
Robust Neural Routing Through Space Partitions for Camera Relocalization
in Dynamic Indoor Environments

Siyan Dong1,2* Qingnan Fan3* He Wang3 Ji Shi4 Li Yi5

Thomas Funkhouser5 Baoquan Chen4 Leonidas Guibas3
1Shandong University 2AICFVE, Beijing Film Academy 3Stanford University

4Peking University 5Google Research
{siyandong.3,fqnchina,baoquan.chen}@gmail.com, hewang@stanford.edu, i@sjj118.com,

{ericyi,tfunkhouser}@google.com, guibas@cs.stanford.edu

Abstract

Localizing the camera in a known indoor environment is
a key building block for scene mapping, robot navigation,
AR, etc. Recent advances estimate the camera pose via opti-
mization over the 2D/3D-3D correspondences established
between the coordinates in 2D/3D camera space and 3D
world space. Such a mapping is estimated with either a
convolution neural network or a decision tree using only the
static input image sequence, which makes these approaches
vulnerable to dynamic indoor environments that are quite
common yet challenging in the real world. To address the
aforementioned issues, in this paper, we propose a novel
outlier-aware neural tree which bridges the two worlds, deep
learning and decision tree approaches. It builds on three
important blocks: (a) a hierarchical space partition over
the indoor scene to construct the decision tree; (b) a neural
routing function, implemented as a deep classification net-
work, employed for better 3D scene understanding; and (c)
an outlier rejection module used to filter out dynamic points
during the hierarchical routing process. Our proposed al-
gorithm is evaluated on the RIO-10 benchmark developed
for camera relocalization in dynamic indoor environments.
It achieves robust neural routing through space partitions
and outperforms the state-of-the-art approaches by around
30% on camera pose accuracy, while running comparably
fast for evaluation.

1. Introduction

The task of camera relocalization is to estimate the 6-
DoF (Degree of Freedom) camera pose from a test frame
with respect to a known environment. It is of great impor-
tance for many computer vision and robotics applications,

*Equal Contribution

inlier outlier

Figure 1. Demonstration of our algorithm. We build a hierarchical
space partition over the entire scene environment to construct a
3-level 4-way neural tree. For the input static (green) or dynamic
(red) points from a visual observation, our neural tree will route
them into either inlier (solid line) or outlier (dashed line) categories.
Only the points falling into the inlier category will be considered
for camera pose estimation.

such as Simultaneously Localization and Mapping (SLAM),
Augmented Reality (AR), and navigation, etc. One popular
solution to camera relocalization is to make use of advanced
hardware, e.g., LIDAR sensors, WIFI, Bluetooth or GPS.
However, these approaches may suffer from bad weather for
outdoor environments, and instability or blocked signal for
indoor environments. Another popular solution replaces the
above hardware with a RGB/RGB-D sensor that feeds only
visual observation for camera relocalization, also known as
visual relocalization, which is the focus of this paper.

The problem of visual relocalization has been studied for
decades, and recent advances [11, 32] have reached around
100% camera pose accuracy (5cm / 5◦) on the popular in-

1

ar
X

iv
:2

01
2.

04
74

6v
2 

 [
cs

.C
V

] 
 2

 A
pr

 2
02

1



door scene benchmarks 7-scenes [51] and 12-scenes [54].
One type of successful approach in this regard is designed
based on decision trees, which was firstly introduced into
the camera relocalization field in [51], with many follow-ups
[35, 36, 37, 12, 11]. They build a binary regression forest
that takes a query image point sampled from the visual ob-
servation as input, and routes it into one leaf node via a
hierarchical splitting strategy, which is simply implemented
as color/depth comparison within the neighbourhood of the
query point. The leaf node fits a density distribution over
the 3D world coordinates from the training scene. Hence, by
evaluating the decision tree with a test image, a 2D/3D-3D
correspondence can be easily established between the in-
put sample and regressed world coordinate for camera pose
optimization.

Although the aforementioned approaches are good at
camera relocalization in static training environments, they
tend to fail in dynamic test scenes, which are quite common
yet challenging in real life. This is mainly due to the fact that
the decision tree is constructed using only the static training
image sequence so that, for any image point belonging to
dynamic regions captured during evaluation, it is challenging
to locate its correct correspondence in the leaf node. Recent
studies [57] have demonstrated that the decision tree based
approaches achieve around 28% camera pose accuracy (5cm
5◦), which is also the best among all the competitors, in their
proposed RIO-10 benchmark developed for dynamic indoor
scenes. This performance is far from being comparable to
the ones in static indoor scenes.

In order to tackle the challenges of camera relocalization
in dynamic indoor environments, in this paper, we propose
to learn an outlier-aware neural tree to help establish point
correspondences for accurate camera pose estimation focus-
ing only on the confident static regions of the environment.
Our algorithm inherits the general framework of decision
trees, but mainly differs in the following aspects in order to
obtain better generalization ability in dynamic test scenes.
(a) Hierarchical space partition. We perform an explicit
hierarchical spatial partition of the 3D scene in the world
space to construct the decision tree. Then each split node
in the decision tree not only performs a hard data parti-
tion selection, but in fact one which also corresponds to
a physically-meaningful 3D geometric region. (b) Neural
routing function. Given an input point sampled from the
2D visual observation, the split node needs to determine
which divided sub-region in the world space to go. Such a
classification task needs more contextual understanding of
the 3D environment. Therefore, we propose a neural routing
function, implemented as a deep classification network, for
learning the splitting strategy. (c) Outlier rejection. In or-
der to deal with potential dynamic input points, we propose
to consider these points as outliers and reject them during the
hierarchical routing process in the decision tree. Specifically,

the neural routing function learns to classify any input point
from the dynamic region into the outlier category, stopping
any further routing for that point. Once our proposed neural
tree is fully trained, we follow the optimization and refine-
ment steps in existing works [12, 11] to calculate the final
pose.

We further train and test our proposed outlier-aware neu-
ral tree on the recent camera relocalization benchmark, RIO-
10, which aims for dynamic indoor scenes. Experimental
results demonstrate that our proposed algorithm outperforms
the state-of-the-art localization approaches by at least 30%
on camera pose accuracy. More analysis shows that our
algorithm is robust to various types of scene changes and
successfully rejects most dynamic input samples during neu-
ral routing.

2. Related Work
2.1. Camera Relocalization

Direct pose estimation. Approaches of this type aim for
predicting the camera pose directly from the input image.
One popular solution in this direction is image retrieval
[21, 20, 22, 1, 26]. They approximate the camera pose of
the query image by matching the most similar images in the
dataset with known poses using low-level image features.
Instead of matching features, PoseNet [29] and many follow-
ups [28, 58, 9, 56, 47] propose to use a convolution neural
network to directly regress the 6D camera pose from an input
image. However, as mentioned in [47], the performance of
direct pose regression using CNNs is more similar to the one
using image retrieval, and still lags behind the 3D structure-
based approaches detailed below.

