000					
001					
002	DeepPipes	: Learning 3D	PipeLines Recons	struction from H	Point Clouds
003	1 1	8	X		
004					
005	Lili Cheng ^a	Zhuo Wei ^a	Mingchao Sun ^a	Shiqing Xin ^a	Andrei Sharf ^b
006		Vonguan Lic	Decemen Chand	$Chanaha Tu^{a}$	
007		rangyan Li	Baoquan Chen	Changhe Tu	
008					
009	^a Shandon	o University ^b Ben	-Gurion University ^c Al	ihaha Group ^d Pekin	o University
010	Shandon	g eniversity Den	Guilon Chiversity 71		5 Oniversity
011					
012		A I 1			
013	·	Abstract		and the second second	
014	Pines are the basic k	wilding block in ma	ny inductrial		N
015	sites like electricity and	l chemical plants. Alt	though nines	ATHI 🔨	Sh of
010	are merely cylindrical	nrimitives which ca	n be defined		131
017	by axis and radius, the	v often consist of add	litional com-	Marin	STATION &
010	ponents like flanges, va	alves, elbows, tees, e	tc. 3D nines		
020	are typically dense, con	isisting of a wide ran	ge of topolo-		
020	gies and geometries, v	with large self-occlus	sions. Thus,		> leer
022	reconstruction of a coh	erent 3D pipe model	s from large-	- without and	A B. C.
023	scale point clouds is a c	hallenging problem.	In this work		e.
024	we take a prior-based	reconstruction app	roach which	3	
025	reduces the complexity	y of the general pipe	e reconstruc-		N N
026	tion problem into a co	mbination of part d	etection and		\square
027	model fitting problems	s. We utilize convo	lutional net-		h
028	work to learn point cl	oud features and cl	assify points		
029	into various classes, tl	hen apply robust clu	ustering and	A	
030	graph-based aggregati	on techniques to co	mpute a co-		1 Bar
031	herent pipe model. O	our method shows p	romising re-	11 18	
032	sults on pipe models w	ith varying complex	ity and den-		
033	sity both in synthetic a	nd real cases.		1	
034	Keywords: Point clo	oud, Pipes reconstruc	ction, Convo-	~ · ·	

lution network, Skeleton extraction

1. Introduction

High quality 3D models of power-plants, petrochemical plants and other industrial sites are crucial in many appli-cations, including disaster simulations, monitoring and ex-ecutive training. Industrial sites are built according to spe-cific plans often accompanied by 3D CAD models of their structures. Nevertheless, modeling a fully detailed and ac-curate 3D replica model is a laborious task. Furthermore, such models may not exist for older facilities or may not reflect the current appearance of the site. Nowadays, mod-ern laser scanners allow capturing 3D surfaces and geome-tries with high accuracy, generating dense point cloud sam-plings. Nevertheless, in the case of 3D pipes, capturing and sampling the surface geometry is especially challenging.

Pipelines are dominant structures in many industrial sites due to their functional importance and prevalence. They

Figure 1. DeepPipes enables 3D reconstruction of a full pipeline with complex parts and relations.

consist of thin structures defined by long cylinders organized in dense and complex configurations. Although pipes are merely cylindrical primitives which can be easily defined by their axis and radius, they often consist of additional components such as flanges, valves, inlets, elbows, tees, etc. Thus, 3D scanning and reconstruction of pipelines is error-prone due to small pipe surfaces and their intricate structure causing large self-occlusions, missing parts and insufficient sampling.

A common approach in 3D reconstruction from scanned data is fitting shape priors to the raw data in a bottomup manner [6, 32, 31]. Such strategies are well-suited to

Figure 2. Overview. Left-to-right, starting from a raw pipeline scan, we apply neural network to detect parts. We use graph processing to compute valid relations leading to a coherent full pipeline reconstruction with multiple part types at varying scales and orientations.

industrial sites and mechanical designs since most models are composed of primitive shapes [12]. Nevertheless,
such bottom-up methods suffer from locality and can rarely
reconstruct models such as full powerplants with accurate
connectivity. Bottom-up primitive fitting techniques are
also sensitive to noise and outliers due to their lack of global
and content aware considerations.

We present an automatic and robust method to pipe reconstruction from noisy 3D scans. Previous techniques [22,
27] focus on recovering the cylindrical pipes and joints
structures in industrial plants. Although cylindrical shapes
are often the dominant geometry in such sites, real data consists of a large variety of other structures such as flanges,
valves, inlets, elbows, tees, etc. (see Figure 1).

We take a prior-based learning approach where we train 137 a deep learning network to detect any part as candidate fea-138 139 tures in a 3D point cloud. Since such prior detection is often noisy, we incorporate robust clustering [5] with connectivity 140 pruning techniques to filter detection results and generate a 141 consistent graph-like global pipe model. Similar to [18], 142 we embed the initial unreliable local prior detection in a 143 processing framework which accounts for global properties 144 and semantic structures. 145

Thus, our technique reconstructs local structures that
adhere to connectivity rules and semantic relations in the
pipes. Our results demonstrate that our method robustly
reconstructs complete pipe networks from point clouds of
industrial structures.

152 2. Related Work

151

In the following we discuss previous works related to
reconstruction of 3D pipes, thin structure reconstruction and
primitive fitting.

157158**2.1. 3D Pipes Reconstruction**

A commonly used approach to 3D pipe reconstructionfrom point clouds is based on geometry processing and fit-ting.

