minimum of one pixel
unit. Similarly, Swan et al. [18] successfully applied this
clamping on the projected footprint of each voxel in
3D volume rendering by splatting. However, they have
only applied it to the minification region, without explicitly
mentioning the mixed region. We propose that this
clamping must be conducted separately for each axis. The
effectiveness of this approach has been recently demon-
strated by Zwicker et al. [23] in volume rendering.

Computing and evaluating a conic or even the approxi-
mated ellipse shape are expensive operations, as well as
convolving texel energy. Thus, this method has practical
limitations.

2.2 Forward Point Projection

Second, we consider each texel as a point and project it into
screen space. A filter is placed at each pixel for filtering the
projected texels. This is accurate in the minification region
as no footprint is ever approximated. However, holes may
appear in the magnification and mixed regions. As can be
seen in Fig. 3, no texels are projected into pixel p footprint,
thus a hole appears at pixel p. We propose to supersample
in texture space along the magnification axis and forward
project subtexels into screen space. Fig. 4 shows the
problem with the approach of Ghazanfarpour et al. [10]
for filling holes and the effectiveness of our proposed
solution using only a simple Bartlett filter in screen space.

2.3 Backward Footprint Projection

Third, we consider each screen pixel as a circle and back
project it into texture space, where it becomes a conic. We

then approximate the conic by an ellipse and scan convert it
in texture space, convolving it with a projected filter kernel,
similar to EWA. As shown in Fig. 5, in the mixed regions,
the backward mapped footprint may cover no texels,
leaving a hole at that pixel. We propose to clamp the
minimum length of the ellipse axes and diagonals to one
texel unit in order to guarantee texel coverage without
blurring. This is superior to Heckbert’s solution of
unilaterally increasing the pixel footprint axes by one texel
unit. Fig. 6 shows overblurred EWA (in the minification
axis) and the less blurred result of our method.

2.4 Backward Point Projection

Fourth, we consider each screen pixel as a point and project
it into texture space. An interpolation is conducted at the
projected location to obtain the color value. This method is
naturally free of holes.

Because of the sampling rate difference in screen and
texture image space and the perspective projection, screen
pixels may undersample the texture image, causing an
unappealing visual effect of aliasing. For antialiasing, two
methods are possible. The first is called a prefiltering of the
texture image according to the sampling rate of the screen
image. MIP-mapping is a practical prefiltering method,
which will be reviewed in the next section. Another method
is called postfiltering, which supersamples the screen image
and then filters on subpixels to obtain the final pixel value.
Hardware accelerated texture supersampling was used in
the accumulation buffer [13]. However, the supersampling
rates are globally specified without adapting them to the

232 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 10, NO. 2, MARCH/APRIL 2004

Fig. 2. Forward projected texel footprint may cover no pixels in naive

forward footprint projection methods.

Fig. 3. No texel may be projected into a pixel footprint in naive forward

point projection methods.

Fig. 4. Forward point projection texture filtering with (a) backward
bilinear interpolation to fill in the holes [10] (notice aliasing due to
subsampling in one direction) and (b) our solution with supersampling in
texture space to fill in the holes. (c) and (d) are zoom-ins of the marked
rectangles of (a) and (b), respectively.

Fig. 5. The backward projected footprint may cover no texels in naive
backward footprint projection methods.

Authorized licensed use limited to: Peking University. Downloaded on October 06,2021 at 10:09:29 UTC from IEEE Xplore. Restrictions apply.

local minification. The method of Gangnet et al. [9] is
adaptive, but, for every pixel, it oversamples along the
minor axis (see Fig. 7). This leads to extra computation,
especially in the mixed regions. To alleviate this problem,
we propose adaptive sampling to adapt the sampling rate in
each direction separately (see Fig. 14). Visual differences are
not apparent between the oversampling of Gangnet et al.
and our more efficient adaptive sampling method.

A filter size of at least one unit radius is necessary for
effective antialiasing. For some filters, such as the Gaussian
filter, an even larger filter size is required [22]. This means
the footprints of neighboring pixels overlap each other. The
overlapped region is sampled multiple times if using a
straightforward adaptive sampling method. In the next
section, we introduce a novel backward method which
guarantees a minimum but efficient number of samples for
effective antialiasing.

3 THE FAST ALGORITHM

Current hardware implementations favor backward map-
ping. It has the important property of processing in raster
scanline order, which is compatible with the hardware
implementation of other pipeline stages. Our straightfor-
ward adaptive sampling method, described in Section 2.4,
promises high quality, but could be very inefficient.

We propose a method called FAST which addresses
issues of processing efficiency, texel memory bandwidth,

and image quality. We achieve our goals by utilizing a
number of techniques:

1. Prefilter using MIP-maps to lower the cost of each
pixel. Differing from the existing methods, we adapt
the sampling rate in each chosen MIP-map level
separately to avoid undersampling in level l for
effective antialiasing and oversampling in level lþ 1
for efficiency.