Indirect pose estimation. Approaches of this type find
correspondences between camera and world coordinate
points, and calculate the camera pose through optimization
with RANSAC [13]. One common direction is to leverage
the 2D-3D correspondences between traditional keypoints
in the observed image and 3D scene map [45, 34, 44, 46],
followed by some recent works that deploy deep learning
features [43, 42, 52, 16] to replace the extracted poor de-
scriptors. Another common direction to seek correspon-
dences is scene coordinate regression. Shotton et al. [51]
proposes to regress the 3D points in the world space from
a query image point by training a decision tree, followed
by many variants [36, 37, 5, 55]. The other related works
[4, 6, 8, 7, 33, 59, 32, 35] in this direction leverage the deep
convolutional neural network to regress the world coordi-
nates from an input image, with a following pose optimiza-
tion step.

2.2. Decision Tree and Deep Learning.

Some recent efforts have been devoted to combining the
two families of decision tree and deep learning techniques.

2



(a) Hierarchical space partition in the world space

level 1 level 2 level 3

(d) Outlier-aware neural routing function

k+
1

Shared
MLP Max pool

MLP

Output scores 𝒑𝒑

Context points
{𝒙𝒙𝒐𝒐𝒊𝒊

(𝒄𝒄), 𝒙𝒙𝒐𝒐𝒊𝒊
(𝒓𝒓)}𝒊𝒊=𝟏𝟏

𝑵𝑵

MLP

level 1

level 2

level 3

(b) Outlier-aware neural tree

(c) Visual observation in camera space

Space partition for the neural tree construction

Training of the neural routing function

Node index 𝒙𝒙𝒏𝒏𝒐𝒐𝒏𝒏𝒏𝒏
Normalization parameters 

{𝜽𝜽𝒔𝒔𝒄𝒄𝒔𝒔𝒔𝒔𝒏𝒏, 𝜽𝜽𝒔𝒔𝒉𝒉𝒊𝒊𝒉𝒉𝒉𝒉}

HyperNetwork

Query point 𝒙𝒙𝒒𝒒
(𝒄𝒄)

𝒉𝒉𝒒𝒒

𝒉𝒉𝒐𝒐

Figure 2. Illustration of our algorithm on the simple 2D case. Top: constructing a 3-level 4-way outlier-aware neural tree of a scene
environment via hierarchical space partition. The dashed line and circle indicates the outlier category designed to reject the input dynamic
points. Bottom: training an outlier-aware neural routing function for each split node in the neural tree.

The deep neural decision trees [31] propose a principled,
joint and global optimization of split and leaf node param-
eters, and hence enable end-to-end differentiable training
of the whole decision tree. Shen et al. [50] presents label
distribution learning tree to enable all the decision trees in
a forest to be learned jointly. The variants of deep neural
decision trees have been successfully applied for the task of
human age estimation [49] and monocular depth estimation
[41]. Most of the aforementioned works formulate the last
few fully connected layers in a classification neural network
with the decision tree structure, and hence are significantly
different from our algorithm.

3. NeuralRouting

3.1. Overview

The input to our algorithm is a training sequence of
<RGB-D image, camera pose> and a test frame for cam-
era relocalization. Our algorithm can be separated into two
steps, scene coordinate regression and camera pose estima-
tion. The former step is conducted by learning a neural tree
that takes a query point along with its neighbor context as
input, and regresses its scene coordinate in the world space
to build a 3D-3D correspondence, based on which, the latter
step estimates the camera pose via iterative optimization
followed by an optional ICP refinement. The neural tree is
constructed via performing an explicit space partition in the
scene environment, and learns to reject the dynamic points as

outliers during the hierarchical routing process. In this way,
our algorithm learns to build the 3D-3D correspondence only
within the confident static region for accurate camera pose
optimization. We firstly revisit the decision tree and its adap-
tation for camera relocalizatoin in Sec. 3.2, and introduce
our outlier-aware neural tree developed for relocalization in
dynamic environments in Sec. 3.3. Finally, we describe the
camera pose optimization and refinement details in Sec. 3.4.

3.2. Decision Tree for Camera Relocalization
Depending on whether the target is continuous or discrete,

the decision tree can be used for either regression or classifi-
cation tasks. A decision tree consists of a set of split nodes
and leaf nodes. Each split node is assigned with a routing
function, which learns the decision rules for the input sample
partition, and each leaf node contains a probability density
distribution fitted for the partitioned data. Given an input
sample, inference starts from the root node and descends
level-by-level until reaching the leaf node by evaluating the
routing functions. A standard decision tree is binary, and
employs greedy algorithms to learn the parameters at each
split node to achieve locally-optimal hard data partition.

For the task of camera relocalization, the decision tree
[11] is used to build the 3D knowledge of the known environ-
ment using the provided training sequence. Each split node
takes a query point (RGB-D) sampled from the captured im-
age as input and routes it into one child node. The leaf node
fits a distribution over a set of 3D points in the world space

3



that are projected from the training images using the ground
truth camera pose and calibration parameters. Therefore,
when evaluating a test frame with a decision tree, by routing
an input point from root node to leaf node, a 3D-3D point
correspondence can be easily established and further used
for camera pose optimization.

3.3. Outlier-aware Neural Tree
3.3.1 Hierarchical Space Partition for Decision Tree

For the existing decision trees [51, 35, 36, 37, 12, 11] de-
veloped for the camera relocalization problem, as there is
no ground truth label for supervised training, the decision
tree becomes ultimately a clustering strategy for the training
data as observed in previous works [11, 10]. The decision
rules at split nodes are learned via CLUS algorithm [3] that
uses variance reduction as the split criterion and achieves
local-optimal hard data partition. In this paper, we propose
to perform a hierarchical space partition for the target scene
environment to construct our decision tree. We represent the
entire scene as the root node, and iteratively partition the
scene until reaching predefined depth. Each split node is re-
sponsible for a geometric region in the scene, and partitions
this region into sub-regions of equal size for its child nodes.
Each leaf node contains a set of 3D world coordinates in its
covered local geometric region. The space partition strategy
is illustrated in Figure 2 and detailed below.

