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Transferring the motion style from one animation clip to another, while
preserving themotion content of the latter, has been a long-standing problem
in character animation. Most existing data-driven approaches are supervised
and rely on paired data, where motions with the same content are performed
in different styles. In addition, these approaches are limited to transfer of
styles that were seen during training.

In this paper, we present a novel data-driven framework for motion style
transfer, which learns from an unpaired collection of motions with style
labels, and enables transferring motion styles not observed during training.
Furthermore, our framework is able to extract motion styles directly from
videos, bypassing 3D reconstruction, and apply them to the 3D input motion.

Our style transfer network encodes motions into two latent codes, for
content and for style, each of which plays a different role in the decoding
(synthesis) process. While the content code is decoded into the output mo-
tion by several temporal convolutional layers, the style code modifies deep
features via temporally invariant adaptive instance normalization (AdaIN).

Moreover, while the content code is encoded from 3D joint rotations, we
learn a common embedding for style from either 3D or 2D joint positions,
enabling style extraction from videos.

Our results are comparable to the state-of-the-art, despite not requiring
paired training data, and outperform other methods when transferring previ-
ously unseen styles. To our knowledge, we are the first to demonstrate style
transfer directly from videos to 3D animations - an ability which enables one
to extend the set of style examples far beyond motions captured by MoCap
systems.
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1 INTRODUCTION
The style of human motion may be thought of as the collection
of motion attributes that convey the mood and the personality of
a character. Human observers are extremely perceptive to subtle
style variations; we can, for example, often tell whether a person
is happy or sad from the way they walk. Consequently, for games
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Fig. 1. Style transfer from video to animation. Our network, which is trained
with unpaired motion sequences, learns to disentangle content and style.
Our trained generator is able to produce a motion sequence that combines
the content of a 3D sequence with the style extracted directly from a video.

and movies that pursue realistic and expressive character animation,
there is a long-standing interest in generating diverse stylized mo-
tions. However, capturing all desired motions in a variety of styles is
practically infeasible. A much more promising option is to perform
motion style transfer: modify the style of an existing motion into
one taken from another. Furthermore, it is particularly attractive to
use video clips to specify target motion styles.

Since motion style eludes a precise definition, hand crafted repre-
sentations are not well-suited to cope with style transfer, and most
recent works attempt to infer style from examples. However, despite
years of progress in data-driven motion style transfer, two main
obstacles remain in practice: (i) avoiding the need for paired and
registered data, and (ii) extracting style from only a few examples.
Both of these hurdles arise because of the difficulty to collect and
process sufficient motion data. In order to capture paired and reg-
istered data, the same actor must, for example, perform a walking
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sequence in different styles with identical steps and turns, which
is tedious and, more importantly, unscalable to the huge training
sets required by today’s deep learning models. As for the extraction
of styles, clearly, a large number of style examples might better
characterize the style and facilitate the transfer. However, in reality,
one can often obtain only a few examples for each (uncommon)
style.
Additionally, we also see great potential in videos as a massive

source for motion styles. As the primary format for recording human
activities, available videos contain a much wider range of motions
and styles compared to 3D motion capture data. And if the desired
style needs to be captured on-the-spot, shooting a video is a much
easier and cheaper alternative to performing motion capture.

As an important research topic, the problem of motion style trans-
fer has been approached in several ways, all of which we find limited,
especially with regard to the challenges above. Some works model
style using hand-crafted representations, such as physical param-
eters or spectral characteristics, which may fail to fully capture
complex and subtle properties. Other works adopt a data-driven
approach. Their reliance on paired training data or large numbers
of target style examples, however, hinders their applicability to
real world settings. Recently, Mason et al. [2018] proposed a few-
shot learning scheme to cope with the shortage of style references.
However, they employ a specialized network that targets only lo-
comotion. Also, like other previous works, their model can only
extract style from 3D MoCap data.
In this work, we circumvent the need for paired training data

by learning without supervision, characterize unseen styles even
from a single reference clip, and provide the ability to extract style
from a video. To achieve these goals, we adopt a generative scheme,
using temporal convolutional neural networks as the backbone
of our model. Our network encodes content and style inputs into
corresponding latent codes, which are then recombined and decoded
to obtain a re-stylized result (see Figure 1). We argue that during
training, our network learns a universal style extractor, which is then
applicable to new styles, specified via a few examples at test time.
Furthermore, our style extractor is applicable to both 3Dmotions and
2D motions observed in ordinary video examples, without requiring
3D reconstruction.
Our main technical contribution lies in the architecture of the

deep neural network outlined above, in which the content and style
codes affect the generated motions via two different mechanisms.
The content code is decoded into a motion by applying a sequence
of temporal convolutional layers, each resulting in a set of temporal
signals that represent joint rotations in a high-dimensional feature
space. The style code is used to modify the second order statistics
of these generated deep features via temporally-invariant adaptive
instance normalization (AdaIN). These temporally-invariant affine
transformations amplify or attenuate the temporal signals, while
preserving their shape. Consequently, the motion content is also
preserved. AdaIN has been used with great effect in image genera-
tion and style transfer (see Section 2.1), but to our knowledge we
are the first to apply it in the context of motion.
Our network is trained by optimizing a content consistency loss,

which ensures that the content input to our network is reconstructed
whenever the style input has the same style label as the content one.

This loss forces the network to extract only those attributes that are
shared among samples of the same style class. Simply copying the
content input to the output is prevented by instance normalization
during the encoding and by restricting the dimensionality of the
latent content code.

In order to extract style from videos we learn a joint embedding
space for style codes extracted from either 3D or 2D joint positions.
During training, we require that 3D motions and their 2D projec-
tions, are both mapped by a pair of corresponding encoders into
the same style code. In addition to enabling style extraction from
videos, this joint embedding supports style interpolation, as well as
measuring “style distance” between videos and/or 3D motions.
In summary, our contributions consist of a novel data-driven

approach for motion style transfer that: (i) does not require paired
training data; (ii) is able to transfer styles unseen during training,
extracted from as little as a single example clip; and (iii) supports
style extraction directly from ordinary videos.