2. Provide a scheme called footprint area sampling to
determine the number of samples.

3. Utilize the coherence between neighboring pixels to
guarantee a minimum number of subpixel samples,
which also minimizes the number of texel accesses.

4. Provide a finer trade off between image quality and
efficiency by clamping the maximum number of
samples for each pixel.

In the following section, we discuss the previous
prefiltering methods, point out the defects of these
approaches, and, finally, propose our solution.

3.1 Prefiltering

The most popular method of prefiltering is the MIP-map
method which builds up in preprocessing the different
levels of representation of the texture image. Starting from
the original image, called level 0, this method filters the
input image to form a new image of half resolution, called
level 1. This procedure continues on level 1 until the image
resolution reaches 1� 1. In texture filtering, the pixel is
projected to the texture space and the maximum minifica-
tion factor of the two axes is calculated. A pyramid level l
image is selected that contains the prefiltered texel data for
a minification ratio nearest to that calculated. A trilinear
interpolation is performed by performing first bilinear
interpolation in both level l and level lþ 1 image space
and then a linear interpolation on the obtained two pixel
colors to get the final color. The linear interpolation weight
is computed based on the fractional level f calculated from
the maximum minification factor. This final linear inter-
polation softens the transition between different levels.
MIP-mapping is illustrated in Fig. 8a. Level selection,
especially its implementation in hardware, is discussed in
detail in [6].

As a known problem, MIP-map prefiltering and the
trilinear interpolation are based on an isotropic square filter
shape. The shape of the filter is always rectangular, but the
size is space-variant. However, the mapping of a pixel can
be anisotropic. Therefore, such an isotropic filter causes
blurring in one axis while reducing aliasing in the other.

Heckbert [15] has proposed a 4D image pyramid that
extends in the two axes to approximate arbitrary rectangles.
However, this leads to a higher storage requirement. Yet,
the improvement over the MIP-map pyramid is limited
because a rectangle still cannot approximate arbitrarily
aligned shape. Recently, Blythe and McReynolds [3]
introduced an anisotropic texture filtering technique which
filters the texture anisotropically so that the filtered MIP-
maps aspect ratio approximates the projected aspect ratio of
the geometry. In essence, this approach is similar to
Heckbert’s approach [15]. A number of disadvantages are
inherent to this approach. As the aspect ratio varies from
polygon to polygon even on a single model, it also changes
over time for each polygon when the view changes, it

CHEN ET AL.: FOOTPRINT AREA SAMPLED TEXTURING 233

Fig. 6. Solutions to the undersampling problem in backward footprint

projection: (a) overblurred EWA [15] and (b) out clamping method. (c)

and (d) are zoom-ins of the marked rectangles of (a) and (b),

respectively.

Fig. 7. The minor axis is over supersampled in naive backward point
projection methods.

Authorized licensed use limited to: Peking University. Downloaded on October 06,2021 at 10:09:29 UTC from IEEE Xplore. Restrictions apply.

requires that either a prohibitive set of resampled MIP-
maps with different aspect ratios have to be generated in
advance, resulting in excessive memory expenses, or the
MIP-maps have to be regenerated on the fly, resulting in
extravagant computation cost. Furthermore, because the
anisotropic filtering is conducted only in the two major axes
of the texture image, generated anisotropic MIP-maps will
thus never match exactly with the arbitrary aspect ratio of
the projected geometry.

The footprint assembly method accommodates the space
variance by performing multiple trilinear filter operations
along the direction of anisotropy. A pixel area, one-unit
square centered at the pixel, is projected to the texture space
and the major and minor axes are calculated to approximate
the parallelogram projection shape. Each pixel is super-
sampled along its major axis direction. Here, the minor
instead of major axis determines the MIP-map level. The
eccentricity determines the number of samples along the
major axis. Fig. 8b illustrates the principle of this filtering
operation. Feline improves the footprint assembly in a few
effective ways by:

1. using a minimum of one-unit radius sphere (corre-
sponding to a two-unit square) to approximate a

pixel so that the adjacent footprints have enough
overlap to overcome aliasing,

2. approximating the major axis as the major axis of the
projected ellipse rather than the parallelogram,

3. allowing the number of samples to be any integer
rather than 2n, and

4. weighting the samples using a Gaussian curve rather
than simply averaging them.

More details are given in reference [16]. Fig. 9 shows the
difference between footprint assembly and Feline on the
filter shape and the samples used. It is claimed that Feline
achieves higher visual quality than footprint assembly with
little additional cost.