Given a 3D scene model constructed in world space using
the training sequence of <RGB-D image, camera pose>, we
build an m-way decision tree, where m is the zth power of
2. To perform a hierarchical space partition, we start from
the root node which represents the entire scene environment.
Then we compute the tight bounding box of the scene in
the world coordinate system. We conduct iterative z cuts to
divide the bounding box into m sub-boxes of equal volume
size. In order to avoid the corner cases, such as long and
narrow sub-boxes which may create challenges to learn the
routing function, the decision rule is designed to encourage
the divided bounding box to be similar to a cube. Specifically,
to perform one cut on the bounding box of size (w, h, l), we
find the longest edge over (w, h, l) and divide the box into
two identical halves from the middle point of the edge. We
iterate over such a process on the divided box until z cuts
are achieved. We perform such a top-down data partition
iteratively for the nodes among all the levels.

The decision tree constructed in this way features several
properties: (a) our constructed tree structure relies on the
explicit space partition over the 3D scene environment in
the world space, not on the data partition of the visual obser-
vations (RGB+D) in the 2D camera space, then it requires
the routing function to have more 3D understanding ability;
(b) each split node is physically meaningful, and covers a
specific geometric region, which is spatially related to other
father or child nodes; (c) the decision rules are predefined

by the z-cut space partition strategy introduced in the above
paragraph and stay constant for all the nodes, instead of
optimized via greedy algorithms to behave differently for
different nodes; (d) the decision tree is more tolerant to an
m-way tree implementation, not limited to a standard bi-
nary decision tree; (e) the constructed tree structure is
scene-dependent, and may contain empty nodes that cover
no geometric regions in the scene. Overall, the constructed
decision tree via hierarchical space partition is more flexi-
ble in structure and physically meaningful compared to a
standard decision tree in previous works.

3.3.2 Outlier-aware Neural Routing Function

Given an input sample, the purpose of the routing function
at each split node is to send it to one of the child nodes. In
our problem setting, the input sample is from the observed
2D RGB-D frame, and its ground truth label is determined
by its corresponding location in the 3D world space. For
purpose of accurate prediction, the routing function needs
to understand the 3D scene context from 2D observations.
Therefore, inspired by many previous works regarding point
cloud classification [39, 40] and point generation from 2D
images [17], we take advantage of the point cloud process-
ing framework to implement a neural routing function. We
introduce the formulation of the input and network structure
in detail below.

Input representation and sampling. The input to the
neural routing function is a query point xq that needs to be
localized in the 3D world space, along with a set of context
points {xoi}Ni=1 in the neighbourhood of the query point.
The input point is associated with color and depth, which are
however both highly viewpoint dependent. In order to obtain
better generalization ability in different viewpoints, given
an input RGB-D frame, We augment its depth channel via
transforming it into the rotation-invariant geometric feature
following PPF-FoldNet [15]. To be specific, we firstly com-
pute the oriented point cloud by projecting the full-frame
depth into 3D camera space using camera calibration param-
eters, and calculating the pointwise normals in a 17-point
neighbourhood [25]. Then we encode the query point and
its context points into pair features,

{(x(p)q , x(n)q , x(p)o1 , x
(n)
o1 ), (x(p)q , x(n)q , x(p)o2 , x

(n)
o2 ), · · · ,

(x(p)q , x(n)q , x(p)oN , x
(n)
oN )} ∈ R12×N (1)

where p and n denotes the camera coordinate and normal,
which form a 12-channel vector for each pair of oriented
points (xq, xoi). Each pair feature (x(p)q , x

(n)
q , x

(p)
oi , x

(n)
oi )

is then transformed into the rotation-invariant geometric
representation [15] that consists of three angles and one pair

4



distance,

r = {∠(x(n)q , x(p)q − x(p)oi ),∠(x(n)oi , x
(p)
q − x(p)oi ),

∠(x(n)q , x(n)oi ), ‖x(p)q − x(p)oi ‖2} ∈ R4 (2)

Overall, for each input context point, it consists of both
color c and transformed rotation-invariant information r, rep-
resented as {x(c)oi , x

(r)
oi } ∈ R7. Since the rotation-invariant

feature for all context points is computed in the local refer-
ence frame with query point as origin, we omit the geometric
feature and only take the color information as input for query
point x(c)q ∈ R3.

Given an input image, the query point for a split node
is randomly sampled among the 2D image pixels whose
projected 3D world coordinates belong to the split node.
The context points are randomly sampled within the 3D
neighbourhood ball of the query point. Ball query defines
a radius, which is adaptively changed from level to level
due to the varying size of covered 3D geometric region in
our problem setting. In the implementation, we calculate
the radius as the length of the longest edge of the covered
bounding box.

Routing function design. The routing function consists
of two parts, the feature extraction module and classification
module. The feature extraction module leverages the point-
wise multi-layer perception (MLP) to learn the features from
both query point and context points inspired by the recent
popular point cloud processing network PointNet [39], while
the classification module combines the deep features from
query point and context points to learn which child node the
query point should be routed to.

As the query point and context points are different in
input channel, point number and impact for the classification
task, we use different network parameters to encode their
feature, specifically,

hq = ffeatQ(x
(c)
q ) (3)

ho = ffeatO({x(c)oi , x
(r)
oi }

N
i=1) (4)

where ffeatQ and ffeatO are implemented with a 3-layer
pointwise MLP (64-128-32/512), and extract the internal
deep features (hq ∈ R32, ho ∈ R512) for query and context
points respectively. ffeatO is followed with a max pooling
layer to extract the global context feature.

Then hq and ho are concatenated and inputted into the
classification module,

p = fclass(hq, ho) (5)

where fclass is also implemented as a three-layer MLP
(2048-1024-k), and outputs the probability (p ∈ Rk) for
all the child nodes. Since the constructed tree structure is
scene dependent as mentioned in Sec. 3.3.1, the number

of child nodes k is adaptively changed from node to node
and from scene to scene. As for supervision, we apply a
cross entropy loss between the predicted probability p and
the ground truth label y for supervision,

L = −
k∑

i=1

1{yi = i} log exp(pi)∑k
i=1 exp(pi)

(6)

where yi is the label for the ith child node.
Outlier rejection. The aforementioned neural routing

function is designed to route the input sample into one of the
child nodes that are bound to 3D geometric regions. Given a
query point belonging to dynamic regions in the test frame,
the hierarchical routing functions will send it into one of the
leaf nodes that contain the 3D world coordinates only from
the static training scene, and it may establish an inaccurate
3D-3D correspondence for camera pose optimization. In
order to solve this issue, we propose to reject the query
points from dynamic regions as outlier, hence the established
correspondence will be maintained in the confident static
region.