Liu *et al.* [22] propose a method that reduces the problem of 3D plant reconstruction into detection of projected pipes as 2D circles in the plane. However, this method is limited to tube-shaped pipes that are orthogonal or parallel to the ground. 162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

Researchers have also investigated fully automated techniques for entire pipeline reconstruction [13]. They perform skeleton extraction followed by segmentation into individual components, and a set of parameters for them are calculated. However, this method has high time complexity and results are easily influenced by noise.

Qiu *et al.* [29] combine primitive similarity detection and fitting to increase reconstruction robustness. They use distribution of points normal to detect similar cylindrical pipes which are then fitted by cylinders. Joints are then heuristically positioned to connect pipes into a fully connected model. Our work bears similarity to Qiu *et al.* in enhancing primitive fitting with detection. Nevertheless, their work searches specifically for self-similarities in the cylinder set while ours is generic and learns a variety of features, learning to detect pipes, joints, flanges and other relevant part configurations in the scene.

Commercial software [8] is also available to interactively reconstruct pipe-runs. However, these products usually require substantial manual work. Our method, on the other hand, is fully automatic without any user intervention.

Hough transform [30] is modified for automatic detection of cylinder parameters in point clouds [27]. After detection, the relationship between cylinders is reconstructed to form a continuous network. Data is post-processed using Smart Plant 3D (SP3D) to model the entire pipeline. However, the range of radius is small.

A technique using normal-based region growing and RANSAC [32] for point cloud processing is proposed for inspection of piping systems of industrial plants [26]. Specifically, the method compares between the CAD design and real scan of the plant models. The inspection result depends strongly on quality of the input point cloud. Similarly, automatic extraction of pipe and flange pairs in

217

218

219

220

221

222

223

224

225

226

227

228

229

230

point clouds using geometric primitives was demonstrated recently [24]. In their work, they superimpose a clean CAD model with the scanned data to guide the 3D extraction of noisy pipes and flanges. It focuses on extracting pipe and flange pairs, not reconstructing the whole scene.

2.2. Thin Structures Reconstruction

In automated reverse engineering of industrial environment, many researchers have explored the problem of reconstructing arbitrary thin structures such as fences, truss bridges, steel frame buildings, etc. [35, 33]. Similar to pipes reconstruction, they detect main structure, and joints are added to create the connected graph to reconstruct the whole frame.

231 Besides, many works discuss reconstructions of thin 232 tube, which focuses on the restoration of the skeleton topol-233 ogy. A deformable curve model was introduced [14] that 234 simultaneously captures the topology and geometry of 1D 235 curve-like objects. Reconstruction of thin tubular struc-236 tures, such as cables or ropes has been explored in [25]. 237 The authors introduce physics simulation to faithfully re-238 construct jumbled and tangled cables in 3D. Their method 239 estimates the topology of the tubular object in the form of a 240 single 1D path and also computes a topology-aware recon-241 struction of its geometry. Similarly, a method that recon-242 structs continuous 3D bending wires (common in furniture 243 design, metal sculpting, wire jewelry) was presented [20]. 244 The method exploits both simplicity and smoothness priors 245 to overcome severe self-occlusions and missing data. 246

There is also work using RGBD camera to help rebuild 247 thin structures. Thin 1D curve structures were reconstructed 248 at interactive rates using a handheld RGBD camera [21]. 249 The technique basically aligns and iteratively merges small 250 skeleton curve segments together to form the final complete 251 curve skeleton. Similarly, [16] utilize curves to leverage 252 thin structure reconstruction from sparse multi-view stereo 253 data. Their method integrates between 3D curves and points 254 to compute a 3D manifold reconstruction by considering 255 both. 256

In a different context, an automatic approach that robustly reconstructs skeletal structures of trees from scanned points was introduced [23]. The method performs a series of global optimizations that fit skeletal structures to the often sparse, incomplete, and noisy point data. Inspired by the optimization of graph structure in this work, we use graph to assist in obtaining skeleton of pipes.

Pipe reconstruction also needs to capture the skeleton
and topology. In contrast to other thin structures, pipelines
have a specific cylindrical nature while lacking regular patterns such as fences. Furthermore, they are typically rigid
bodies in contrast to e.g., flexible wires and their industrial
significance demands for a highly accurate result.

2.3. Primitive Fitting

CAD and mechanical models are predominantly made of repetitive basic structures to facilitate easy and economic fabrication. Surface reconstruction involving local fitting of primitive structures has long been the standard in reverse engineering [32]. Starting from an input scan, Gal *et al.* [6] use multi-scale partial matching to fit a small set of basic shapes to local neighborhoods as local priors. Schnabel *et al.* [2009] [31] present an interesting hole-filling algorithm that is guided by primitive detection.

To account for both local fitting accuracy along with global relations an algorithm was developed [18]. The local fit of the primitive model is determined by how well the inferred model agrees to the observed data, while the global relations are iteratively learned and enforced through a constrained optimization.

Robust cylinder detection and extraction in raw point clouds were introduced in [34]. They utilize point normal and curvature for cylinder fitting followed by mean shift [4] clustering. Due to the high noise levels in industrial plants scans, hand-crafted features as the above may prove heuristically. Instead we take a deep learning approach to pipe features in scanned points.

A primitive-based segmentation method for mechanical CAD models was introduced [12]. The method assumes a limited number of dominant orientations that primitives are either parallel or orthogonal to, narrowing down their search space. Thus, they simply search for 2D primitives such as circles and lines in dominant directions 2D projections. Finally, they generate an over-complete set of primitives and formulate the segmentation as a set cover optimization problem.