However, Feline is not alias-free. While Feline guaran-
tees sufficient sampling rate for the real (fractional) level of
a pixel, it ends up undersampling in the chosen lower
level (l), but oversampling in the chosen higher level (lþ 1).
This behavior is inherent to the basic filtering element of
trilinear interpolation that Feline uses, which presents a
problem even for an isotropic projection. As an example, we
want to scale an image down three times in each dimension.
We first precompute the MIP-maps of the image. According
to MIP-mapping, we choose levels 1 and 2 for trilinear
interpolation. For each target pixel, we sample in each level
and then average the results. The sample points in level 1
are 1:5 unit distance away, indicating an undersampling
that causes aliasing. This aliasing effect remains after the
interlevel linear interpolation. This is more clearly illu-
strated in the frequency domain, shown in Fig. 10. Fig. 10a
is the spectrum of the original analog signal. Since MIP-
maps are created through low-pass filtering, the spectrum
becomes narrower when the MIP-map level increases.
When the sampling rate in level l is insufficient, spectra
overlap, an indication of aliasing (Fig. 10b). In level lþ 1,
the sampling rate is higher than the Nyquist rate, thus the
spectra are further separated apart, as in Fig. 10c. Fig. 10d
shows the spectrum after the linear interpolation, indicating
that aliasing remains in the final result. In addition, Feline,
similar to many other methods such as EWA, has footprint

234 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 10, NO. 2, MARCH/APRIL 2004

Fig. 8. Prefiltering methods: (a) MIP-mapping; (b) Footprint Assembly/

Feline.

Fig. 9. Comparison between Footprint Assembly and Feline: (a) screen space, (b) texture space of Footprint Assembly, (c) and Feline.

Authorized licensed use limited to: Peking University. Downloaded on October 06,2021 at 10:09:29 UTC from IEEE Xplore. Restrictions apply.

overlap between adjacent pixels, resulting in sampling the
texture multiple times—a redundancy increasing the
computation cost and texel access bandwidth. The basic
idea of our method is to adapt sampling rate in each level
separately. This avoids undersampling in the chosen MIP-
map level l for effective antialiasing and oversampling in
level lþ 1 for efficiency, thus minimizing the number of
samples for effective antialiasing. Yet, to reduce the
computation cost and the texel access bandwidth, we utilize
the coherence between adjacent pixels by computing only a
quarter of this square and “splat” the result to the pixels
whose footprints overlap with this quarter (shaded green
square in Fig. 9a). We discuss this technique immediately.

3.2 Scanline Coherence

When the pixel coverage overlaps, subpixels between
neighboring pixels contribute to all surrounding pixels.
For example, in Fig. 11a, subpixels within the square region
aefg contribute to pixels a, e, f , and g. The naive
implementation of our adaptive sampling method
(Section 2.4) calculates the subpixels of each pixel sepa-
rately, which means that the subpixels are calculated four
times. This requires not only costly computation, but also a
high memory bandwidth. To address this issue, coherence

between neighboring pixels must be exploited. Texel access
coherence has been used in hardware design [21] by
caching the most recently used texels. We want to push
this coherence utilization to its limit. Generally, pixel
coherences exist between neighboring pixels within and
between scanlines.

Fig. 11a shows our scanline coherence. Each subpixel is
calculated only once and the RGB colors are splatted to the
four neighboring pixels. The contribution weight for each
neighboring pixel is determined by the filter used. Fig. 11b
shows a Gaussian filter implementation with a circular
footprint coverage of one unit radius. The filter weight of a
subpixel to a pixel is precomputed and indexed by the
subpixel’s coordinate offsets (4x;4y) to the pixel. Since the
filter is implemented with a table lookup, we can use a filter
of any kind. The contribution weights of all subpixels are
accumulated in each pixel for the final normalization. As an
example, for pixel a in Fig. 11, the subpixels in the top-right
shaded square region are processed and their values are
distributed (“splatted”) to the four neighboring pixels a, e,
f , and g. Upon finishing processing this quarter, the
remaining three quarters of the pixel coverage have already
been calculated and accumulated by pixel b, the neighbor-
ing pixel in the same scanline, and c and d, neighboring
pixels in the previous scanline. Thus, for pixel a, we can
sum up the accumulated partial color of the first three
quarters and that of the current quarter and then normalize
the sum by the accumulated weight as the final color.

To hold the partial contribution of all subpixels during
the scanline processing, intuitively, two scanline buffers are
required: one for the current scanline Li and another for the
next scanline Liþ1. But, for a compact implementation, a
scanline buffer of size lengthþ 1 working as a FIFO is
sufficient, where length is the length of the scanline. Once
the final colors are produced for pixels in scanline Li, their
memory can be immediately released for storing the partial
colors of pixels in scanline Liþ1. Each pixel of the scanline
buffer stores the accumulated color RGB and weight. The
ðu; vÞ coordinates in texture space are also stored in the
buffer. This is used for pixel vector calculation, to be
discussed in the next section. Since the operations are
conducted in two MIP-map levels, hence, two sets of buffers
are needed, resulting in two scanline buffers. This is still
feasible for hardware implementation if we use bucket

CHEN ET AL.: FOOTPRINT AREA SAMPLED TEXTURING 235

Fig. 10. Spectrum of (a) original signal, (b) sampling in level l, (c)

sampling in level lþ 1, (d) linear interpolation between two levels ((b)

and (c)).