In order to achieve this goal, we further improve the
neural routing function to output the probability vector p
of k + 1 channels, where the additional channel refers to
the outlier class. To generate the training samples for each
split node from a given input image, the routing function
considers any image pixel belonging to the current split node
as inlier input query point, which should be routed into child
nodes. As the dynamic points in test environments are highly
unpredictable, irregular, and do not exist in the training
data, we simply consider any image pixel not covered by
the current split node as outlier input query point, which
simulates the dynamic points and should be rejected without
further routing. To train the routing function for each split
node, the inlier and outlier input query points are sampled to
be 3:1. Notice the outlier rejection strategy is incorporated
into the neural routing function from the second level, since
for the root node, all the image pixels belong to the inlier
input.

3.3.3 HyperNetwork for the Routing Functions
In order to construct a t-level m-way tree, there are at most
mj−1 neural routing functions at level j except for the
bottom level that contains leaf nodes, and totally at most
mt−1−1
m−1 routing functions for the whole tree. It is both time-

consuming and storage-inefficient to train so many deep
networks. In order to decrease the training time and stor-
age space for efficient deep learning, the previous works
[24, 18] unify the learnable parameters among different con-
volution layers in a network, time steps in a RNN, or hyper-
parameters in an image filter within a standalone network,
mostly known as HyperNetwork. More recent work [19]
further discovers that learning the normalization parameters

5



with the HyperNetwork has similar performance as learn-
ing the convolution parameters, while the former case is
more storage and running time friendly due to much less
learnable parameters in the normalization layer compared to
convolution layer.

Inspired by these previous works, in this paper, we pro-
pose to leverage HyperNetwork to learn a single neural rout-
ing function for all the split nodes in the same level of a
decision tree. Specifically, given the one-hot value xnode
that indicates the split node index, we learn to predict the
learnable scale θscale and shift θshift parameters in the nor-
malization layer of the classification module in the neural
routing function,

θscale, θshift = fhyper(xnode) (7)

where fhyper refers to the HyperNetwork, and is imple-
mented a three-layer MLP. The size of θscale and θshift
depends on the channel number in the normalization layer.
Then the normalization parameters in the classification mod-
ule is replaced with the predicted ones from the HyperNet-
work,

p = fclass(hq, ho; θscale, θshift) (8)

Therefore, for a t-level tree, we only need to learn totally t
neural routing functions.

3.4. Camera Pose Estimation
The core of our algorithm is a decision tree, which is the

same as many previous camera relocalization works [12, 11].
Therefore, we inherit similar optimization and refinement
steps following [11] for camera pose computation, which
are introduced below. In order to generate the camera pose
in SE(3), we firstly fit modes in the leaf nodes and then
optimize the pose by leveraging the established 3D-3D cor-
respondences. Each leaf node covers a set of 3D points
(XYZ+RGB) in the world space projected from the 2D im-
age pixels captured in the training sequence. Following [55],
we detect the modes of the empirical distribution in each
leaf node via mean shift [14], and then construct a Gaussian
Mixture Model (GMM) via iteratively estimating a 3D Gaus-
sian distribution for each mode. After mode fitting of the
leaf nodes, we leverage the preemptive locally-optimized
RANSAC [13] for camera pose optimization. We start by
generating 1024 pose hypotheses, each of which is computed
by applying the Kabsch algorithm [27] on three randomly
sampled 3D-3D point correspondences that relate the cam-
era and world space. Given an observed point in camera
space, its corresponding world coordinate is sampled from
one random mode in the fitted GMM of the routed leaf node.
We filter out the hypotheses that do not conform to the rigid
body transformations following [12], and regenerate the al-
ternatives until they satisfy the above requirement. The final
camera pose is selected by iteratively re-evaluate and re-rank

the hypotheses using the Mahalanobis distance, and discard
the worse half until only one pose hypothesis is left.

Multi-leaves. Given an input query point, the aforemen-
tioned pose optimization process fits modes only from the
routed leaf node, which is common for the existing decision
tree implementations as their routing function performs hard
data partition and hence the input point can only be routed
into a single leaf node. In contrast, the proposed neural
routing function performs a “soft” data partition with pre-
dicted probability p, hence the input point can be “routed”
to all the leaf nodes with different accumulated probabilities
through probability multiplication of all routed split nodes.
Motivated by the above observation, to achieve more robust
pose optimization, we fit the mode by combining the world
coordinates from multiple routed leaf nodes with highest
accumulated probabilities, instead of a single leaf node. In
the implementation, we use four leaf nodes, which works
the best experimentally, for mode fitting.

Pose refinement. Last but not least, we follow [11] to
incorporate our camera relocalizer into a 3D reconstruction
pipeline for further camera pose refinement, which mainly
consists of ICP [2] and model-based hypothesis ranking.

4. Experiments
4.1. Implementation Details

Tree structure. For all the experiments in this paper, we
implement the 5-level 16-way tree for scene partition, thus
a perfect tree structure consists of 4369 nodes in this case.
During our implementation, according to the specific scene
geometry, such a tree contains about 2000 to 3000 valid
nodes.

Training details. The neural routing functions are imple-
mented in PyTorch. Benefited from the design of HyperNet-
work, we only train 5 neural routing functions. Each routing
function is trained for 60 epochs with a batch size of 256.
The network weights are optimized with Adam [30] whose
initial learning rate is 0.001 and betas are (0.9,0.999). The
initial learning rate is halved every 20 epochs until the end.
The number of context points is set as 600 all the time.

4.2. Dataset

We test our proposed algorithm on two camera relocaliza-
tion benchmarks, RIO-10 [57] and 7-scenes [51], which are
developed for dynamic and static indoor scenes respectively.
The RIO-10 dataset includes 10 real indoor environments,
each of which is scanned several times over different time
periods, and demonstrates the common geometric and illu-
mination changes in dynamic environments. This dataset
is separated into training/validation/test split, while the test
results should be obtained via submission to their online
benchmark. The 7-scenes dataset contains only training
and test set, and is the most popular camera relocalization

6



Method Score ↑ DCRE(0.05) ↑ DCRE(0.15) ↑ Pose(0.05m,5◦) ↑ Outlier(0.5) ↓ N/A

HFNet [42] 0.373 0.064 0.103 0.018 0.360 0.000
HF-Net Trained [42] 0.789 0.192 0.300 0.073 0.403 0.000
NetVLAD [1] 0.575 0.007 0.137 0.000 0.431 0.000
DenseVLAD [53] 0.507 0.008 0.136 0.000 0.501 0.006
Active Search [46] 1.166 0.185 0.250 0.070 0.019 0.690
Grove [12] 1.240 0.342 0.392 0.230 0.102 0.452
Grove V2 [11] 1.162 0.416 0.488 0.274 0.254 0.162
D2Net [16] 1.247 0.392 0.521 0.155 0.144 0.014

NeuralRouting (Ours) 1.441 0.538 0.615 0.358 0.097 0.227

Table 1. Comparison on the test split of the RIO-10 benchmark w.r.t. the average score (1 + DCRE (0.05) - Outlier (0.5)), DCRE errors,
camera pose accuracy and outlier ratio. N/A denotes invalid/missing predictions. The red and blue numbers rank the first and second for each
metric.