Recently, a new approach to robustly extract cylindrical primitives from a 3D point cloud was introduced [28]. The method computes an optimal subset of fitting cylinders from multiple candidates through the optimization of a metric. However, it is not aimed at reconstructing entire pipeline.

3. Overview

Our method takes as input a raw scan of a pipeline and outputs its part-based reconstruction. Thus, our method assumes that industrial plants are generally an assembly of mechanical parts. Here we focus on parts such as pipes, elbows, flanges, tees and crosses.

Besides parts types, their specific attributes govern their appearance in the general pipe reconstruction. In our experiments we consider parts length, radius and orientation. Note that in real scenes, other parts may be present such as rails, stairs, floors, etc. Our technique can incorporate additional parts in the same manner.

Given a point cloud, semantic segmentation is usually used to understand scene. Traditional methods [11, 36] use 316

317

318

319

320

321

322

337

338

339

340

341

Figure 3. Our DeepPipe neural network architecture. Points are initially fed into a network which produces the part type of each point. Points are then filtered and fed to a second network, composed of two branches, that learns the radius and orientation of part types per point.

342 patch feature, such as normal vector and flatness of point 343 neighborhood, to achieve segmentation. To couple seman-344 tic category and instance label into a single task, [9] in-345 troduced patch clusters as an intermediate representation 346 between patches and semantic labels. The semantic seg-347 mentation is achieved along with labeling. [2] proposed a 348 novel convolutional neural network architecture to get se-349 mantic label. It applies 2D convolutional neural network 350 (CNN) on the extracted patch feature and depth maps of 351 point cloud to get semantic label. In addition to the co-352 ordinates of points, it also needs the color as input. Deep 353 neural network has achieved good results in signal recon-354 struction and inversion problems [15, 19]. Recently, it has 355 also been designed to learn global and multi-scale point set 356 features [17]. To process the point cloud directly using con-357 volution, PointCNN [17] extends convolution from 2D to 358 3D by solving the problem of irregular and disordered point 359 cloud and achieves better performance in classification. It 360 is a general convolutional framework for learning feature of 361 point clouds, which learns the order of convolution input 362 mainly by the proposed x-transform. We use it to extract 363 points feature. 364

Since our scanned scene is composed of specific parts, 365 our technique first converts reconstruction into a recogni-366 tion problem using neural networks. We use deep learning 367 and design a CNN to learn a 3D point classification and 368 regression. Specifically, each scan point is classified by 369 part type and part radius label (our part radii are discrete 370 classes). The part orientation is regressed using a direction 371 3D vector per point. 372

Given a classification of our point set into primitive parts,
we compute point clusters by their labeling which define
candidate parts in the scene. We then use graphs to process
part relations in the scene. We first connect candidate parts
arbitrarily and use a minimum spanning tree (MST) algo-

rithm to obtain the correct primitive relations in the scene. This yields a skeleton graph with no loops that spans the scene.

We use the graph skeleton relations as well as part attributes to compute the final 3D model which reconstructs a subset of predefined parts in the scene. See Figure 2 for an overview of our method.

4. Technical Details

4.1. Deep Learning Pipes

We initially train a convolution network to predict for each point p in the scanned data S three labels: the part type it belongs to, the part radius and orientation. We use the per-point orientation vector to compute the part position in 3D space. While part types and radius are discrete terms, point orientation is continuous and thus is regressed using our network (Figure 4).

In pipeline design, pipe scenes are composed of pipe components and pipe support elements. In this work we choose to focus on pipe components and ignore supports such as floors, fences, etc. due to the problem magnitude. Nevertheless, it is easy to use our framework to add and remove components. To demonstrate our technique, we choose five types of pipe components as our primitives: pipe, flange, elbow, tee and cross. We also maintain a nopart label for points in the 3D scene belonging to parts outside the above five types.

We also use a discrete set of predefined radii for each component type as this is the common case in the Thus, we industry. have 5 times the number of radii number of classes. Utilization of discrete classes instead of continuous regression has also better accuracy and performance. To compute the part orientation we regress a normalized orientation vector perpoint. Thus, we can compute the position, size and orientation of each part and fit it to

Figure 4. DeepPipes learn the radius R and the orientation vector D per scan point. D is also orthogonal to the displacement of a scanning point to the central axis of a pipe part.

Our network is illustrated in figure 3. It obtains as input a point cloud $p \in S$ where a point is defined by its position p(x, y, z). To classify per-point primitive type, the top-left

418

419

420

421

422

423

424

425

426

427

428

429

430

431

378

379

380

381

382

383

the points.

network branch uses PointCNN and learns a 6-channel feature map using multilayer perceptron (MLP) followed by a soft-max activation. We then use this classifier to filter our outliers, noise and points not belonging to our part labels (dashed box).

Next, we predict the per-point part radius and orientation in the top-right and bottom-right networks respectively. In Multi-task network [3], multiple learning tasks are solved at the same time, while exploiting commonalities and dif-ferences across tasks. As claimed in [3], we can enable our model to generalize better on original task by sharing rep-resentations between related tasks. Both radius and orien-tation are related to the displacement vector from the scan points to the part axis. Thus, we define a multi-task net-work that handles both classification and regression. Part radii range from 0.2 to 4.6 meters, with 23 discrete val-ues specified by the pipe design standard. The classification branch outputs a 23-channel feature map followed by a soft-max activation function (top-right). The regression branch (bottom-right) outputs 3-channel feature maps correspond-ing to the 3D orientation vector.