Fig. 11. Utilizing coherence between scanlines and neighboring pixels.

Authorized licensed use limited to: Peking University. Downloaded on October 06,2021 at 10:09:29 UTC from IEEE Xplore. Restrictions apply.

rendering [19], in which the framebuffer is subdivided into

coherent regions that are rendered independently (also

known as tiled rendering or chunking). Bucket rendering

enables a deeper working set memory to be kept on chip.

3.3 Footprint Area Sampling

For our case, the processing area of each pixel (x, y) is the
top-right square, called the current pixel quarter (shaded
square in Fig. 12, also shaded green square in Fig. 9a). It is
important to determine the minimum number of samples in
each MIP-map level for effective antialiasing and to avoid
supersampling. When the current pixel quarter is projected
into texture space, the projected area can be approximated as
a parallelogram (Fig. 12). In a backward footprint projection
method, such as EWA, this approximated region decides the
convolution texels; therefore, a parallelogram approximation
is too crude there.However, for our situation, aparallelogram
approximation is fairly sufficient because it is only used to
determine the MIP-map level and the sample rate. The real
filter coverage isdefinedby the filter itself and is conducted in
screen space. Next, we discuss the pixel projection geometry
and the schemes on determining the MIP-map level and
sample rates. For clarity and the reader’s convenience, we
repeat some basic steps here, which have already been
described in previous work.

The projection parallelogram is described by axis vectors

r1; r2 and diagonal vectors d1; d2, where d1 ¼ r1 þ r2 and

d2 ¼ r2 � r1. The vector r1 ¼ ð@u@x ; @v@xÞ approximates the

movement in texture space of a unit x-step in screen space,

while r2 ¼ ð@u@y ; @v@yÞ approximates a y-step.
Let F be the perspective transformation function from

ðx; yÞ screen coordinates to ðu; vÞ texture coordinates:

u ¼ Fuðx; yÞ; v ¼ Fvðx; yÞ: ð1Þ

r1 and r2 can be represented as:

r1 ¼ ðFuðxþ 1; yÞ � Fuðx; yÞ; Fvðxþ 1; yÞ � Fvðx; yÞÞ
r2 ¼ ðFuðx; yþ 1Þ � Fuðx; yÞ; Fvðx; yþ 1Þ � Fvðx; yÞÞ:

ð2Þ

Because the projections of neighboring pixels were pre-
viously computed and stored in the scanline buffers, we can
apply (2) by taking the vectors to neighboring pixels in
texture space which are already calculated [6]. Therefore,
this method requires no extra Jacobian calculations as the
other methods do [12], [17]. Special care needs to be taken
for the boundary pixels to be able to utilize this method. For
example, for the first row pixels, we have to compute the
projections of an additional “previous” row of pixels and
store them in the scanline buffer. Similarly, for the right-
most pixel of a scanline, we need to compute the projection

of an additonal pixel to its right. However, note that, for
these additional pixels, only their projections are calculated.

The magnitudes of these vectors are approximated with:

jr1j ¼ max
@u

@x

����
����; @v

@x

����
����

� �

jr2j ¼ max
@u

@y

����
����; @v

@y

����
����

� �

jd1j ¼ max
@u

@x
þ @u

@y

����
����; @v

@x
þ @v

@y

����
����

� �

jd2j ¼ max
@u

@y
� @u

@x

����
����; @v

@y
� @v

@x

����
����

� �
:

ð3Þ

The magnitude of the minor vector m can be approxi-
mated by:

m ¼ minðjr1j; jr2j; jd1j; jd2jÞ: ð4Þ

The minor vector m is used to compute the MIP level l and
the scaling factor f of level l:

l ¼ blog2mc; f ¼ 2l: ð5Þ

The vectors r1 and r2 in level l are then scaled as:

r01 ¼
r1
f
; r02 ¼

r2
f
: ð6Þ

We then compute the “area” of the parallelogram and use it
to determine the total number of samples in each pixel
quarter as:

N ¼ djr01 � r02je ¼
jr1 � r2j

f2

� �
: ð7Þ

Hence, we have the name area sampling. This is similar to
NIL-maps [8] in determining the initial number of patches
(for approximating an arbitrary filter kernel surface); the
difference is that here all samples are in the same MIP-map
level. Once the total number of samples is determined, we
then distribute these samples evenly in the pixel quarter
using the jittered sampling scheme.