Pose(0.05m,5◦) ↑ Chess Fire Heads Office Pumpkin Kitchen Stairs Average

Shotton et al. [51] 92.60% 82.90% 49.40% 74.90% 73.70% 71.80% 27.80% 67.60%
Guzman-Rivera et al. [23] 96.00% 90.00% 56.00% 92.00% 80.00% 86.00% 55.00% 79.30%
Valentin et al. [55] 99.40% 94.60% 95.90% 97.00% 85.10% 89.30% 63.40% 89.50%
Brachmann et al. [5] 99.60% 94.00% 89.30% 93.40% 77.60% 91.10% 71.70% 88.10%
Schmidt et al. [48] 97.75% 96.55% 99.80% 97.20% 81.40% 93.40% 77.70% 92.00%
Grove [12] 99.40% 99.00% 100.00% 98.20% 91.20% 87.00% 35.00% 87.10%
Grove V2 [11] 99.95% 99.70% 100.00% 99.48% 90.85% 90.68% 94.20% 96.41%

NeuralRouting (Ours) 99.85% 100.00% 100.00% 99.80% 88.80% 90.96% 84.20% 94.80%

Table 2. Comparison on the 7-scenes dataset w.r.t. the camera pose accuracy. The red and blue numbers rank the first and second for each
scene.

Pose(0.05m,5◦) ↑

Ours w/o outlier labels 25.14%
Ours w/o multi-leaves 25.80%

5-level 8-way Tree 24.60%
3-level 16-way Tree 16.75%
4-level 16-way Tree 25.31%

Ours (5-level 16-way Tree) 27.05%
Ours w. pose refinement 31.99%

Table 3. Ablation study on the validation set (10 scenes) of the
RIO-10 benchmark. Ours is the full pipeline of our algorithm.

benchmark for the static indoor environments in the past.

4.3. Evaluation Metrics

In order to evaluate the quality of estimated cam-
era pose, we adopt the common camera pose accuracy
Pose(0.05m,5◦), which is computed as the proportion of
test frames whose translation error is within 5 centime-
ters and angular error is within 5 degrees. In the RIO-10
benchmark [57], we further adopt their proposed new met-
ric DCRE, short for Dense Correspondence Re-Projection
Error, which is computed as the average magnitude of the
2D correspondence displacement normalized by the image

diagonal. The displacement is calculated between 2D pro-
jections of the underlying 3D model using the ground truth
and predicted camera poses. DCRE depicts an error that cor-
relates with the visual perception, not only with the absolute
camera pose. Then DCRE(0.05) and DCRE(0.15) are the
percentage of test frames whose DCRE is within 0.05 or
0.15, while Outlier(0.5) describes the opposite case, which
is the percentage of test frames whose DCRE is above 0.5.

4.4. Numerical Results

We compare our algorithm with all the other approaches
on the test split of the RIO-10 dataset, shown in Table 1.
Among all the metrics that evaluate the quality of camera
pose estimations, our algorithm ranks the first except for
Outlier(0.5), where our performance is the second best. Re-
garding the camera pose accuracy Pose(0.05m,5◦), which
is more common and directly measures the pose quality,
our result (0.358) surpasses the state-of-the-art approaches
(0.274) significantly by about 30%. It demonstrates the effec-
tiveness and robustness of our proposed outlier-aware neural
tree on the dynamic indoor environments.

We further test our algorithm on the popular camera re-
localization benchmark 7-scenes for static indoor scenes,
shown in Table 2. Our algorithm ranks the second place on
the averaged camera pose accuracy among all the existing

7



Figure 3. The charts show the performance (DCRE(0.15)) of compared approaches with respect to semantic (semantic difference),
geometric (depth difference) and visual change (NSSD, Normalized Correlation Coefficient) as introduced in RIO-10 dataset [57].

Scene 05 Scene 06

Figure 4. Ground truth (green) and predicted (blue) camera pose
trajectory on the validation set of RIO-10 dataset.

approaches, and lags behind the best performance within a
very small gap. It further shows the excellent generalization
ability of our algorithm on static scenes, though it is devel-
oped for dynamic environments. Note the baseline results
in RIO-10 and 7-scenes datasets are from the official online
benchmark and the recent SOTA relocalization paper [11],
respectively.

We test the running time of our algorithm on GPU. For a
single image, the camera pose optimization and refinement
take around 100 ms and 150 ms separately, similar to the pre-
vious decision tree based approach [11]. The neural routing
runs for 480 ms, while its light version without consider-
ing multiple leaves during routing takes only 100 ms yet
achieves similar camera pose accuracy as verified in Table 3.

4.5. Ablation Study

To justify the effectiveness of our algorithm design, we
conduct an ablation study as shown in Table 3, which is
evaluated on the validation set of RIO-10 dataset. Space
partition is important for our neural tree construction, hence
we firstly test different strategies to partition the scene by
varying the hyper-parameters t and m in the t-level m-way
tree. We observe that as the number of levels t decreases, the
camera pose accuracy also degrades, this is mainly due to
the increased box size in leaf node, which creates difficulty
in fitting a good distribution and sampling effective world
coordinates. Notice the leaf nodes in 4-level 16-way tree and
5-level 8-way tree have the same box size, while 16-way tree
is better in camera pose accuracy. This is mainly because
the 4-level tree has fewer routing functions to be trained, and

hence accumulates less error from the deep network during
hierarchical routing. Finally we validate the design of outlier
classification and multi-leaves in camera pose optimization
by removing them from the entire framework, and observe
worse pose accuracy as expected.

4.6. Analysis

Pose trajectory. We visualize the pose trajectory of both
our estimations and ground truth on two scenes in the val-
idation split of RIO-10 dataset in Figure 4. We observe a
significant overlap between the two trajectories, which ver-
ifies the effectiveness of our algorithm in dynamic indoor
environments.

Performance against various scene changes. To dis-
cover how our algorithm is robust to scene changes compared
to other approaches, we visualize the overall performance
of each method with images of increasing visual, geometric
and semantic change as defined in RIO-10 dataset, in Figure
3. We are glad to see that our plotted curve is almost the best
among all the different types of scene changes. It further
verifies our algorithm for camera relocalization in dynamic
indoor scenes.

5. Conclusion
In this paper, we propose a novel outlier-aware neural tree

to achieve accurate camera relocalization in dynamic indoor
environments. Our core idea is to construct a decision tree
via hierarchical space partition of the scene environment, and
learn a neural routing function to reject the dynamic input
points during the level-wise routing process. Extending our
work to only the RGB input and generalization to novel
environments are more realistic yet challenging settings,
which are treated as valuable future directions to explore.