We perform multi-task training to train the full network simultaneously. We use cross-entropy loss on the classification outputs:

$$L_{CE}(y, \hat{y}) = -\frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{C} y_j^{(i)} \ln \hat{y}_j^{(i)}$$

459 where y is ground truth, \hat{y} is predicted label, N is the num-460 ber of samples and C is the number of categories, and L_2 461 loss on the regression output. In Multi-task network, we 462 adopt a weight sharing framework between the two tasks, 463 where tasks share the first few CNN layers, leading to bet-464 ter accuracy and convergence rates.

4.2. Relational Skeleton Graph

The network output is typically inconsistent in terms of
per-point part types, radii and also noisy regression output.
Specifically, adjacent points may be assigned different labels, especially in noisy parts and at boundaries between
different part types. In this section we process our network
output to obtain a coherent part assignment and fitting.

Given per point type and radii labels as well as 3D orien-tations, we compute primitive part candidates in the scene. As one of the most common clustering algorithms, density-based spatial clustering of applications with noise (DB-SCAN) is a density-based clustering non-parametric algo-rithm, which groups together points that are closely packed together (points with many nearby neighbors). Using the parts center and axis (i.e., position and orientation) we pro-ceed by clustering together parts based on their type, posi-tion and orientation attributes using DBSCAN. This yields clusters of candidate parts, reducing the number of candi-dates by the clusters. We then filter out points with no clus-ters and too small clusters as outliers and noise.

Figure 5. Illustration of our different part relations rules. Left-toright are pipes, elbows, tees and crosses.

Given the pipe parts candidates denoted P, we build a corresponding graph G(P, E) where each node $p_i \in P$ corresponds to a pipe part in the scene. For each part $p_i \in P$, we select its k-nearest neighbors $\{p_{i1}, p_{i2}, p_{ij}, ..., p_{ik}\}$ based on their centers Euclidean distance and define their connecting edges in the graph. We filter out edges with Euclidean distance higher than a threshold ε , as this defines too far parts.

We define the edge weight between two nodes in the graph as their Euclidean distance. We use edge weights to compute a minimum spanning forest $T = \{t_1, ..., t_i, ...\}$ which yields the pipeline skeleton graph of the scene. Minimum spanning forest is a union of the MST for connected components of a graph. Specifically, for each MST in the forest t_i , we compute its diameter (i.e., max distance path), remove it from t_i and add it to our skeleton graph. We then update the minimum spanning forest by recomputing trees after the diameter removal. This process repeats iteratively and computes long pipe paths as trees diameters until all parts are added to the skeleton graph. Our skeleton graph computation algorithm is summarized in Algorithm 1.

	510				
Algorithm 1: Compute skeleton graph					
input : candidate parts set P	520				
output: pipe skeleton graph D	521				
output pipe site of gruph D	522				
initialize $G(P, E)$	523				
foreach $part \ p \in P$ do	524				
compute k-nearest neighbors to p with distance	525				
$\leq \tau_1$	526				
calculate minimum spanning forest T of G	527				
while $P \neq \emptyset$ do	528				
foreach $t \in T$ do	529				
calculate diameter path d of t	530				
add d to D	531				
remove all nodes $p \in d$ from P	532				
update T	533				
	534				

Finally, we refine the pipeline graph to conform to the following relations between parts (Figure 5):

• pipe and flange parts have two neighbors in the graph

Figure 6. 3D reconstruction of a complex pipeline. Left-to-right are the input point cloud, DeepPipes segmentation and labeling (colors denote different part types), skeleton graph and 3D model reconstruction.

(at most);

neighbors endpoints form an angle close to straight within a certain threshold;

- **elbow** parts have two neighbors in the graph (at most); neighbors endpoints form a perpendicular angle;
- **tee** parts have three neighbors (exact); neighbor endpoints form angles either perpendicular or straight (forming a T-shape);
- **cross** parts have four neighbors (exact); neighbor endpoints form angles either perpendicular or straight (forming a cross shape);

In the last step, we replace graph nodes by the actual 3D part models and reconstruct the scene. For fine tuning, we readjust the parts fitting using iterative closest point (ICP) [1], which is an algorithm employed to minimize the difference between two clouds of points, and transform them to better fit the point data.

5. Results

To evaluate our method, we have used PointCNN neural networks for classification and regression tasks. Our net-works consist of four convolutional layers, four deconvo-lutional layers and MLP. Each MLP has three layers. For MLP in primitive type classifier, the width of the three lay-ers is 128, 128, 6. Similarly, the width for radius and ori-entation networks are 128, 128, 23 and 128, 128, 3, re-spectively. The radius and orientation networks are trained in parallel and consist of weight sharing connections since they perform similar tasks.

We trained our model on synthetic pipeline models. For this purpose, we implemented a 3D pipeline generator that resemble real-world models. We initially generate random skeleton graphs. Next, for each graph node, we randomly assign part type and radius labels as well as orientation. We generate the pipeline 3D model by fitting and assembling the correct parts together following our random graph and node labels.

592 We use a virtual scanner library to sample the 3D 593 pipeline surface with points, resembling scanned data. For each scanned point, we acquire its part type, radius and orientation from its projection on the surface, yielding our ground truth scanned training data. Our generator is implemented in Python, taking approx. 1 minute to generate an entire pipeline scene using a desktop PC with Intel(R) Core(TM) I7-7700K CPU, 4.20 GHz with 16-GB RAM. By this way, we create our DeepPipes training set consisting of 1750 different pipeline models ranging from 70K to 200K of scanned points per model.