We must consider the special situation over the mixed
region, where the minor axis of r01 and r02 is less than 1:0

(magnification). We must clamp it to 1:0 before we apply (7)
so that we guarantee sufficient sampling in the pixel quarter
area. For example, if r01?r02 and jr01j ¼ 10:0 and jr02j ¼ 0:1, the
result of applying (7) is N ¼ 1, while the required sampling
rate is really 10. We call this clamping the mixed region

correction.
In level lþ 1, the number of samples can be calculated

from the scaled vector of r1 and r2 in level lþ 1, as in (7).
However, it can be simply calculated as:

N 0 ¼ N

4

� �
: ð8Þ

Fig. 13 shows an example of determining the number of
samples for Feline (Fig. 13a) and our FAST area sampling
method (Fig. 13b). In this example, jr1j ¼ 16:0 and jr2j ¼ 2:4;
the two vectors are perpendicular to each other. For the
Feline method, the number of trilinear sample points along
the anistropic axis is determined by the anisotropic ratio
between the two vectors, which is rounded to 7. In our

236 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 10, NO. 2, MARCH/APRIL 2004

Fig. 12. Pixel quarter area projection.

Authorized licensed use limited to: Peking University. Downloaded on October 06,2021 at 10:09:29 UTC from IEEE Xplore. Restrictions apply.

FAST area sampling method, the minor axis r2 is used to
determine the MIP-map level (5), which is 1 for this case. In
level 1, the scaled two vectors become jr01j ¼ 8:0 and
jr02j ¼ 1:2, respectively. The total sampling rate is deter-
mined as N ¼ d8:0� 1:2e ¼ 10. The number of samples in
level 2 is N 0 ¼ d104 e ¼ 3. In total, Feline spends 14 samples
for the two MIP-map levels, while FAST spends 13 samples.

For highly anisotropic pixels, the supersampling rate for
the pixel quarter can be quite high. To bound the processing
time of each pixel, we need to clamp the sampling rate to a
prespecified value Nc. Simply doing this leads to aliasing
due to undersampling in the area. Our solution is to trade
off blurring with aliasing by increading the MIP-map level.
The new MIP-map level l0 and the scaling factor f 0 are
computed as:

l0 ¼ log2
r1 � r2
Nc

� �
; f 0 ¼ 2l

0
: ð9Þ

This method provides a trade off between image quality
and efficiency. The total number of samples that we really
use in level l0, N , can be calculated based on the newly
calculated f 0 from (7). The number of samples in level l0 þ 1
is then N

4 .

4 RESULTS AND DISCUSSIONS

To evaluate our FAST area sampling method, we compare it
with existing MIP-map and Feline methods. We have
rendered a room scene using the different methods. The
scene consists of five large texture mapped polygons
representing walls, a floor, and ceiling. Each texture image
has different features. The floor image is the typical
checkerboard benchmark image for texture mapping. The
roof image is high frequency line stripes. The right wall
image is full of text, which is also challenging. The left wall
image is a mandrill image. The back wall image is a typical
camera shot conveying a meaningful scene. All images have
a resolution of 256� 256. The resulting image resolution is
240� 240. The program runs on an SGI O2 with an R10000
CPU and 128MByte memory.

We first compare the quality among these methods.
Figs. 14a-i show a still frame from an animation. The
traditional MIP-map method creates the lowest quality
since only a single trilinear interpolation and an isotropic
filter is implemented (Fig. 14a). All images are blurry and
the checkerboard image demonstrates noticeable aliasing.

Straightforward implementation of the adaptive sampling
method creates the highest quality image with less blurring
and better antialiasing (Fig. 14b). Utilizing coherence only
in the adaptive sampling method (without prefiltering)
promises the same high quality (Fig. 14c). Feline delivers
better quality than MIP-mapping by introducing anisotro-
pic filtering (Fig. 14d). This can be observed from the text
image, but aliasing is still present in the checkerboard
image. By setting the clamping factor to 4, the quality is
similar (Fig. 14e). However, by further reducing the
clamping factor to 2, the image becomes blurrier (Fig. 14f).
Our FAST method, with coherence utilization, prefiltering,
and the footprint area sampling scheme, creates images of
indistinguishable quality as compared to straightforward
adaptive sampling (Fig. 14g). By setting the clamping factor
to 4, the quality is similar (Fig. 14h). However, by setting the
clamping factor to 2, the image becomes a bit blurrier and
more aliased (Fig. 14i). The difference can be seen more
clearly from zoom-ins in Figs. 14j-l. The quality of
animations is consistent with that of the extracted frames
for each method.

In creating images using FAST, we have used a Bartlett
filter to filter subpixels. We have also used a Bartlett filter
with 4� 4 coverage to build up all MIP-maps, instead of a
2� 2 box filter as typically used in the MIP-mapping
method, we argue that using only a 2� 2 box filter causes
aliasing in MIP-maps because of its insufficient filter size.