Acknowledgements
This work was supported in part by National Key R&D

Program of China (2019YFF0302902), National Science
Foundation of China General Program grant No. 61772317,
NSF grant IIS-1763268, a grant from the Samsung GRO
program, a Vannevar Bush Faculty Fellowship, and a gift
from Amazon AWS ML program.

8



6. Appendix

The appendix provides the additional supplemental ma-
terial that cannot be included into the main paper due to its
page limit:

• More Space Partition Strategies.

• Extension to Neural Forest.

• Unified Neural Routing Function – PointNet++.

• Ablation for HyperNetwork.

A. More Space Partition Strategies

In the main paper, we evaluate different space partition
strategies by varying the hyper-parameters in a t-level m-
way tree. In this section, we conduct more experiments by
constructing the covered bounding boxes in different man-
ners, which is another important factor that influences the
tree structure. To be specific, we firstly follow the axis of
world coordinate system and compute the axis-aligned mini-
mum bounding box (AABB) of the entire scene as the root
node for space partition. This is our original implementation
in the main paper. To explore more space partition strategies,
we rotate the scene model along the x and y axis by 30◦, and
calculate the new AABB. Similarly, we also obtain a version
by rotating 60◦. The bounding boxes constructed above all
follow the world coordinates, and may leave many blank
3D spaces in the box, which does not make full use of the
neural routing functions. To resolve this issue, we obtain the
compact box by recalculating the world coordinate system
of the scene using PCA [38], and fit the tightest bounding
box along the new axis. In order to alleviate the potential
influence of coordinate axis to camera pose optimization as
observed in [6, 4], we further rotate the compact box to align
with the default world coordinate axis for a fair comparison
with other boxes.

We illustrate the different bounding box constructions
in Figure 5. We observe that regarding the compactness
between the bounding box and 3D scene model, compact
box > original box > rotation 60◦ > rotation 30◦. The cor-
responding numerical results of the above space partition
strategies are shown in Table 4. Consistent with the compact-
ness, the camera pose accuracy also follows the same order:
compact box > original box > rotation 60◦ > rotation 30◦. It
indicates an interesting observation that the more compact
the box is, the higher the pose accuracy can be achieved by
our algorithm. This is mainly because in a compact box, the
geometric regions are more uniformly sampled among all
the split nodes in the decision tree, which strengthens the
utilization of the neural routing functions.

Pose(0.05m,5◦) ↑

original + rotation 30◦ 51.05%
original + rotation 60◦ 52.98%

original box 54.93%
compact box 56.68%

forest 58.29%

PointNet++ 1.93%

Table 4. Camera pose accuracy on the scene 01 in the validation set
of RIO-10 dataset.

original compact

rotation 30° rotation 60°

Figure 5. Different space partition strategies via bounding box
construction.

B. Extension to Neural Forest

In the existing camera relocalization works implemented
with decision trees [12, 11], they usually train a number
of trees on the same scene to obtain a forest for the pose
optimization. In this way, the final prediction of the for-
est is simply the union of the fitted modes among all the
trees. In these works, the decision rule for each split node is
adaptively learned as either color or depth comparison from
the training data. Hence by simply sampling different input
samples in the same scene, they are able to learn different
decision trees.

Motivated by the previous works, we further extend our
proposed neural tree to neural forest by training multiple
trees. However, in our work, the decision rules are prede-
termined by the space partition strategy. In order to enable
the diversity of multiple trees, we adopt the four different
space partition strategies introduced in Section 6, and unify
their predictions to form a neural forest. The numerical re-
sults are shown in Table 4. We are glad to observe that the
performance can be further upgraded by the utilization of a
forest.

C. Unified Neural Routing Function – PointNet++

The main paper employs the hierarchical node-wise neu-
ral routing functions to classify each input query point into

9



w. HyperNet w/o HyperNet

level 2 level 3 level 4 level 2 level 3 level 4

node 1 58.1% 75.9% 70.5% 60.5% 79.5% 75.0%
node 2 57.9% 66.5% 69.5% 56.8% 62.6% 69.3%
node 3 23.6% 48.5% 49.3% 28.9% 66.7% 50.0%

average 46.5% 63.63% 63.1% 48.7% 69.9% 64.7%

Table 5. Ablation study of HyperNetwork on the scene 01 in the
validation set of RIO-10 dataset. For each level, we collect three
split nodes to evaluate their classification accuracy on the validation
set.

one of the leaf nodes. This can be naturally viewed as the
point-wise segmentation task, where each segmentation la-
bel refers to one leaf node. As the input is formulated as
the form of point cloud, we can achieve a unified neural
routing function by directly leveraging the popular state-of-
the-art point cloud segmentation network PointNet++ [40].
In our problem setting, the PointNet++ takes the colored
point cloud from a single frame as input, and outputs the
point-wise segmentation mask. In this case, each input point
is the query point and also serves as the context point for the
other query points. In this unified neural routing function,
the outlier rejection is not an option anymore and excluded
from the segmentation label. We adopt the MSG as the
PointNet++ backbone in the implementation.

Its numerical result is shown in Table 4, which performs
much worse compared to our neural routing function imple-
mentation. It demonstrates the effectiveness of our unique
neural tree design.

D. Ablation for HyperNetwork

In our algorithm, HyperNetwork unifies the network pa-
rameters of all the neural routing functions from the same
level into a single network, and hence saves much storage
space and training time. However, as observed in the previ-
ous work [19], HyperNetwork may potentially degrade the
performance compared to the version that separately trains
each network. To investigate the potential influence of Hy-
perNetwork on the performance of neural routing functions,
we select three split nodes for each level in our neural tree,
and compare their classification accuracy between the im-
plementations with and without HyperNetwork as shown in
Table 5. Interestingly, we observe that the usage of Hyper-
Network only degrades the performance within a reasonable
range similar to the past experience [19].