We have implemented our DeepPipes on a desktop PC with Intel(R) Core(TM) I7-7700K CPU, 4.20 GHz with 16-GB RAM. We train our part segmentation network separately and then in parallel train the radius and orientation networks. Each of the two training steps take approx. 60 hours to converge. During testing time, for 180K points, it takes 8 seconds to run networks and get per-points labels, 10 seconds to compute MST paths and 25 seconds to fit parts and obtain reconstructed model. Table 1 summarizes our pipeline models in terms of number of scan points and number of different pipe parts.

We evaluate our technique both qualitatively and quantitatively using synthetic and real pipeline raw scans. In figure 1 we show the 3D reconstruction result of a scanned mid-scale pipeline plant. It consists of besides pipes also flanges, elbows and different connectors. Besides missing a tee connector and a flange (top and bottom parts of the image), our technique was able to accurately recover the entire model and parts.

Figure 6 demonstrates the full 3D reconstruction process of a complex pipeline scan with intermediate steps. Given a raw scan, we predict its segmentation into parts using Deep-Pipes. Colors represents different part types where graypipe, green-elbow, blue-tee, yellow-cross and red flange. Following is the relations graph and the final 3D reconstructed model.

In Figure 7 we compare our technique with different methods for processing 3D scanned pipelines. We evaluate our method based on the relevant indicators of the radius and the number of pipeline extractions. Considering the limitation of the radius range and radius accuracy, Liu *et al.* [22] method is the most suitable comparison method compared to other methods. We compare our method with

Figure 7. Comparisons on four pipelines of different complexity ranging from low to high (top-to-bottom rows resp.). Left-to-right are the scanned data, our skeleton, our reconstruction, Huang *et al.* [10] skeleton, Liu *et al.* [22] reconstruction, EdgeWise Plant [8] reconstruction and ground truth.

the method of Liu et al. [22] which detects and reconstructs pipes using their 2D projections on dominant planes. Similarly, we compare our technique to Huang et al. [10] which extracts skeletal structures from points using a robust L_1 approach. Their method was especially designed to handle points consisting of noise and large missing parts as is the case with pipeline scans. Therefore, we compare our skeleton computation with theirs. Finally, we also compare our results with a commercial software EdgeWise Plant [8].

Our comparison consists of four different scanned
pipelines of different scale and complexity, ranging from
simple small scale to complex large scale (top-to-bottom
rows respectively).

The methods of Liu *et al.* [22] and Huang *et al.* [10] are both missing pipe parts when complexity and pipe den-sity increases. EdgeWise Plant [8] involves manual interac-tion and therefore can obtain more accurate reconstructions. Note that both our skeleton extraction and reconstruction outperforms other methods. This is mainly due to our uti-lization of neural networks which yield accurate detection and segmentation of primitive parts in noisy scans.

To evaluate the robustness of our algorithm we introduce
noise and sparsity in the scanned synthetic 3D pipelines
(Figure 8). This simulates problems encountered in real
world pipeline scanning such as occlusions, poor illumination and reflections resulting in high noise levels and miss-

ing parts.

Starting from a dense clean scan, we gradually increase per-point noise and sparsity by controlling the virtual scanner parameters. Specifically, sparsity level is controlled by the number of virtual cameras and the number of views per camera. We then add per-point Gaussian noise levels by adjusting the Gaussian parameters. In Figure 8 rows show increasing levels of scan sparsity and noise (top-to-bottom, resp.). Density levels are 100%, 80%, 65%,50%. Table 2 summarizes the quantitative evaluation of our method compared to others on different noise levels. Results are showing that our method was able to generate good results suffering from a moderate decrease in quality that corresponds to the increase in noise and sparsity. In this comparison, our method still outperforms other techniques.

We have also applied our synthetically trained technique to real-world scanned pipelines. Figure 9 demonstrates re-construction results on three real-world pipelines datasets. Top row, we reconstruct a 3D pipeline model of 600K points sampling a $150 \times 100 \times 150$ meters scene. Since there are many non-pipe points, our algorithm filters them out after the per-point part labeling step using our first PointCNN network. Middle row shows a pipeline plant of 190K points sampling a $160 \times 140 \times 170$ meters scene. And bottom row shows a similar pipeline plant of 220K points sampling a $160 \times 110 \times 110$ meters scene. Here a significant num-

CVM PAPER ID: 91.

Figure 8. 3D pipeline reconstruction evaluation with different scan noise levels ranging from low to high (top-bottom rows resp.). Left-toright are the scanned data, our skeleton, our reconstruction, Huang *et al.* [10] skeleton, Liu *et al.* [22] reconstruction, EdgeWise Plant [8] reconstruction and ground truth.

ber of points belong to floors and walls and stairs which areextracted and manually fitted for visual purposes.

798

799

800

801

To provide a quantitative evaluation of our method, we compare our reconstruction results with ground truth in the synthetic cases. We define an error metric that takes in account the absolute error between radius and orientation prediction and ground truth. Since absolute error is affected by radius size, we also normalize radius distance defining a relative error. Given a point p with r and r' being ground truth and predicted radii respectively, we define a relative distance, normalized by radius scale as: $E_{relative} = \frac{||r-r'||}{r}$. 852

853

854 855

856

857

858

859

860

861

862

863

We also compute the recall ratio R_{ratio} and precision P_{ratio} for each scene. Let N_T be the number of total parts instances in the scene. N_{right} the number of true detected parts and N_{detect} is the total number of detected

Figure 9. 3D reconstruction of two real-world pipelines (top-bottom rows). Left-to-right are the input scan, 3D reconstruction by our method, Liu *et al.* [22] and rightmost col. EdgeWise Plant [8].

parts. Then,

and

$$P_{ratio} = \frac{N_{right}}{N_{detect}}$$

 $R_{ratio} = \frac{N_{right}}{N_T}$

We summarize the quantitative evaluation of our method in Table 3. Each row of the table provides precision and recall values of our technique compared to other methods. Note that Huang et al. method could not provide meaning-ful parts and we compute the error among skeletons. Simi-larly, since EdgeWise software does not provide parts with meaningful radii, we could not compute a meaningful error distance.

Similarly, we summarize our results on the real-world
data in Table 4. Note that for real-world pipelines, we ask
an expert to manually reconstruct the 3D pipeline from the
scan and provide a ground truth.

6. Conclusions

916 In this work we take a prior-based approach for recon-917 struction of entire 3D pipelines from raw scans. In our approach, we learn recognition of parts in the scene, thus reducing the complexity of the general pipe reconstruction problem into a combination of part detection and model fitting problems. We utilize a convolutional network to learn 3D point cloud features and the classification into various classes. The pipe classification is noisy and we apply robust clustering and graph-based aggregation techniques to compute a coherent pipe model. Our method shows promising results on pipe models with varying complexity and density both in synthetic and real cases. In terms of limitations, while our neural networks yield good classification and segmentation results, they do not consider part relations, connectivity and pipeline topology. Therefore, results are still incoherent and require further processing using clustering, graphs and MST computation.

Our method can be extended to some scenes assembled965by basic components. There are many scenarios similar to966the pipeline organization structure, such as the steel bars in967the reinforced concrete at construction sites and the steel968frame buildings mentioned in [33]. These structures are basically constructed according to fixed rules and consist of970repeating parts. The proposed method can be extended to971

Huang EdgeWise	nan	0.8966	0.5778	nan	0./14/	0.4956	nan	0.020	00 0		man	0.0098	0.5200
Huang		1			0 71 47	0 1056		0 620	66 0	3356	nan	0.6608	0 3200
	0.6087	nan	nan	0.7361	nan	nan	0.8015	nan	1	nan	0.9169	nan	nan
Liu	0.0400	0.7958	0.5889	0.0581	0.6982	0.5089	0.0689	0.600	64 0	.3800	0.0815	0.5185	0.2489
widueis	Error	Precision	n Recall	Error	Precision	Recall	Error	Precis	ion I	Recall	Error	Precision	Recall
Models		Row1	Row2					Row	/3			Row4	
	,	Table 2. Qu	antitative e	valuation	of synthetic	pipelines 1	under vario	ous nois	e levels	s. (Figu	re <mark>8</mark>)		
		_	rig 9 Kow	5 215	X 70	0	32	/	1				
		ر 	Fig 9 Row	$\frac{2}{3}$ 213	X 33 Z 76	0	32	7	1	_			
		נ 	Fig 9 Row	2 1871	X 190 Z 33	0	16	29	2	_			
		ر 	Fig 0 Row	+ 1151	X = 232	20	84	20	21	_			
		נ 	Fig 8 Row	$\frac{1}{1}$	$\begin{array}{c c} X & 232 \\ \hline Z & 232 \end{array}$	20	66	31	21	_			
			Fig O KOW	$\frac{2}{2}$ 16/1	X = 232	20	66	21	21	_			
			Fig 8 Row	$\frac{1}{2}$ $\frac{2311}{1971}$	X = 232	20	66	21	21	_			
		[Fig / Kow	+ 5251	X 019 Z 222	/8	189	08	01	_			
		[Fig / Row	3 3311	<u>x</u> 366	23	120	30	43	_			
-			$\frac{11}{10} \frac{7}{10} \frac{1}{10} $	$\frac{2}{2}$ 1141	<u>x 93</u>	23	22	23	0				
			Fig / Row	$\frac{1}{1}$ $\frac{4^{7}}{K}$	24	31	7	5	14	_			
		1	nodel	#poi	nt Pipe	Flang.	Elbow	Tee	Cros	s			
Table 1. Data summary													

reconstruct these scenes by detecting the types of basic parts and obtaining the relationships between them.

In future work, we plan to investigate a full neural network for 3D pipeline reconstruction. Using recurrent neural network (RNN) and Long short-term memory (LSTM) [7]
architectures, we may incorporate neighborhood relations and topology in the scanned pipeline processing framework.

1003 Acknowledgments

1004This work was supported by National Key Research and1005Development Project (2017YFB1002603) end the NSFC1007Project (61772318, 61772016).