In practice, we can specify the clamping value per
primitive based on the texture content. For high frequency
textures, a higher clamping value is required for effective
antialiasing; while, for low frequency textures, such as the
back wall image, no artifacts are noticeable even if the
clamping value is set to 2. Our experiments show that
clamping to 4 is usually a good compromise. Clamping to 6
is normally sufficient for high quality.

Next, we compare the speed among the methods. The
common processing functions are shared among the
methods for fair comparison. The rendering time for each
of the three methods—MIP-map, Feline, and FAST—is
recorded and plotted in Fig. 15. As can be seen from the
graph, MIP-mapping is always the most efficient, because it
spends only one trilinear interpolation for each pixel,
invariant of the region. It is also clear from the graph that
MIP-mapping has a property of constant cost. However,
this constant time is belied by the image quality (Fig. 14a).

FAST and Feline are very similar in rendering speed. It
can also be seen in Fig. 15 that these two methods are
sensitive to the camera position because they both try to

CHEN ET AL.: FOOTPRINT AREA SAMPLED TEXTURING 237

Fig. 13. (a) Feline versus (b) our FAST area sampling.

Authorized licensed use limited to: Peking University. Downloaded on October 06,2021 at 10:09:29 UTC from IEEE Xplore. Restrictions apply.

adapt the number of samples according to the local
minification property of each pixel. Table 1 shows the
average rendering time per frame for each method. Here,
we compare with two additional methods: straightforward
adaptive sampling with and without coherence. We can see
that the adaptive sampling (“Adaptive”) method is the most
inefficient. Utilizing coherence (“Coherence”) leads to more
than twice the speedup. When decreasing the clamping
value, we can see that the rendering time of Feline decreases
faster than the FAST method. This is because, in Feline,
decreasing the clamping value directly reduces the aniso-

tropic ratio and, thus, the sample rate. But, for FAST,
decreasing the clamping value may not lead to a higher
MIP-map level selection; therefore, the total number of
samples may stay the same.

Another property we evaluated is the number of samples
processed for each frame, which is plotted in Fig. 16. Since
each trilinear interpolation requires twice the number of
texels as bilinear interpolation, we normalized a trilinearly
interpolated sample as two bilinearly interpolated samples.
MIP-mapping spends two samples per pixel for the regions
with minification in at least one axis. In the 110 frame

238 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 10, NO. 2, MARCH/APRIL 2004

Fig. 14. Texture mapping using (a) traditional MIP-map, (b) adaptive sampling without coherence, (c) adaptive sampling with coherence, (d) Feline

without clamping, (e) Feling with clamp = 4, (f) Feline with clamp = 2, (g) FAST without clamping, (h) FAST with clamp = 4, (i) FAST with clamp = 2.

(j), (k), and (l) are zoom-ins of the marked racteangles of (a), (d) and (g), respectively.

Authorized licensed use limited to: Peking University. Downloaded on October 06,2021 at 10:09:29 UTC from IEEE Xplore. Restrictions apply.

animation, all pixels are in these regions, thus the curve for
MIP-mapping stays completely flat. The graph illustrates
that FAST utilizes slightly fewer samples than Feline, but,
on average, they are very close (Table 1). The last column of
Table 1 shows the required memory bandwidth relative to
the MIP-map method. When the clamping value is 4 or
higher, FAST only creates less than one time memory
bandwidth overhead. This could be easily met by the
current architecture design of managing memory band-
width [1], such as capturing the memory bandwidth on
chip, texel caching, and aggressive memory compression.

5 CONCLUDING REMARKS

We have proposed and evaluated different antialiasing
methods for texture mapping based on a four region
subdivision of the texture mapped area. Critical mixed
regions are studied to challenge previous methods and
guide our design. By utilizing coherence, prefiltering, and
an area sampling scheme, our method FAST has achieved
the following features:

. High quality: FAST delivers higher visual quality
than MIP-map and Feline and almost indistinguish-
able image quality as compared to straightforward
adaptive sampling.

. Efficiency: FAST maintains the same efficiency as
Feline.

. Low memory bandwidth requirement: FAST re-
quires memory bandwidth comparable to Feline.

. Trade off between image quality and efficiency:
FAST can adjust the clamping value supporting a
fine trade off between accuracy and speed. FAST still
promises competitive image quality when reducing
the clamping value, yet raising the efficiency.

Although we describe our methods in 2D, they can all be
extended to 3D, especially benefiting problems such as
3D texture mapping, volume deformation, volume render-
ing, and hypertexturing. We plan to explore these in our
future work.

From our experiments, we have observed that different
texture images with different frequencies require different

clamp values to obtain the same visual quality. We are

currently investigating on adapting sample rate based on

the local frequency of texture images.