We discuss various insights related to the mechanism of the net-
work and the analogy to some related works. Our results show that
by leveraging the power of our new framework, we can match state-
of-the-art motion style transfer results, by training only on unpaired
motion clips with style labels. Furthermore, we outperform other
methods for previously unseen styles, as well as styles extracted
from ordinary videos.

2 RELATED WORK

2.1 Image Style Transfer
Our work is inspired by the impressive progress in image style
transfer, achieved through the use of deep learning machinery. The
pioneering work of Gatys et al. [2016] showed that style and content
can be represented by statistics of deep features extracted from a
pre-trained classification network. While their original approach
required optimization to transfer style between each pair of images,
Johnson et al. [2016] later converted this approach to a feed-forward
one by training a network using a perceptual loss.

Later on, Ulyanov et al. [2016] showed that the style of an image
can be manipulated by modifying the second order statistics (mean
and variance) of channels of intermediate layers and proposed an
instance normalization layer which enables to train a network to
modify the style of arbitrary content images into a single specific
target style. This idea was further extended by Huang et al. [2017],
who demonstrated that various target styles may be applied simply
by using the Adaptive Instance Normalization (AdaIN) layer to inject
different style statistics into the same network.

The AdaIN mechanism has proved effective for various tasks on
images, such as image-to-image translation [Huang et al. 2018] and
image generation [Karras et al. 2019]. Recently, Park et al. [2019]
proposed a spatially adaptive normalization layer, for multi-modal
generation of images, based on semantic segmentation maps, while
Liu et al. [2019] introduced FUNIT, a few-shot unpaired image-to-
image translation method, where only a few examples of the target
class are required.
Inspired by these recent achievements in image style transfer,

our work makes use of temporally invariant AdaIN parameters,
thus enabling manipulating a given motion sequence to perform in
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arbitrary styles. To our knowledge, we are the first to employ such
a mechanism in the context of motion processing.

2.2 Motion style transfer
Motion style transfer is a long standing problem in computer ani-
mation. Previous works relied on handcrafted features, in frequency
domain [Unuma et al. 1995], or in time [Amaya et al. 1996], to rep-
resent and manipulate style or emotion [Aristidou et al. 2017] of
given 3D motions, or used physics-based optimizations [Liu et al.
2005] to achieve a similar goal. Yumer and Mitra [2016] showed that
difference in spectral intensities of two motion signals with similar
content but different styles enables the transfer between these two
styles on arbitrary heterogeneous actions.
Since style is an elusive attribute that defies a precise mathe-

matical definition, data-driven approaches that infer style features
from examples, might have an advantage compared to attempting to
hand-craft features to characterize style and content. Indeed, several
works used machine learning tools to perform motion style transfer
[Brand and Hertzmann 2000; Hsu et al. 2005; Ikemoto et al. 2009;
Ma et al. 2010; Wang et al. 2007; Xia et al. 2015]. However, these
methods either assume that there are explicit motion pairs in the
training data that exhibit the same motion with different styles, or
limited to the set of styles given in the dataset.

For example, Hsu et al. [2005] learned a linear translation model
that can map a motion to a target style based on pairwise dense
correspondence (per frame) between motions with similar content
but different styles. Xia et al. [2015] used a KNN search over a
database of motions to construct a mixture of regression models
for transferring style between motion clips, and Smith et al. [2019]
improved the processing using a neural network that is trained on
paired and registered examples. Both latter methods represent style
by a vector of fixed length, which is limited to the set of styles in
the dataset, and can not be applied to unseen styles. In contrast, our
approach only assumes that each motion clip is labeled by its style,
without any requirement for content labels or correspondences
between motion clips. In addition, our method enables extraction
of unseen styles from 3D motion examples, and even from video,
and is not limited to the styles in the dataset.
Besides transferring motion style, other methods exploited ma-

chine learning approaches to cope with various closely related tasks.
These include generating motion with constraints using inverse
kinematics (IK) when the style is taken from a dataset [Grochow
et al. 2004], performing independent component analysis to separate
motion into different components and perform a transfer [Shapiro
et al. 2006], or using restricted Boltzmann machines, conditioned
on a style label, to model human motion and capture style [Taylor
and Hinton 2009].
With the recent rapid progress in deep learning methods for

character animation [Holden et al. 2017b, 2016, 2015], the flour-
ishing image style transfer techniques were quickly adopted into
the character animation domain. Holden et al. [2016], proposed a
general learning framework for motion editing that enables style
transfer. In analogy to Gatys et al. [2016], they optimize a motion
sequence that satisfy two conditions; the activations of the hidden
units should be similar to those of the content motion, while their

Gram matrices should match those of the style input motion. Dif-
ferently from Gatys et al. [2016], here the features are extracted
using a pretrained autoencoder for motion, rather than a pretrained
image classification network. Later on, Holden et al. [2017a] and
Du et al. [2019] proposed to improve performance by replacing opti-
mization with a feed-forward network that is trained to satisfy the
same constraints. In both of these works, the pretrained network
is not explicitly designed for style transfer. The features extracted
by the pretrained autoencoder contain information on both content
and style, which leads to a strong dependency between the two
properties, as demonstrated in Section 5.
Recently, Mason et al. [2018] proposed a method to transfer the

style of character locomotion in real time, given a few shots of
another stylized animation. In contrast to this approach, which is
limited to locomotion, our approach can extract and transfer styles
regardless of the motion content.