References

994

995

996

1008

1009

- 1010 [1] P. J. Besl and N. D. McKay. Method for registration of 31011 d shapes. In *Sensor fusion IV: control paradigms and data*1012 *structures*, volume 1611, pages 586–606. International Soci1013 ety for Optics and Photonics, 1992. 6
- 1014 [2] J.-X. Cai, T.-J. Mu, Y.-K. Lai, and S.-M. Hu. Deep point-based scene labeling with depth mapping and geometric patch feature encoding. *Graphical Models*, 104:101033, 2019. 4
- [3] R. Caruana. Multitask learning. *Machine learning*, 28(1):41–75, 1997. 5
- [4] D. Comaniciu and P. Meer. Mean shift: A robust approach toward feature space analysis. *IEEE Transactions on pattern analysis and machine intelligence*, 24(5):603–619, 2002. 3
- 1022 [5] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discovering clusters a density-based algorithm for discovering clusters in large spatial databases
 1025 with noise. In *Proceedings of the Second International*

Conference on Knowledge Discovery and Data Mining, KDD'96, pages 226–231, 1996. 2

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

- [6] R. Gal, A. Shamir, T. Hassner, M. Pauly, and D. Cohen-Or. Surface reconstruction using local shape priors. In *Proceedings of the Fifth Eurographics Symposium on Geometry Processing*, SGP '07, pages 253–262, Aire-la-Ville, Switzerland, Switzerland, 2007. Eurographics Association. 1, 3
- [7] S. Hochreiter and J. Schmidhuber. Long short-term memory. *Neural computation*, 9(8):1735–1780, 1997. 10
- [8] http://www.clearedge3d.com/. Clearedge3d: Edgewise plant, 2012. 2, 7, 8, 9
- [9] S.-M. Hu, J.-X. Cai, and Y.-K. Lai. Semantic labeling and instance segmentation of 3d point clouds using patch context analysis and multiscale processing. *IEEE transactions on visualization and computer graphics*, 2018. 4
- [10] H. Huang, S. Wu, D. Cohen-Or, M. Gong, H. Zhang, G. Li, and B. Chen. L1-medial skeleton of point cloud. ACM Trans. Graph., 32(4):65–1, 2013. 7, 8
- [11] H. S. Koppula, A. Anand, T. Joachims, and A. Saxena. Semantic labeling of 3d point clouds for indoor scenes. In Advances in neural information processing systems, pages 244– 252, 2011. 3
- [12] T. Le and Y. Duan. A primitive-based 3d segmentation algorithm for mechanical cad models. *Computer Aided Geometric Design*, 52:231–246, 2017. 2, 3
- [13] J. Lee, H. Son, C. Kim, and C. Kim. Skeleton-based 3d reconstruction of as-built pipelines from laser-scan data. *Automation in Construction*, 35:199 – 207, 2013. 2
- [14] G. Li, L. Liu, H. Zheng, and N. J. Mitra. Analysis, reconstruction and manipulation using arterial snakes. ACM Trans. Graph., 29(6):152, 2010. 3

1080				Table 3	. Quantitati	ve evaluat	ion of synth	etic pipeli	nes (Figure	7)					
1081	Madala		Row1			Row2			Row3		Row4				
1082	models	Error	Precision	Recal	l Error	Precisio	on Recall	Error	Precision	Recall	Error	Precision	Recall		
1083	Liu	0.0508	0.6429	0.5556	6 0.0401	0.6273	3 0.4286	0.0426	0.7429	0.5342	0.0630	0.5938	0.5054		
1084	Huang	0.6261	nan	nan	0.7812	nan	nan	0.6857	nan	nan	0.7991	nan	nan		
1085	EdgeWise	nan	0.6711	0.6296	5 nan	0.6720	0.5217	nan	0.8635	0.5308	nan	0.6167	0.3734		
1086	Ours	0.0081	0.8169	0.716	0 0.0231	0.917	7 0.9006	0.0177	0.8565	0.7106	0.0277	0.7616	0.8276		
1087						1					1		1		
1088				Tabl	e 4. Quanti	tative eval	uation of re	al pipeline	s(Figure 9)						
1089			Мо	dels	Row	1	Row	2	Row	3					
1090					Precision	Recall	Precision	Recall	Precision	Recall					
1091			L	iu	0.5618	0.5402	0.7500	0.3061	0.6779	0.4090					
1092			Edge	eWise	0.7500	0.2797	0.7692	0.6122	0.7936	0.4545					
1093			O	urs	0.7290	0.7009	0.7750	0.6327	0.6938	0.6181					
1094															
1095															
1096	[15] S. Li,	B. Liu, Y	. Ren, Y. C	hen, S.	Yang, Y. V	Nang, and	1	GRAPH	Asia 2014 T	echnical B	riefs, SA	'14, pages 1	12:1-		
1097	P. Jiang	g. Deep I	earning inve	rsion of	seismic da	ita. <i>arXi</i>	V [0/]	12:4, 201	4. <u>3</u>	VCL	C		-11		
1098		i araiv:19 V Vo- T	D1.07/33, 20	0	Dearret	Lating 41.	[26]	C. H. P. J	Nguyen and	1. Choi.	Comparise	on or point of	cioud		
1099	[10] S. Ll,	I. Ido, I.	Fang, and I	2. Quan.	Grating spat	icting thi	1	industrial	nlant nining	systems	Automation	n in Constru	off Of		
1100	In 2018	ES OF IIIall	F Conference	s by fille e on Con	granng spa nnuter Visic	n and Pat	_	91.44 = 52 2018 2							
1101	tern Recognition (CVPR), pages 2887–2896, 2018. 3 [27] A K Patil P Holi S K Lee and											Chai. An a	adan-		
1102	[17] Y.Li.R	Bu. M. S	Sun. W. Wu.	X. Di. at	nd B. Chen.	Pointenn	: :	tive approach for the reconstruction and modeling of as-built							
1103	Convol	ution on x-	transformed	points.	In Advance	s in Neura	l	3d pipelin	nes from poi	nt clouds.	Automatio	n in construc	ction,		
1104	Informa	ation Proce	essing System	ns, pages	s 820–830,	2018. 4		75:65-78	, 2017. <mark>2</mark>						
1105	[18] Y. Li, Z	X. Wu, Y.	Chrysathou.	A. Sha	urf, D. Coh	en-Or, and	[28]	M. Pistellato, F. Bergamasco, A. Albarelli, and A. Torsello.							
1106	N. J. M	litra. Gloł	ofit: Consiste	ently fitt	ing primitiv	es by dis	-	Robust c	ylinder estir	nation in p	point clou	ds from pair	rwise		
1107	coverin	g global re	elations. AC	M Trans	. Graph., 3	0(4):52:1-	-	axes simi	larities. In	8th Intern	ational Co	onference on	Pat-		
1108	52:12, 3	July 2011.	2, 3					tern Reco	gnition Appl	ications an	id Method	s, pages 640-	-647,		
1109	[19] B. Liu,	Q. Guo,	S. Li, B. Li	u, Y. Ro	en, Y. Pang	g, X. Guo	, [20]	01 2019.	3	1.1.1. N.	D	. ,	<i>.</i> .		
1110	L. Liu,	and P. Jian	g. Deep lear	ning inv	ersion of el	ectrical re	[29]	R. Qiù, Ç	2Y. Zhou, a	and U. Net	imann. Pi	ipe-run extra	ction		
1111	sistivity	data. <i>IEE</i>	E Transactio	ons on G	eoscience a	nd Remote	2	and reconstruction from point clouds. In European Conjer-							
1112	Sensing	g, 2020. 4	a				[30]	T Rabba	ni and F Va	1011, pages n Den Heu	vel Effic	vient hough t	rans_		
1115	[20] L. Liu,	D. Ceyla	an, C. Lin,	W. Wai	ng, and N.	J. Mitra	. [50]	form for a	n point cloud	s. Is-					
1114	Image-	2.1 62.11	Instruction of	wire art	. ACM Irai	ıs. Graph.	,	prs Wg Iii/3, Iii/4, 3:60–65, 2005. 2							
1115	[21] I I in	5.1-05.11 N. Chan, I	, July 2017. C	J Thaoha	It W Work	and N I	[31]	R. Schnal	bel, P. Degei	her, and R.	Klein. Co	ompletion an	nd re-		
1110	[21] L. Liu, Mitra	N. Curvefus	jon: Recons	structing	thin struct	g, allu IN. J	· · · ·	construct	ion with prir	nitive shap	es. Comp	uter Graphic	s Fo-		
1117	rgbd se	quences.	ACM Trans.	Granh	37(6):218	1-218:12		rum (Prod	c. of Eurogra	phics), 28	(2):503-51	12, 2009. 1, 2	3		
1110	Dec. 20)18. 3	110111 114115.	Graphi	, 57(0).210	.1 210.12	, [32]	R. Schna	bel, R. Wah	l, and R.	Klein. Ef	ficient ransa	c for		
1120	[22] YJ. Li	u. JB. Zh	ang, JC. Ho	ou. JC.	Ren. and W	O. Tang		point-clou	ud shape det	ection. In	Compute	r graphics fo	orum,		
1120	Cylinde	er detectio	n in large-s	cale po	int cloud c	of pipeline	e	volume 2	6, pages 214	–226. Wile	ey Online	Library, 200	7. 1,		
1121	plant.	IEEE tra	nsactions or	ı visualı	ization and	compute	r	2,3	10.11.	. .		C	1 6		
1122	graphic	es, 19(10):	1700–1707, 2	2013. <mark>2</mark> ,	6, 7, 8, 9		[33]	M. Song	and D. Hube	er. Automa	atic recove	ry of networ	ks of		
1123	[23] Y. Livn	y, F. Yan,	M. Olson, E	B. Chen,	H. Zhang,	and J. El	-	nin struc	$45 \ 2015 \ 3$	nternation	ai Confere	nce on SD Vi	ision,		
1125	Sana.	Automatic	reconstruct	ion of t	ree skeletal	structure	5 [2/1	T_T Tro		, ≠ \and D □	gurandaa	u Extractio	on of		
1125	from po	oint clouds	S. ACM Tran	isactions	s on Graph	ics (TOG)	, [34]	cylinders	and estima	tion of th	eir param	eters from	noint		
1127	29(6):1	51, 2010.	3				_	clouds. C	Computers &	Graphics	46:345-3	57, 2015. 3	ronn		
1128	1241 R. Maa	 [4] R. Maalek, D. D. Lichti, R. Walker, A. Bhavnani, and J. Y. Ruwanpura. Extraction of pipes and flanges from point [35] B. Ummenhofer and T. Brox. Point-based 3d reconstruction of thin objects. In 2013 IEEE International Conference on 									oint-based	3d reconstru	ction		
1120	[= ·] ····														
1129	Ruwanj	pura. Ex	traction of p	pipes an	d flanges f	rom poin	l	of thin of	jects. In 20	13 IEEE I	nternation	al Conferen	ce on		
1129 1130	Ruwanj clouds	pura. Ext for automatic	traction of pated verificat	ion of p	d flanges f re-fabricate	rom poin d module	ι 5	of thin of <i>Computer</i>	ojects. In 20 r Vision, pag	913 IEEE I. es 969–976	nternation 5, 2013. <mark>3</mark>	al Conferent	ce on		

- 1132 [25] T. Martin, J. Montes, J.-C. Bazin, and T. Popa. Topology-1133 aware reconstruction of thin tubular structures. In *SIG*-
- 36] G. Vosselman. Point cloud segmentation for urban scene classification. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci, 1:257–262, 2013. 3