References
[1] Relja Arandjelovic, Petr Gronat, Akihiko Torii, Tomas Pa-

jdla, and Josef Sivic. Netvlad: Cnn architecture for weakly
supervised place recognition. In Proceedings of the IEEE

conference on computer vision and pattern recognition, pages
5297–5307, 2016. 2, 7

[2] Paul J Besl and Neil D McKay. Method for registration
of 3-d shapes. In Sensor fusion IV: control paradigms and
data structures, volume 1611, pages 586–606. International
Society for Optics and Photonics, 1992. 6

[3] Hendrik Blockeel, Luc De Raedt, and Jan Ramon. Top-down
induction of clustering trees. Proceedings of the Fifteenth
International Conference on Machine Learning, 1998. 4

[4] Eric Brachmann, Alexander Krull, Sebastian Nowozin, Jamie
Shotton, Frank Michel, Stefan Gumhold, and Carsten Rother.
Dsac-differentiable ransac for camera localization. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 6684–6692, 2017. 2, 9

[5] Eric Brachmann, Frank Michel, Alexander Krull, Michael
Ying Yang, Stefan Gumhold, et al. Uncertainty-driven 6d
pose estimation of objects and scenes from a single rgb image.
In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 3364–3372, 2016. 2, 7

[6] Eric Brachmann and Carsten Rother. Learning less is more-6d
camera localization via 3d surface regression. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 4654–4662, 2018. 2, 9

[7] Eric Brachmann and Carsten Rother. Expert sample consen-
sus applied to camera re-localization. In Proceedings of the
IEEE International Conference on Computer Vision, pages
7525–7534, 2019. 2

[8] Eric Brachmann and Carsten Rother. Neural-guided ransac:
Learning where to sample model hypotheses. In Proceedings
of the IEEE International Conference on Computer Vision,
pages 4322–4331, 2019. 2

[9] Samarth Brahmbhatt, Jinwei Gu, Kihwan Kim, James Hays,
and Jan Kautz. Geometry-aware learning of maps for cam-
era localization. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 2616–2625,
2018. 2

[10] Lauriane Castin and Benoit Frénay. clustering with decision
trees: divisive and agglomerative approach. In ESANN, 2018.
4

[11] Tommaso Cavallari, Stuart Golodetz, Nicholas Lord, Julien
Valentin, Victor Prisacariu, Luigi Di Stefano, and Philip HS
Torr. Real-time rgb-d camera pose estimation in novel scenes
using a relocalisation cascade. IEEE transactions on pattern
analysis and machine intelligence, 2019. 1, 2, 3, 4, 6, 7, 8, 9

[12] Tommaso Cavallari, Stuart Golodetz, Nicholas A Lord, Julien
Valentin, Luigi Di Stefano, and Philip HS Torr. On-the-fly
adaptation of regression forests for online camera relocali-
sation. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 4457–4466, 2017. 2, 4,
6, 7, 9

[13] Ondřej Chum, Jiří Matas, and Josef Kittler. Locally optimized
ransac. In Joint Pattern Recognition Symposium, pages 236–
243. Springer, 2003. 2, 6

[14] Dorin Comaniciu and Peter Meer. Mean shift: A robust
approach toward feature space analysis. IEEE Transactions
on pattern analysis and machine intelligence, 24(5):603–619,
2002. 6

10



[15] Haowen Deng, Tolga Birdal, and Slobodan Ilic. Ppf-foldnet:
Unsupervised learning of rotation invariant 3d local descrip-
tors. In Proceedings of the European Conference on Computer
Vision (ECCV), pages 602–618, 2018. 4

[16] Mihai Dusmanu, Ignacio Rocco, Tomas Pajdla, Marc Polle-
feys, Josef Sivic, Akihiko Torii, and Torsten Sattler. D2-net:
A trainable cnn for joint detection and description of local
features. Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2019. 2, 7

[17] Haoqiang Fan, Hao Su, and Leonidas J Guibas. A point set
generation network for 3d object reconstruction from a single
image. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 605–613, 2017. 4

[18] Qingnan Fan, Dongdong Chen, Lu Yuan, Gang Hua, Nenghai
Yu, and Baoquan Chen. Decouple learning for parameterized
image operators. In Proceedings of the European Conference
on Computer Vision (ECCV), pages 442–458, 2018. 5

[19] Qingnan Fan, Dongdong Chen, Lu Yuan, Gang Hua, Nenghai
Yu, and Baoquan Chen. A general decoupled learning frame-
work for parameterized image operators. IEEE transactions
on pattern analysis and machine intelligence, 2019. 5, 10

[20] Dorian Galvez-Lopez and Juan D Tardos. Real-time loop
detection with bags of binary words. In 2011 IEEE/RSJ
International Conference on Intelligent Robots and Systems,
pages 51–58. IEEE, 2011. 2

[21] Andrew P Gee and Walterio W Mayol-Cuevas. 6d relocali-
sation for rgbd cameras using synthetic view regression. In
BMVC, volume 1, page 2, 2012. 2

[22] Ben Glocker, Jamie Shotton, Antonio Criminisi, and Shahram
Izadi. Real-time rgb-d camera relocalization via randomized
ferns for keyframe encoding. IEEE transactions on visualiza-
tion and computer graphics, 21(5):571–583, 2014. 2

[23] Abner Guzman-Rivera, Pushmeet Kohli, Ben Glocker, Jamie
Shotton, Toby Sharp, Andrew Fitzgibbon, and Shahram Izadi.
Multi-output learning for camera relocalization. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 1114–1121, 2014. 7

[24] David Ha, Andrew Dai, and Quoc V Le. Hypernetworks.
International Conference on Learning Representations, 2017.
5

[25] Hugues Hoppe, Tony DeRose, Tom Duchamp, John McDon-
ald, and Werner Stuetzle. Surface reconstruction from unorga-
nized points. In Proceedings of the 19th annual conference on
Computer graphics and interactive techniques, pages 71–78,
1992. 4

[26] Hervé Jégou, Matthijs Douze, Cordelia Schmid, and Patrick
Pérez. Aggregating local descriptors into a compact image
representation. In 2010 IEEE computer society conference on
computer vision and pattern recognition, pages 3304–3311.
IEEE, 2010. 2

[27] Wolfgang Kabsch. A solution for the best rotation to relate
two sets of vectors. Acta Crystallographica Section A: Crystal
Physics, Diffraction, Theoretical and General Crystallogra-
phy, 32(5):922–923, 1976. 6

[28] Alex Kendall and Roberto Cipolla. Geometric loss functions
for camera pose regression with deep learning. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 5974–5983, 2017. 2

[29] Alex Kendall, Matthew Grimes, and Roberto Cipolla. Posenet:
A convolutional network for real-time 6-dof camera relocal-
ization. In Proceedings of the IEEE international conference
on computer vision, pages 2938–2946, 2015. 2

[30] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 6

[31] Peter Kontschieder, Madalina Fiterau, Antonio Criminisi, and
Samuel Rota Bulo. Deep neural decision forests. In Proceed-
ings of the IEEE international conference on computer vision,
pages 1467–1475, 2015. 3

[32] Xiaotian Li, Shuzhe Wang, Yi Zhao, Jakob Verbeek, and Juho
Kannala. Hierarchical scene coordinate classification and
regression for visual localization. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
2020. 1, 2