ACKNOWLEDGMENTS

This work was supported by US National Science Founda-

tion grants MIP9527694 and CCR0306438, US Office of

Naval Research grant N000149710402, and Intel. This work

was conducted while Baoquan Chen was at Stony Brook

University. Baoquan Chen would also like to acknowledge

a Computer Science Department StartUp grant, Grant-in-

Aid of Research, Artistry and Scholarship from the Office of

the Vice President for Research and Dean of the Graduate

School of the University of Minnesota. This work was

CHEN ET AL.: FOOTPRINT AREA SAMPLED TEXTURING 239

Fig. 15. Average rendering time per pixel (milliseconds) for 110 frames

of a room scene animation.

TABLE 1
Comparison of the Performance of the Different Methods

Fig. 16. Number of sample points per pixel for 110 frames of a room

scene animation.

Authorized licensed use limited to: Peking University. Downloaded on October 06,2021 at 10:09:29 UTC from IEEE Xplore. Restrictions apply.

supported in part by the US Army High Performance

Computing Research Center under the auspices of the

Department of the Army, Army Research Laboratory

cooperative agreement number DAAD19-01-2-0014, the

content of which does not necessarily reflect the position

or the policy of the government and no official endorsement

should be inferred.

REFERENCES

[1] A.C. Barkans, “High-Quality Rendering Using the Talisman
Architecture,” Proc. 1997 SIGGRAPH/Eurographics Workshop
Graphics Hardware, pp. 79-88, Aug. 1997.

[2] J.F. Blinn and M.E. Newell, “Texture and Reflection in Computer
Generated Images,” Comm. ACM, vol. 19, pp. 542-546, 1976.

[3] D. Blythe and T. McReynolds, “Advanced Graphics Programming
Techniques Using OpenGL,” SIGGRAPH ’99 Course, 1999.

[4] B. Chen, F. Dachille, and A. Kaufman, “Forward Image Warping,”
Proc. IEEE Visualization ’99, pp. 89-96, Oct. 1999.

[5] F.C. Crow, “Summed-Area Tables for Texture Mapping,” Compu-
ter Graphics (SIGGRAPH ’84 Proc.), H. Christiansen, ed., vol. 18,
pp. 207-212, July 1984.

[6] J.P. Ewins, M.D. Waller, M. White, and P.F. Lister, “Mip-Map
Level Selection for Texture Mapping,” IEEE Trans. Visualization
and Computer Graphics, vol. 4, no. 4, pp. 317-329, Oct.-Dec. 1998.

[7] E.A. Feibush, M. Levoy, and R.L. Cook, “Synthetic Texturing
Using Digital Filters,” Computer Graphics (SIGGRAPH ’80 Proc.),
vol. 14, no. 3, pp. 294-301, July 1980.

[8] A. Fournier and E. Fiume, “Constant-Time Filtering with Space-
Variant Kernels,” Computer Graphics (SIGGRAPH ’88 Proc.), vol. 22,
no. 4, pp. 229-238, Aug. 1988.

[9] M. Gangnet, D. Perny, and P. Coueignoux, “Perspective Mapping
of Planar Textures,” Computers and Graphics, vol. 8, no. 2, pp. 115-
123, 1984.

[10] D. Ghazanfarpour and B. Peroche, “A High-Quality Filtering
Using Forward Texture Mapping,” Computers and Graphics, vol. 15,
no. 4, pp. 569-577, 1991.

[11] A. Glassner, “Adaptive Precision in Texture Mapping,” Computer
Graphics (SIGGRAPH ’86 Proc.), vol. 20, pp. 297-306, Aug. 1986.

[12] N. Greene and P.S. Heckbert, “Creating Raster Omnimax Images
from Multiple Perspective Views Using the Elliptical Weighted
Average Filter,” IEEE Computer Graphics and Applications, vol. 6,
no. 6, pp. 21-27, June 1986.

[13] P. Haeberli and K. Akeley, “The Accumulation Buffer: Hardware
Support for High-Quality Rendering,” Computer Graphics (SIG-
GRAPH ’90 Proc.), vol. 24, no. 4, pp. 309-318, Aug. 1990.

[14] P.S. Heckbert, “Survey of Texture Mapping,” IEEE Computer
Graphics and Applications, vol. 6, no. 11, pp. 56-67, Nov. 1986.

[15] P.S. Heckbert, “Fundamentals of Texture Mapping and Image
Warping,” MS thesis, Dept. of Electrical Eng. and Computer
Science, Univ. of California, Berkeley, June 1989.

[16] J. McCormack, R. Perry, K.I. Farkas, and N.P. Jouppi, “Feline: Fast
Elliptical Lines for Anisotropic Texture Mapping,” Computer
Graphics (SIGGRAPH ’99 Proc.), pp. 243-250, Aug. 1999.

[17] A. Schilling, G. Knittel, and W. Strasser, “Texram: Smart Memory
for Texturing,” IEEE Computer Graphics and Applications, vol. 16,
no. 3, pp. 32-41, May 1996.