2.3 Motion from Videos
Motion reconstruction and pose estimation from monocular videos
are long-standing fundamental tasks in computer vision, and are
beyond the scope this paper. Along the years, various methods have
dealt with the extraction of different motion properties directly from
video, such as 2D poses [Cao et al. 2018], 3D poses [Pavllo et al.
2019b], and 3D motion reconstruction [Mehta et al. 2017]. Recently,
Aberman et al. [2019b] extracted character-agnostic motion, view
angle, and skeleton, as three disentangled latent codes, directly
from videos, bypassing 3D reconstruction. Existing methods that
extract motion from videos [Kanazawa et al. 2019; Mehta et al. 2017]
are typically not concerned with style, while our work is the first
to extract the style, rather than the motion, from video-captured
human motion samples, bypassing 3D reconstruction.
Another stream of work is focused on motion transfer in video

using deep learning techniques. The existing approaches provide
a different perspective on how to extract motion in 2D [Aberman
et al. 2019a; Chan et al. 2019] or 3D [Liu et al. 2018] from one video,
and apply to it the appearance of a target actor from another video.

3 MOTION STYLE TRANSFER FRAMEWORK
Our framework aims at translating a motion clip of an animated
character with a given content to another motion that exhibits the
same content, but performed using a different style. The desired
target style may be inferred from a few (or even a single) 3D motion
clips, or a video example. Importantly, the target style might not be
one of those seen during training. We only assume that each of the
motion clips in the training set is assigned a style label; there’s no
pairing requirement, i.e., no need for explicit pairs of motions that
feature the same content performed using two different styles.
We treat style transfer as a conditional translation model, and

propose a neural network that learns to decompose motion into
two disentangled latent codes, a temporal latent code that encodes
motion content, and a temporally-invariant latent code that encodes
motion style. These two codes affect the generated motions via two
different mechanisms. The content code is decoded into a motion by
applying a sequence of temporal convolutional layers, each yielding
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Fig. 2. Visualization of deep features in our decoder. Each plot visualizes
a specific channel of a deep feature as eight different styles are applied
to the same motion content. It can be seen that the signals differ only
by a temporally-invariant affine transform and that the signal shape (per
channel) is preserved. Thus, the motion content is preserved as well.

a set of temporal signals that determine the joint rotations in a high-
dimensional feature space. The style code is used to modify only
the means and variances of the generated temporal deep features
via temporally-invariant adaptive instance normalization (AdaIN),
thereby preserving the content of the original motion. Figure 2 vi-
sualizes three channels of deep features generated by our network’s
decoder, showing the effect of different styles applied to the same
motion content.
In addition, in order to support style extraction from videos, we

learn a joint embedding space for style by extracting style codes
from either 3D or 2D joint positions, using two different encoders,
which are encouraged to map 3D motions and their 2D projections
into the same code.
Figure 3 describes the high-level architecture of our framework,

whose various components are described in more detail below.

3.1 Architecture
Our framework, depicted in Figure 3, consists of a conditional mo-
tion translator that takes as input two motion clips: the content
motion ms , with a source style s ∈ S, as well as a style motion nt ,
with a target style t ∈ S. The output motion m̃t is supposed to con-
sist of the content of ms , performed using style t . We next describe
the design and role of the different components in our framework.

Motion Representation. In our setting, a motion clip m ∈ RT×d

is a temporal sequence of T poses where each pose is represented
by d channels. We choose to represent the content input ms and
the style input mt differently from each other. Since a motion is
well defined by the joint rotations (as opposed to joint positions),
and since the content input is strongly correlated with the output
motion, we represent ms using rotations (unit quaternions), i.e.,
ms ∈ RT×4J , where J is the number of joints. In contrast, since style
can be inferred from the relative motion of joint positions, and to
facilitate learning a joint embedding space for 3D and 2D motions,
we represent the style input using joint positions (nt ∈ RT×3J ).
The output motion m̃t is represented using joint rotations, which
enables the extraction of standard character animation files without
any further post-processing. Note that the global root positions are
discarded from the representation of the network’s input/output,
and are treated separately during test time, as explained later in this
section.

Motion Translator. The motion translator consists of a content
encoder EC , a style encoder ES , and a decoder F , where EC and

ES encode the input into two latent codes, zc and zs , respectively.
EC consists of several temporal, 1D convolutional layers [Holden
et al. 2015], followed by several residual blocks that map the content
motion to a temporal content latent code zc . During encoding, the
intermediate temporal feature maps undergo instance normalization
(IN), which effectively ensures that the resulting content code is
“stripped” of style.

The encoding of style is performed by one of the two encoders
E2D
S , E

3D
S , depending on whether the joint coordinates are in 2D

(extracted from a video) or in 3D. We assume that the style does
not change in mid-motion, and use a sequence of 1D convolutional
layers to map nt into a fixed-size (independent on the temporal
length of the clip) latent code zs . We’d like 2D and 3D motions
performed with the same style to be mapped to the same latent
vector zs . Thus, at each iteration during training we use a 3Dmotion
clip, along with a 2D perspective projection of that same clip, and
feed both clips into the corresponding encoders. The latent code zs
is then obtained by averaging the output of the two encoders. At
test time, the style code is extracted by only one of the two encoders,
depending on the type of style input.

The decoder F consists of several residual blocks with adaptive in-
stance normalization (AdaIN) [Huang and Belongie 2017], followed
by convolutional layers with stride that upsample the temporal
resolution of the clip. The AdaIN layer constitutes a normalization
layer that applies an affine transform to the feature activations (per
channel). For each AdaIN layer with c channels, the network learns
a mapping (a multilayer perceptron, or MLP) of the style code zs
into 2c parameters that modify the per-channel mean and variance.
Note that the affine transformation is temporally invariant and

hence only affects non-temporal attributes of the motion. Thus,
while the content encoder effectively removes the source style s
by normalizing the non-temporal attributes with IN, the decoder
injects the target style t by using AdaIN to scale and shift the feature
channels to target values inferred from the style code.

In summary, using the notation introduced above, our conditional
motion translator G may be formally expressed as:

m̃t = G
(
ms |nt

)
= F

(
EC (ms )|ES (nt )

)
. (1)

Multi-Style Discriminator. Our discriminator D follows the multi-
class discriminator baseline proposed at [Liu et al. 2019]. D is a
single component that is trained to cope with |S| adversarial tasks
simultaneously, where each task aims to determine whether an input
motion is a real motion of a specific style i ∈ S, or a fake output of
G. When updating D for a real motion of source style i ∈ S, D is
penalized if its i-th output is false. For a translation output yielding
a fake motion of source style i , D is penalized if the i-th output is
positive. Note that D is not penalized for not predicting false for
motions of other styles. When updatingG , it is penalized only if the
i-th output of D is false.

Global Velocity. At test time, we aim to extract the desired style
even from a single example. However, since the content of the two
input motions (style and content) may be different, the translation
of global velocity, a property which is often correlated with style, is
a challenging task. For example, in order to convert neutral walk-
ing to old walking, the global velocity should decrease. However,

ACM Trans. Graph., Vol. 39, No. 4, Article 1. Publication date: July 2020.



Unpaired Motion Style Transfer from Video to Animation • 1:5

Content Motion

Style Motion

Output Motion

S
ty

le
 c

o
d

e

Temporal 

content  

code A
d

a
I
N

2D 

Projection 

EC

E2D
S

E3D
S

F

D

Joint-  
embedding  

Triplet 
Loss

Multi-Style 
Adversarial 

Loss

zc
Content 

 Consistency 
 Loss

nt

ms m̃t

I
N

ES

MLP

zs

Fig. 3. Our motion-style transfer architecture consists of encoders for content (EC ) and style (ES ), which extract a latent content code (zc ) and a latent
style code (zs ), respectively, where the style code can be extracted from either 3D motions (via E3D

S ) or 2D projections (E2D
S ). During encoding, the content

code is stripped of style by instance normalization (IN) layers. The content code is then used to reconstruct a motion by a decoder F , which contains AdaIN
layers that modify temporally-invariant second order statistics of the intermediate deep features decoded by F . The output motions are fed into a multi-style
discriminator D that judges whether it belongs to a certain style.

inferring such a property form a single clip of old kicking, where
the root position is nearly static, is practically impossible, especially
when the style is previously unseen. A principled solution to this
problem is outside the scope of this work; below, we describe a
heuristic solution that has worked well in our experiments. In this
solution, the root positions of our output motion are directly taken
from the content input sequence. However, since global velocity is
correlated with style, we perform a dynamic time warping on the
global velocity, based on the velocity ratio between the two input
motions. More precisely, for each motion sequence, we measure the
velocity factor as the temporal average of the maximal local joint
velocity,

V =
1
T

T∑
τ=1

max
j ∈J

{v j (τ )}, (2)

where v j (τ ) is the local velocity of the j-th joint in time τ . Next, we
warp the temporal axis by the factorV sty/V con, whereV sty andV con

are the velocity factors for the style and content inputs, respectively.
We find that in most of our examples local joint velocity captured
style information better than global velocity, and for that reason
decided to use the above definition for the velocity factor.
Note that this global transformation is reversible, such that if

we use the output motion as the content input, and the original
content motion as the style input, we recover the global velocity of
the original motion.

Foot Contact. As our network is built upon 1D temporal convolu-
tion layers, raw outputs tend to suffer from foot skating artifacts.
In order to cope with the issue, we extract foot contact labels from
the content input, use them to correct the feet positions and apply
IK to fix the corresponding output poses (before the global velocity
warping). As a result, we get visually plausible outputs, with no
foot skating. While this fix works well in most cases, note that it

assumes that the foot contact timing is part of the content, and not
of the style. However, this is not always true: consider, for example,
a zombie walking while dragging one of the feet. This aspect should
be further addressed in future work.

3.2 Training and Loss
Our dataset is trimmed into short overlapped clips, which comprise
our motion collectionM. However, note that at test time the length
of the input sequences can be arbitrary, since the networks are fully
convolutional.
Note that although the content input motion and the output

motion are both represented using joint rotations, all of the losses
are applied to joint positions as well. This is done by applying a
forward kinematics layer [Pavllo et al. 2019a; Villegas et al. 2018]
on the aforementioned components, which for simplicity, is not
explicitly mentioned in the following equations.

Content Consistency Loss. In case that the content input ms and
the style input nt share the same style (t = s), it is expected that
the translator network will constitute an identity map, regardless
of the content of nt . Thus, in every iteration we randomly pick two
motion sequences from our dataset M, with the same style label,
and apply the content consistency loss which is given by

Lcon = Ems ,ns∼M ∥F
(
EC (ms )|ES (ns )

)
−ms ∥1, (3)

where ∥·∥ represents the L1 norm. Note that when ns = ms , Equa-
tion (3) becomes a standard reconstruction loss.

Adversarial Loss. Since our training is unpaired, the adversarial
loss is the component which is responsible, in practice, tomanipulate
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the style of ms via

Ladv = Ent∼M ∥Dt (nt )∥2 (4)
+ Ems ,nt∼M×M ∥Dt (F

(
EC (ms )|ES (nt )

)
− 1∥2,

where Dt (·) represents the discriminator output which corresponds
to the style class t ∈ S. In order to stabilize the training of the
generator in the multi-class setting, we apply feature matching loss
as regularization [Wang et al. 2018]. This loss minimizes the distance
between the last feature of the discriminator when fed by a real
input of a specific style (averaged over the set) to the same feature
when fed by a fake output of the same target style, via

Lreg = Ems ,nt∼M×M ∥Df (m̃t ) −
1

|Mt |

∑
i ∈Mt

Df (nit )∥1, (5)

where Mt is a subset of motions with style t ∈ S and Df is a
sub-network of D that doesn’t include the prediction (last) layer.

3.3 Joint 2D-3D Style Embedding
Intuitively, the style of motion can be identified by observing the
character 3D positions in space-time as well as their 2D projections
using a view with a reasonable elevation angle. While handcrafted
representations are designed to treat a single form of input, we
exploit the power of deep learning to learn a joint embedding space
for extracting style from both 3D and 2D motion representations.
The learned common latent space can be used for various tasks, such
as video-based motion style retrieval, style interpolation and more.
In our context, we exploit the properties of this space to extract
style directly from real videos during test time, while bypassing
the need for 3D reconstruction, an error-prone process which adds
noise into the pipeline.

Joint Embedding Loss. In order to construct a common latent
space for style, our loss encourages pairs of 3D-2D motions to be
mapped into the same feature vector by

Ljoint = Ent∼M ∥E3D
S (nt ) − E2D

S (P (nt ;p))∥2, (6)

where P is a weak perspective projection operator that projects the
input to a camera plane, with camera parameters p, that consist
of scale s and the Euler angles v = (vpitch,vyaw,vroll). For each
motion clip, we define the local Z-axis to be the temporal average
of per-frame forward directions, which are computed based on
the cross product of the Y-axis and the average of vectors across
the shoulders and the hips. During training vroll = vpitch = 0 are
fixed while vyaw ∈ [−90◦, 90◦] and s ∈ [0.8, 1.2] are randomly
sampled five times in each iteration, to create five projections that
are transferred to E2D

S .

Style Triplet Loss. In order to improve the clustering of the dif-
ferent styles in the latent space, we exploit the style labels and use
the technique suggested by Aristidou et al. [2018] to explicitly en-
courage inputs with similar style to be mapped tightly together, by
applying a triplet loss on the style latent space via

Ltrip = Ent ,xt ,ws∼M[∥ES (nt ) − ES (xt )∥ − (7)

∥ES (nt ) − ES (ws )∥ +δ ]+,

where xt and ws are two motions with different styles s ̸= t , and
δ = 5 is our margin. This loss encourages the distance between

feature vectors of two motion inputs that share the same style to be
smaller, at least by α , than the distance between two motions with
different styles.
Our final loss is given by a combination of the aforementioned

loss terms:

L = Lcon + αadvLadv + αregLreg + αjointLjoint + αtripLtrip, (8)

where in our experiments we use αadv = 1, αreg = 0.5, αjoint = 0.3
and αtrip = 0.3. The network is trained to minimize L with the
parameters of ES , EC , F and to maximize it with the parameters D.

4 DISCUSSION
As discussed in Section 2, adjusting the mean and variance of deep
feature channels in a neural network proved to be effective for
manipulating the style of 2D images. Although motion style is a
conceptually and visually different notion, we have shown that a
similar mechanism can be used to manipulate the style of motion
sequences.
Below we show that our technique may be seen as a generaliza-

tion of the style transfer technique of Yumer and Mitra [2016]. Their
technique is based on pairs, while ours is unpaired, and uses learn-
ing to deal with unseen styles. However, we present a derivation
that shows the commonality in the building blocks, the analysis
of the motion, and how style is transferred. These commonalities
contribute to the understanding of our method.
In their work, Yumer and Mitra [2016] propose a method for

motion style transfer in the frequency domain. They show that given
twomotions ys and yt with similar content and different styles s ̸= t ,
a new, arbitrary, motion xs with style s can be transferred to style t .
The transfer result is given in the frequency domain by

x̃t (ω) = |x̃t (ω)|ei∡x̃
t (ω), (9)

where the magnitude of the output is given by

|x̃t (ω)| = |xs (ω)|+|yt (ω)|−|ys (ω)|

and the phase function is taken from the original input signal
∡x̃t (ω) = ∡xs (ω). Applying the inverse Fourier transform to Equa-
tion (9), we get

x̃t (τ ) ≈ xs (τ ) + дs→t (τ ) ∗ xs (τ ), (10)

where дs→t (τ ) is a convolution kernel (in time, τ ) whose weights
depend on the source and target styles.

Equation (10) implies that the approach of Yumer andMitra [2016]
may be implemented using a convolutional residual block to modify
the style of a motion sequence, where the target style is defined by
the weights of the kernel дs→t , which depend on the source style s
and well as the target style t .

Similarly, our style translation framework also uses convolutional
residual blocks as its core units, where the kernel weights effectively
depend on the source and target style. Although the kernels are
fixed at test time, their weights are effectively modified by the IN
and AdaIN layers, as a function of the styles s and t . Convolution in
time (with kernel k(τ ) and bias b) followed by an IN/AdaIN layer
can be expressed as:

x̃(τ ) = β [x(τ ) ∗ k(τ ) + b] + γ = x(τ ) ∗ βk(τ ) + βb + γ , (11)
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where β and γ , are the IN or AdaIN parameters. Equation (10) is,
in fact, equivalent to a single convolution with an effective kernel
weights k̂(τ ) = βk(τ ) and bias b̂ = βb(τ ) + γ , that are modified as
a function of some input. For the IN case, β and γ depend on the
input signal xs , since they are calculated such that the output has
zero mean and unit variance. In the AdaIN case, the parameters are
produced by an MLP layer as a mapping of the target style’s latent
code. Thus, the use of IN and AdaIN in our architecture effectively
controls the convolutions by the source and target styles.

Rather than directly transferring the motion style from s to t with
a single convolution, as in Equation (10), our process may be viewed
as consisting of two steps: first, the source style is removed by the
encoder EC , which depends only on s , and then the target style is
applied by the decoder F , via the AdaIN layers, which depend only
on t . Thus, our network performs style transfer in a modular way,
making it easier to accommodate new styles. In contrast, using a
single kernel makes it necessary to learn how to translate each style
in S to every other style (all pairs).

5 EXPERIMENTS AND EVALUATION
In this section we evaluate our method and perform various experi-
ments and comparisons that demonstrate some interesting insights
and interpretation of our style transfer mechanism.

Firstly, several samples of our style transfer results are shown in
Figure 4. The full motion clips are included in the accompanying
video. Note that our network outputs joint rotations, hence, our
results do not require any further processing such as IK, and can
be directly converted to the commonly used motion representation
files, and visualized. Although our joint rotations are represented by
unit quaternions, which may lead to discontinuities within neural
networks [Zhou et al. 2019], our output quaternions tend to be
smooth due to the temporal 1D convolutions performed by our
network. Our results demonstrate that our system can transfer
styles that are extracted from various sources, such as 3D animated
characters, 2D projection of 3D motions and real videos, within
a unified framework. The examples demonstrating style transfer
from a video use only a short (3-second) video clip as the sole (and
previously unseen) style example. We are not aware of any other
style transfer method with this capability.

Implementation Details. Weused two different datasets to perform
our experiments. The first dataset, supplied by Xia et al. [2015],
contains motion sequences that are labeled with eight style labels.
The second, is our own newly captured dataset, which contains
various motions performed by a single character in 16 distinct styles.
For convenience, we refer to the datasets as A and B, respectively.
The motion sequences within each of the datasets are trimmed
into short overlapping clips of T = 32 frames with overlap of T /4,
resulting in about 1500 motion sequences for dataset A and 10500
for B. In addition, the motions in each dataset are split into two
disjoint train and test sets, with the test set consisting of 10% of the
samples.
Our framework is implemented in PyTorch and optimized by

the Adam optimizer. A training session takes about about 8 hours
for dataset A, and double the time for dataset B, using an NVIDIA
GeForce GTX Titan Xp GPU (12 GB).

5.1 Latent Space Visualization
In this experiment we project the content codes and style parameters
of some random motion samples from dataset A onto a 2D space
by using t-distributed stochastic neighbor embedding (t-SNE), and
plot the results in order to gain a better understanding of how the
network interprets content and style in practice.

Style Code. Figure 5 shows the 2D projection of our style parame-
ters (AdaIN), where each sample is marked with a color correspond-
ing to its style label. It can be seen that our network learns to cluster
the style parameters, which means that style inputs that share the
same style will manipulate the motion content in a similar way.
This result demonstrates that the extracted style parameters mostly
depend on the style label.
As previously discussed, our framework treats style as a set of

properties, shared by motions in a group, which can be manipulated
(added/removed) by an affine, temporally invariant, transformation
(AdaIN) applied to deep features. When such common properties ex-
ist within the group, the clusters are naturally formed even without
the need for triplet loss (Figure 5(a)). However, since a given style
may be described by different nuances for different content motions
(e.g., proud boxing has some hand gestures that do not exist in proud
walking), a triplet loss encourages (but does not enforce) style codes
of the same group to be closer to each other. This loss emphasizes
commonalities within the group, making the clusters tighter, as
can be observed in Figure 5(b), and leads to better content-style
disentanglement.

Figure 6 visualizes style codes parameters (AdaIN) extracted from
3D motions together with ones extracted from video. It may be seen
that the latter codes, for the most part fall into the same clusters as
the former ones.

Unseen Styles. Generally speaking, our network enables to extract
styles from arbitrary motion clips during test time. However, in
practice, when the number of seen styles is small, the network may
overfit to the existing styles, as one might suspect when observing
the well-separated clusters in Figure 5. We retrained our model
with dataset A, excluding the motions that are labeled by the “old”
style label, and then tested it using the motions within this group.
Although the network successfully clusters the samples (Figure 7(a)),
our results show that the style properties of the output are adapted
from visually similar styles among those that were seen during
training. For example, the “old walking” style code is close that
that of “depressed walking”, and the style transfer result indeed
resembles that of “depressed walking”.
We performed the same experiment with dataset B (which in-

cludes 16 styles), excluding the “heavy” style, and then tested the
trained system with these motions. As can be seen in Figure 7 (b),
the network again learns to cluster the test samples by their style la-
bels. However, in this case, the output motions successfully adapted
style properties from the new unseen clip, which means that the
overfitting is significantly reduced when training on dataset B. This
demonstrates that for the same framework with fixed dimensions,
style can be generalized better, when there are more style classes,
and that the network learns to identify properties that may be re-
lated to style, and to extract them even from unseen style inputs.
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(a) (b) (c)

Fig. 4. Samples of our style transfer results. The motion of the content input (top row) is transferred to a motion with similar content and different style
(bottom row), while the style can be extracted from various sources (middle row) such as 3D animated characters (a) 2D projection of 3D motions (b) and video
sequences (c).

angry
childlike

depressed
neutral

old
proud
sexy

strutting

(a) (b)

Fig. 5. The AdaIN parameters extracted from the style codes are projected
onto 2D space using t-SNE and colored based on their style labels. The
system is trained without triplet loss (a) and with triplet loss (b). It can
be seen that our framework learns to cluster the AdaIN parameters as a
function of style label in both cases, while the addition of the triplet loss
results in tighter clusters.

However, when the number of styles is small, or the characteristic
style properties are very different from those encountered during
training, the network fails to generalize style.

The output motion clips of two experiments with unseen settings
are shown in our supplemental video, next to an output that demon-
strates how the same pair of inputs in each experiment is translated
once the network has seen that style during training. As can be
seen, although the outputs are different, in both cases the motion is
plausible and the target style can be identified.

angry
childlike

depressed
neutral

old
proud
sexy

strutting

Fig. 6. Joint embedding of style codes parameters extracted from 3Dmotions
as well as directly from 2D videos.
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Fig. 7. Unseen styles. (a) Trained on dataset A excluding the “old” style. (b)
Trained on dataset B excluding the “heavy” style. It can be seen that a larger
number of style classes enables the network to better generalize styles in
the latent space
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Fig. 8. Content codes samples are projected onto 2D space using PCA. (a)
The samples are labeled by the style label. No clustering based on style label
may be observed, suggesting that style information has been removed. (b)
When visualizing only walking motions, while labeling samples by the phase
of walking, it may be seen that our content code effectively parameterizes
the motions using a single parameter – the phase.

Content Code. Figure 8(a) visualizes 2D projections of our con-
tent codes (dataset A), colored by their style labels. It can be seen
that there is no clear correlation between the spatial positions of
the points and their labels, which suggests that the content code
probably does not contain significant style information.

Surprisingly, by observing the spatial distribution of the 2D points
it can be seen that a subset of the samples forms a circle. The circle
becomes nearly perfect by filtering out all the non-walking motions
(using content motion labels that exist in the original dataset) and
scaling the 2D space (the unscaled projection is elliptical). For walk-
ing motion samples, the reduced space achieved by PCA captures
97.4% of the original variation, which means that our projected
content code preserves the information well.
The nearly perfect circle is achieved due to 3 main reasons: (i)

Walking motions in dataset A exhibit approximately the same veloc-
ity. (ii) The network discards global velocity and orientation (iii) Our
motion samples are represented by a fixed size temporal window.
Thus, the content of these periodic motions can be parameterized
with a single parameter: the phase. In order to confirm this inter-
pretation we calculate the period of each walking motion sample,
extract the phase Θ of the middle frame, and color the corresponding
point with sin(Θ) in Figure 8(b). The continuous variation of the
color along the circle suggests that our network effectively strips the
style and represents walking motions with a single phase parameter.
The phase representation for locomotion is well-known in char-

acter animation and is used, for example, to dictate the state or
mode of a phase-based neural network that generates animations
of humans [Holden et al. 2017b].

5.2 Comparison
In this section we compare our approach to the method of Holden et
al. [2016] that performs style transfer by optimizing a motion se-
quence to satisfy two constraints, one for motion and one for style.
Similarly to the seminal work of Gatys et al. [2016] for image style
transfer, the content is described by a set of deep features, and the
style is represented by the Gram matrix of those features. However,

MoCap Holden et al. [2016] Ours
79.17% 12.5% 75%

(a)
Holden et al. [2016] Ours

Content Preservation - 3D 38.89% 61.11%
Content Preservation - video 25% 75%
Style Transfer - 3D 5.56% 94.44%
Style Transfer - video 8.33% 91.67%

(b)
Table 1. User study results. (a) Realism ratios. (b) Content preservation and
style transfer ratings ([Holden et al. 2016] vs. Ours). The style inputs were
either from 3D motion, or from video.

while in the image domain the features are extracted by a classifica-
tion network, here they are extracted by a motion autoencoder.
In order to perform the comparison the approaches are quali-

tatively evaluated by a user study that measures a few aspects of
style transfer approaches. The results are evaluated with styles ex-
tracted from 3D motions, as well as from videos. However, since
Holden et al. [2016] extract styles only from 3D motions, we use a
state-of-the-art 3D pose estimation algorithm [Pavllo et al. 2019b]
to recover 3D poses, when the provided style input is a video. For a
fair comparison we use dataset A, which is part of the CMU dataset
[CMU 2019], which Holden et al. [2016] used to train their model.
A few results extracted from the full comparison given in our

supplementary video are depicted in Figure 9.

5.2.1 User Study. We performed a user study to perceptually evalu-
ate the realism, style expressiveness and content preservation of our
transfer results, while the style is extracted both from 3D motions
and videos. 22 subjects were asked to answer a questionnaire with
three types of questions, which we describe below.

Realism. In this part, we evaluate the realism of different motions.
Users were presented with a pair of motions, both depicting the
same type of content and style (e.g., angry jump). The motions were
taken from three different sources: (1) Our original MoCap dataset,
(2) Results of Holden et al. [2016] (3) Our results. Note that (2) and
(3) are generated with similar inputs. Users were asked questions of
the form: “Which of the above motions look more realistic?”, and
had to choose one of the four answers: Left, Right, Both, or None.

132 responseswere collected for this question type. Table 1 reports
the realism ratios for each motion source. It may be seen that 75% of
our results were judged as realistic, which is a significantly higher
ratio than the one measured for Holden et al. [2016], and not far
below the realism ratio of real MoCap motions.

Content Preservation and Style Transfer. In this part, we compare
our style transfer results to those of Holden et al. [2016] in terms of
two aspects: the preservation of content and the transfer of style.
Users were presented with a content input, a style input, and two
transferred results, one by Holden et al. [2016] and the other by our
method. They were asked to first select the motion whose content
is closer to the content input (“Which of the motions on the right is
more similar to the motion on the left in content?”), and then select
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the motion whose style is closer to the style input (“Which of the
motions on the right is more similar to the motion on the left in
style?”).
110 responses were collected for each of these two questions.

The results are reported in Table 1. The results indicate that our
method was judged far more successful in both aspects (content
preservation and style transfer), both when using a 3D motion as
the style input, and when using a video. The reasons to which we
attribute the large gaps in the ratings are discussed in detail later in
this section.
It can be seen that the user study states that our method yields

results which are more faithful to the task of style transfer. In partic-
ular, it can be seen that the approach of Holden et al. [2016] struggles
to transfer style when the content of the two input motions is differ-
ent (for example, when the input content motion is “proud walking"
and the input style is “depressed kicking"). The main reason is that
both content and style representations are derived from the same
deep features, which leads to a dependency of content and style. In
order to get a better understanding of their style representation, we
projected the styles extracted by both methods into 2D, using t-SNE.
Figure 10 shows the resulting maps. It can be seen that while our
samples are clustered by the style labels (right plot), this cannot be
observed for Holden’s representation, which results in a multitude
of small clusters, scattered over the 2D plane. Thus, while Gram
matrices of features extracted by an autoencoder enable some de-
gree of style transfer, they are clearly affected by other information
present in the motion samples.
Moreover, we use video style examples, where a person demon-

strates different walking styles, while walking on a treadmill. When
poses are extracted from such a video, the root velocity is very
small. In contrast, most of the content inputs have significant root
velocity. This discrepancy poses no problem for our approach, but it
adversely affects the method of Holden et al.[2016], which is limited
to work with input pairs that share the same content.

Our method explicitly attempts to extract a latent style code from
an input style motion, which enables clustering of motions with
different content but similar style in the latent style space, thereby
disentangling style from content. In contrast, Holden et al. [2016]
represent style using Gram matrices, similarly to the seminal work
of Gatys et al. [2016] for image domain style transfer.

5.3 Ablation Study and Insights
Effect of Adversarial Loss. In this experiment we discarded the

adversarial loss Ladv from our training. Surprisingly, our experi-
ments show that the discriminator does not play the key role in
the transferring of style. Furthermore, a single content consistency
loss is sufficient to train the network to extract shared property
with from labeled styles, and to cluster the style code samples by
their style labels. However, we found that without the attendance
of the adversarial loss, the perceived realism of the output motions
is degraded, and artifacts such as some shaking can be observed.
The comparison can be found in the supplementary video.

Style Code and Neutral Style. In order to gain a better understat-
ing of the impact of the style code and the structure of its space,
we neutralized the style branch by setting the AdaIN output to

identity parameters (zero mean, unit variance). With these settings,
the network outputs pure noise. The reason is that the network
is trained in an end-to-end fashion, the scale and translation are
also responsible for modifying the features such that the network
outputs valid motions. In addition, in order to understand whether
the neutral style is more centralized in the style latent space than
other styles, for every style label, we calculated the mean distance
between its average style code to all the other average style codes.
We found that in both of the datasets the neutral style is among the
top three styles in terms of that mean distance, which might suggest
that the network learns to branch from neutral style into the other
styles. However, we are not able to reach a definitive conclusion
based on this experiment.

5.4 Style Interpolation
Our learned continuous style code space can be used to interpo-
late between styles. Style interpolation can be achieved by linearly
interpolating between style code, and then decoding the results
through our decoder. Our video demonstrates motions where the
content input is fixed (neutral walking) and the style is interpolated
between two different style codes (depressed to proud and neutral
to old). Figure 11 shows a key-frame from each interpolated motion
sequence.

6 CONCLUSIONS AND FUTURE WORK
We have presented a neural network that transfers motion style
from one sequence into another.

The key novelty is that the network is trained without paired data,
and without attempting to explicitly define either motion content
or motion style. Nevertheless, the results show that the network
succeeds to implicitly disentangle style and content and combine
even previously unseen styles with a given content. We partly at-
tribute the success of the approach to the asymmetric structure
of the network, where the style is represented and controlled by
instance normalization layers, while the content by deep convolu-
tional layers. Instance normalization layers have the innate tendency
to control mainly local statistics, or in other words, details, while
the convolutional layers preserve the content. Our training protocol,
with various motion styles, encourages this asymmetric network to
disentangle the latent style from the motion’s content.
Although there is no universally accepted definition of motion

style, it may be argued that our framework defines style as the set of
properties, shared by motions in a group, which can be manipulated
(added/removed) by an affine, temporally invariant, transformation
(AdaIN) applied to deep features. As a consequence, the complemen-
tary part of style that enables the reconstruction of local motion
(without the root position), is defined as the content. In addition, the
global positions, which are taken directly from the content input, are
considered as part of the content, while the global velocity, which
is temporally warped based on the style input, is defined to be part
of the style in our case.
Our mechanism aims at disentangling style and content of ar-

bitrary motions based on style labels. However, if the two input
motions (content input and style input) during test time are different
(lacking commonalities) and the target style departs too much from
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Input Style Holden et al. [2016] OursInput Content

Fig. 9. Qualitative comparison of our method to the approach of Holden et al. [2016]. The content input is shared across all the examples (each column
shows a different example), the input style is depicted in the first row, while the results of Holden et al. [2016] and ours are given in the second and last row,
respectively. We picked a fixed set of key frames of each motion to demonstrate the results. The full video sequences and more results can be found in the
supplemental video.

Style Classes
angry

childlike
depressed
neutral

old
proud
sexy

strutting

Fig. 10. Style codes extracted by our method (right) compared to the style
representation of Holden et al. [2016] (left). While our style codes are clus-
tered by style labels, while in Holden’s representation the style representa-
tion for many small scattered clusters, which implies dependencies between
style and content. While our style codes are clustered by style labels, the
style representation of Holden et al. [2016] forms many small scattered
clusters, which imply dependencies between style and content.

(a) (b)

Fig. 11. Style interpolation. Our style space code enables motion style
interpolation. A neutral walking is transferred to an interpolated style. (a)
Depressed to proud. (b) neutral to old.

the ones used for training, the network will not be able to infer
which style properties should be transferred. Moreover, due to the

fact that the majority of the motions in our datasets depict locomo-
tion (walking and running) the network tends to output motions
of higher-quality with such samples during test time. In turn, this
motivates us to use our generative system to produce more data and
new styles by possibly mixing styles or amplifying (or attenuating)
available styles or mixes of styles.
Another notable limitation is that testing the system with char-

acters that have different body proportions from those which were
seen during training, may lead to implausible results. In order to
cope with such cases, motion retargeting should be performed prior
to the style transfer pass. Motion retargeting is a challenging prob-
lem in its own right, and is outside the scope of this work. In order to
support style transfer of various unseen skeletons in an end-to-end
fashion, a different solution would have to be proposed. We leave
this issue to future work.
In our current implementation, a given pair of input content

and style motions yields a deterministic output. We would like
to consider extending the system by injecting noise to produce
slight variations. This will allow a temporal prolongation of the
input sequence without noticeable repetitions or discontinuous
transitions. In the future, we would also consider segmenting the
sequence temporally and transferring different styles to different
segments.

We believe that the role of instance normalization in motion pro-
cessing and animation is likely to increase, especially for generative
models. The work we presented, is only a first step in that direction.
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