[33] Xiaotian Li, Juha Ylioinas, and Juho Kannala. Full-frame
scene coordinate regression for image-based localization. In
In Robotics: Science and Systems (RSS), 2018. 2

[34] Hyon Lim, Sudipta N Sinha, Michael F Cohen, and Matthew
Uyttendaele. Real-time image-based 6-dof localization in
large-scale environments. In 2012 IEEE conference on com-
puter vision and pattern recognition, pages 1043–1050. IEEE,
2012. 2

[35] Daniela Massiceti, Alexander Krull, Eric Brachmann, Carsten
Rother, and Philip HS Torr. Random forests versus neural
networks—what’s best for camera localization? In 2017
IEEE International Conference on Robotics and Automation
(ICRA), pages 5118–5125. IEEE, 2017. 2, 4

[36] Lili Meng, Jianhui Chen, Frederick Tung, James J Little,
Julien Valentin, and Clarence W de Silva. Backtracking
regression forests for accurate camera relocalization. In 2017
IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 6886–6893. IEEE, 2017. 2, 4

[37] Lili Meng, Frederick Tung, James J Little, Julien Valentin,
and Clarence W de Silva. Exploiting points and lines in
regression forests for rgb-d camera relocalization. In 2018
IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 6827–6834. IEEE, 2018. 2, 4

[38] Karl Pearson. Liii. on lines and planes of closest fit to systems
of points in space. The London, Edinburgh, and Dublin
Philosophical Magazine and Journal of Science, 2(11):559–
572, 1901. 9

[39] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.
Pointnet: Deep learning on point sets for 3d classification
and segmentation. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 652–660,
2017. 4, 5

[40] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J
Guibas. Pointnet++: Deep hierarchical feature learning on
point sets in a metric space. In Advances in neural information
processing systems, pages 5099–5108, 2017. 4, 10

[41] Anirban Roy and Sinisa Todorovic. Monocular depth esti-
mation using neural regression forest. In Proceedings of the
IEEE conference on computer vision and pattern recognition,
pages 5506–5514, 2016. 3

[42] Paul-Edouard Sarlin, Cesar Cadena, Roland Siegwart, and
Marcin Dymczyk. From coarse to fine: Robust hierarchical

11



localization at large scale. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
12716–12725, 2019. 2, 7

[43] Paul-Edouard Sarlin, Frédéric Debraine, Marcin Dymczyk,
Roland Siegwart, and Cesar Cadena. Leveraging deep visual
descriptors for hierarchical efficient localization. In Con-
ference on Robot Learning, pages 456–465. PMLR, 2018.
2

[44] Torsten Sattler, Michal Havlena, Konrad Schindler, and Marc
Pollefeys. Large-scale location recognition and the geometric
burstiness problem. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 1582–
1590, 2016. 2

[45] Torsten Sattler, Bastian Leibe, and Leif Kobbelt. Fast image-
based localization using direct 2d-to-3d matching. In 2011
International Conference on Computer Vision, pages 667–674.
IEEE, 2011. 2

[46] Torsten Sattler, Bastian Leibe, and Leif Kobbelt. Efficient
& effective prioritized matching for large-scale image-based
localization. IEEE transactions on pattern analysis and ma-
chine intelligence, 39(9):1744–1756, 2016. 2, 7

[47] Torsten Sattler, Qunjie Zhou, Marc Pollefeys, and Laura Leal-
Taixe. Understanding the limitations of cnn-based absolute
camera pose regression. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
3302–3312, 2019. 2

[48] Tanner Schmidt, Richard Newcombe, and Dieter Fox. Self-
supervised visual descriptor learning for dense correspon-
dence. IEEE Robotics and Automation Letters, 2(2):420–427,
2016. 7

[49] Wei Shen, Yilu Guo, Yan Wang, Kai Zhao, Bo Wang, and
Alan L Yuille. Deep regression forests for age estimation. In
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 2304–2313, 2018. 3

[50] Wei Shen, Kai Zhao, Yilu Guo, and Alan L Yuille. Label dis-
tribution learning forests. In Advances in neural information
processing systems, pages 834–843, 2017. 3

[51] Jamie Shotton, Ben Glocker, Christopher Zach, Shahram
Izadi, Antonio Criminisi, and Andrew Fitzgibbon. Scene co-
ordinate regression forests for camera relocalization in rgb-d
images. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 2930–2937, 2013. 2,
4, 6, 7

[52] Hajime Taira, Masatoshi Okutomi, Torsten Sattler, Mircea
Cimpoi, Marc Pollefeys, Josef Sivic, Tomas Pajdla, and Ak-
ihiko Torii. Inloc: Indoor visual localization with dense
matching and view synthesis. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 7199–7209, 2018. 2

[53] Akihiko Torii, Relja Arandjelovic, Josef Sivic, Masatoshi
Okutomi, and Tomas Pajdla. 24/7 place recognition by view
synthesis. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 1808–1817, 2015.
7

[54] Julien Valentin, Angela Dai, Matthias Nießner, Pushmeet
Kohli, Philip Torr, Shahram Izadi, and Cem Keskin. Learning
to navigate the energy landscape. In 2016 Fourth Interna-

tional Conference on 3D Vision (3DV), pages 323–332. IEEE,
2016. 2

[55] Julien Valentin, Matthias Nießner, Jamie Shotton, Andrew
Fitzgibbon, Shahram Izadi, and Philip HS Torr. Exploiting
uncertainty in regression forests for accurate camera relocal-
ization. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 4400–4408, 2015. 2, 6,
7

[56] Florian Walch, Caner Hazirbas, Laura Leal-Taixe, Torsten Sat-
tler, Sebastian Hilsenbeck, and Daniel Cremers. Image-based
localization using lstms for structured feature correlation. In
Proceedings of the IEEE International Conference on Com-
puter Vision, pages 627–637, 2017. 2

[57] Johanna Wald, Torsten Sattler, Stuart Golodetz, Tommaso
Cavallari, and Federico Tombari. Beyond controlled environ-
ments: 3d camera re-localization in changing indoor scenes.
Proceedings of the European Conference on Computer Vision
(ECCV), 2020. 2, 6, 7, 8

[58] Bing Wang, Changhao Chen, Chris Xiaoxuan Lu, Peijun
Zhao, Niki Trigoni, and Andrew Markham. Atloc: Attention
guided camera localization. In Proceedings of the AAAI
Conference on Artificial Intelligence, 2020. 2

[59] Luwei Yang, Ziqian Bai, Chengzhou Tang, Honghua Li, Yasu-
taka Furukawa, and Ping Tan. Sanet: Scene agnostic network
for camera localization. In Proceedings of the IEEE Interna-
tional Conference on Computer Vision, pages 42–51, 2019.
2

12