[18] J.E. Swan II, K. Mueller, T. Möller, N. Shareef, R.A. Crawfis, and R.
Yagel, “An Anti-Aliasing Technique for Splatting,” Proc. IEEE
Visualization ’97, pp. 197-204, Nov. 1997.

[19] J. Torborg and J. Kajiya, “Talisman: Commodity Real-Time 3D
Graphics for the PC,” Computer Graphics (SIGGRAPH ’96), pp. 353-
364, Aug. 1996.

[20] L. Williams, “Pyramidal Parametrics,” Computer Graphics (SIG-
GRAPH ’83 Proc.), vol. 17, no. 3, pp. 1-11, July 1983.

[21] S. Winner, M. Kelley, B. Pease, B. Rivard, and A. Yen, “Hardware
Accelerated Rendering of Antialiasing Using a Modified A-Buffer
Algorithm,” Computer Graphics (SIGGRAPH ’97 Proc.), vol. 31, no.
3A, pp. 307-316, Aug. 1997.

[22] G. Wolberg, Digital Image Warping. Los Alamitos, Calif.: IEEE CS
Press, 1990.

[23] M. Zwicker, H. Pfister, J. van Baar, and M. Gross, “EWA Volume
Rendering,” Proc. IEEE Visualization ’01, pp. 29-36, Oct. 2001.

Baoquan Chen received the BS degree in
electronic engineering from Xidian University,
Xi’an (1991), the MS degree in electronic
engineering from Tsinghua University, Beijing
(1994), and a second MS degree (1997) and
then PhD degree (1999) in computer science
from the State University of New York at Stony
Brook. He is an assistant professor of computer
science and engineering at the University of
Minnesota at Twin Cities, where he is also a

faculty at the Digital Technology Center and Digital Design Consortium.
His research interests generally lie in computer graphics and visualiza-
tion, focusing specifically on volume visualization, real-time rendering/
visualization by both hardware and software (including image-based,
point-based rendering, and multiresolution techniques), and 3D data
acquisition. His research is supported by the US National Science
Foundation (NSF), US Army Research, Microsoft Research, and private
donation. He has been on conference committees and/or served as a
conference session chair of IEEE Visualization (2001, 2002), IEEE
Volume Graphics (2001, 2003), and the Symposium on Volume
Visualization and Graphics (2002). He won the NSF CAREER award
in 2002 and Microsoft Proposal Award 2002. He is a member of the
IEEE Computer Society. For more information see http://www.cs.umn.
edu/~baoquan.

Frank Dachille received the BS degree in naval
architecture and marine engineering from the
Webb Institute of Naval Architecture in 1994. He
graduated in 2002 with the PhD degree in
computer science from the State University of
New York at Stony Brook, where he developed
architectures and algorithms for volume render-
ing at the Center for Visual Computing (CVC)
headed by Dr. Arie Kaufman. He develops
visualization and analytical applications for

medical imaging while directing research and development at Viatronix,
Inc. He created collaborative virtual reality environments and CAVE
applications for two years at Concurrent Technologies Corporation. His
current research interests include global illumination, medical volume
visualization, volume rendering architectures, physics-based modeling,
and virtual reality. For more information, see http://www.cs.sunysb.edu/
~dachille.

Arie E. Kaufman received the BS degree (1969)
in mathematics and physics from the Hebrew
University of Jerusalem, the MS degree (1973)
in computer science from the Weizmann Insti-
tute of Science, Rehovot, and the PhD degree
(1977) in computer science from the Ben-Gurion
University, Israel. He is the director of the Center
for Visual Computing (CVC), a leading professor
and chair of the Computer Science Department,
and leading professor of Radiology at Stony

Brook University. He was the founding Editor-in-Chief of the IEEE
Transactions on Visualization and Computer Graphics (TVCG), 1995-
1998. He has been the cochair for multiple Eurographics/Siggraph
Graphics Hardware Workshops and Volume Graphics Workshops,
the papers/program cochair for the ACM Volume Visualization
Symposium and the IEEE Visualization Conferenecs, and the
cofounder and a member of the steering committee of the IEEE
Visualization Conference series. He has previously chaired and is
currently a director of the IEEE Computer Society Technical
Committee on Visualization and Computer Graphics. He is an IEEE
fellow and the recipient of a 1995 IEEE Outstanding Contribution
Award, the 1996 IEEE Computer Society’s Golden Core Member,
1998 ACM Service Award, 1999 IEEE Computer Society’s Meritor-
ious Service Award, and 2002 State of New York Entrepreneur
Award. He has conducted research and consulted for more than 30
years, specializing in volume visualization; graphics architectures,
algorithms, and languages; virtual reality; user interfaces; and
multimedia. For more information see http://www.cs.sunysb.edu/~ari.

240 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 10, NO. 2, MARCH/APRIL 2004

Authorized licensed use limited to: Peking University. Downloaded on October 06,2021 at 10:09:29 UTC from IEEE Xplore. Restrictions apply.

	footer1:

