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Abstract—The prevailing characteristics of micro-videos result in the less descriptive power of each modality. The micro-video
representations, several pioneer efforts proposed, are limited in implicitly exploring the consistency between different modality
information but ignore the complementarity. In this paper, we focus on how to explicitly separate the consistent features and the
complementary features from the mixed information and harness their combination to improve the expressiveness of each modality.
Towards this end, we present a Neural Multimodal Cooperative Learning model (NMCL) to split the consistent component and the
complementary component by a novel relation-aware attention mechanism. Specifically, the computed attention score can be used to
measure the correlation between the features extracted from different modalities. And then, a threshold is learned for each modality
to distinguish the consistent and complementary features, according to the score. Thereafter, we integrate the consistent parts to
enhance the representations and supplement the complementary ones to reinforce the information in each modality. As to the problem
of redundant information, which may cause overfitting and is hard to distinguish, we devise an attention network to dynamically capture
the features which closely related the category and output a discriminative representation for prediction. Experimental results on a
real-world micro-video dataset show that NMCL outperforms state-of-the-art methods. Further studies verify the effectiveness and
cooperative effects brought by the attentive mechanism.

Index Terms—Cooperative Learning, Venue Category Estimation, Attention Model, Consistency and Complementarity.
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1 INTRODUCTION

THE proliferation of Web 2.0 and portable devices
contributes to the success of micro-videos. As a new

media type, micro-videos allow the users to record their
daily life within a few seconds and share over social
media platforms (e.g., Vine1, Instagram2, and Kwai3). The
properties of easy-to-operate, instant sharing, and down-
to-the-earth contents make the platforms unexpectedly
popular, especially among the grassroots. Considering Kwai
as an example, as of September 2017, it had attracted over
600 million registered users, and 87 million of them are
active for approximately 60 minutes per day, producing
around 10 million micro-videos4.

Different from the traditional long videos, a micro-
video is usually recorded at one specific spot without any
post-edit. As such, users can associate each micro-video
with the specific geo-location tag (e.g., Beijing’s Olympic
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A girl feeds the cute dog with a giant lollipop on the campus.

Fig. 1: Exemplar demonstration of the correlation between
the visual modality and textural modality. The blue and
brown boxes show the consistent information and the red
dashed boxes show the complementary ones, respectively.

Basketball Stadium) to indicate where it is captured. As
known, geographic information benefits many services,
such as location-based search, recommendation, and social
networking. However, in real-world scenarios, few users
tag their micro-videos with specific geographic information
owing to privacy concerns. According to our statistics [1],
only about 1.22% of two million micro-videos in Vine were
labelled with locations.

Despite its significance, we have to mention that it
is hard, if not impossible, to infer the specific location
information, such as “American Airlines Arena in Florida,
USA”. Instead, we turn to infer the venue category of a
given micro-video, such as “Basketball Court”. Technically
speaking, venue category estimation of micro-videos is
usually treated as a multimodal fusion problem and solved
by integrating the geographic cues from visual, acoustic,
and textual modalities of micro-videos. Several pioneer
efforts have been dedicated to the task. Lazebnik et al. [2]
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Fig. 2: An illustration of our framework. It separates the consistent features from the complementary ones and enhances the
expressiveness of each modality via the proposed cooperative net. Then, it selects the features to generate a discriminative
representation in the attention network towards venue category estimation.

proposed the spatial pyramid matching to incorporate the
spatial layout into bag-of-word for predicting the category.
Singh et al. [3] discovered and leveraged the concept of
mid-level discriminative parts to classify the venue. In
addition, deep convolutional networks are exploited for
the classification by Zhou et al. [4], and a large-scale
Places dataset is introduced as well. Towards the micro-
video venue prediction, Zhang et al. [1] projected three
modalities into a common space, whereby a tree-guided
multi-task scheme is employed to capture and model the
hierarchical relatedness among venue categories. To better
characterize the sequential structure and sparse concepts,
Liu et al. [5] presented a model to first jointly sew up the
parallel Long Short-Term Memory (LSTM) models and then
integrate a Convolutional Neural Network (CNN) model.
For different modalities, they mapped the features into
a common space considering the consistency in the time
sequence. More recently, Nie et al. [6] proposed a deep
transfer model (DARE) to alleviate the low-quality of the
acoustic by harnessing the external sound knowledge and
fuse the multimodal information by utilizing the consistency
among multiple modalities, leading to better performance.
In all of these methods, to obtain a joint representation
for each micro-video, the authors introduced a common
space and projected the heterogeneous data into this space.
However, the projection inevitably causes some modal-
specific information loss and affects the expression of the
micro-video.

Upon further analysis, the current methods are restricted
to only fusing the common (a.k.a., consistent) cues over
multiple modalities. In fact, beyond the consistency, the
relations among multiple modalities are much more
sophisticated. For instance, complementarity is another
equally important relation among modalities. Moving one
step forward, in this work, we shed light on the cooperative
relations, comprising the or comprised of the consistent
and complementary components. We refer to the consistent
component as the same information appearing in more than
one modality in different forms. As shown in Figure 1,
a red candy displaying in the visual modality and the
text of “lollipop” describe the consistency. By contrast,
the complementary component represents the exclusive
information appearing only in one modality. For instance, it
is hard to find the equivalent in other modalities in Figure 1

of the textual concept of “girl” or the visual concept of
“grass”. To supercharge a multimodal prediction scheme
with such cooperative relations, the multimodal cooperation
shall be able to: 1) enhance the confidence of the same
evidence from various views via consistent regularization,
and 2) provide a comprehensive representation from
the exclusive perspective of complementary component.
Nevertheless, characterizing and modeling multimodal
cooperation is non-trivial due to the following challenges:
1) Consistent and complementary information are often
mixed. How to separate it from different modalities is
largely untapped. And 2) after separation, it is difficult to
associate them with each other, since they are orthogonal.

In recently, several approaches [7, 8, 9, 10, 11,
12] have been proposed to integrate the multimodal
information. For instance, Wang et al. [8] leveraged a
hybrid multimodal fusion strategy to integrate the learned
visual and text features, in which the early fusion part
concatenates the multimodal features and the late fusion
part is used to classification. Yang et al. [9] proposed a
multilayer and multimodal fusion framework for video
classification. In this framework, a robust boosting model
is employed to learn the optimal combination of multiple
layers and modalities. However, these methods cannot
distinguish and represent the correlations (e.g., consistency
and complementarity) between different modalities, which
benefit the expressiveness of each modality. Therefore, we
present an deep multimodal cooperative learning approach
which explicitly models the correlations between different
modalities and enhances the representation of each modality
to estimate the venue categories of micro-videos. As
illustrated in Figure 2, the features are firstly extracted
from each modality and fed into three cooperative peer
nets. In each cooperative net, we respectively treat one
modality as the host and the rest as the guests. Then we
obtain the augmented feature vectors as the output of the
cooperative nets. Following that, each vector is fed into an
attention net followed by a late fusion over the prediction
results from different softmax functions. Stepping into the
cooperative net as demonstrated in Figure 3, the structure
is symmetric. In particular, on the left hand side, we first
concatenate the guest modalities and estimate the relevance
between each dimension of the combining vector and the
host vector. As to the combined vector, a gate with the
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learned threshold is used to separate its consistent part and
complementary part. An analogous process is applied to the
right hand side. Thereafter, two consistent parts are fused
with a deep neural network model, and the fusion result is
ultimately concatenated with the two complementary parts.
We validate our model on a publicly accessible benchmark
dataset and compare it with several state-of-the-art models.

The main contributions of this work are threefold:
• To the best of our knowledge, this is the first work on

multimodal cooperative learning. We clearly define that
the cooperative relationship among multimodalities is
comprised of consistent and complementary components.

• We devise a cooperative network to automatically
distinguish and fuse the consistent and the
complementary information among multiple modalities.

• We apply our proposed deep multimodal cooperative
learning approach to estimating the venue categories
of micro-videos. In addition, we released our codes,
parameters, and involved baselines to facilitate other
researchers5.

The remaining of this paper is structured as follows. In
Section 2, we briefly review the related work. Section 3
and 4 detail our proposed model and the data collection,
respectively. Experimental settings and results analysis are
presented in Section 5 followed by the conclusion and future
work in Section 6.

2 RELATED WORK
Our work is closely related to multimodal fusion and micro-
video understanding.

2.1 Multimodal Fusion
Technically speaking, traditional multimodal fusion
approaches consist of early fusion and late fusion.

Early fusion approaches, such as [13, 14], typically
concatenate the unimodal features extracted from each
individual modality into a single representation to adapt
to the learning setting. Following that, one can devise a
classifier, such as a neural network, treating the overall
representation as the input. However, these approaches
generally overlook the obvious fact that each view
has its own specific statistical property and ignore the
relatedness among views. Hence, it fails to explore the
modal correlations to strengthen the expressiveness of each
modality and further improve the capacity of the fusion
method.

Late fusion performs the learning directly over unimodal
features, and then the prediction scores are fused to predict
the venue category, such as averaging [15], voting [16] and
weighting [17]. Although this fusion method is flexible and
easy to work, it overlooks the correlation in the mixed
feature space.

In contrast to the early and late fusion, as a new
paradigm, multi-view learning exploits the correlations
between the representations of the information from
multiple modalities to improve the learning performance. It
can be classified into three categories: co-training, multiple
kernel learning, and subspace learning.

5. https://nicemodel.wixsite.com/nice.

2.1.1 Co-training
Co-training [18] is a semi-supervised learning technique
which first learns a separate classifier for each view using
the labeled examples. It maximizes the mutual agreement
on two distinct views of the unlabeled data by alternative
training. Many variants have since been developed. Instead
of committing labels for the unlabeled examples, Nigam
et at. [19] proposed a co-EM approach to running EM in
each view and assigned probabilistic labels to the unlabeled
examples. To resolve the regression problems, Zhou and
Li [20] employed two k-nearest neighbor regressors to label
the unknown instances during the learning process. More
recently, Yu et at. [21] proposed a Bayesian undirected
graphical model for co-training through the Gaussian
process. The success of the co-training algorithms relies on
three assumptions: (a) each view is sufficient to estimate
on its own; (b) it is probable that a function predicts the
same labels for each view feature; and (c) the views are
conditionally independent of the given label. However,
these assumptions are too strong to satisfy in practice,
especially for the micro-videos with different modalities,
whereby the information in each modality is insufficient to
generate the same label prediction.

2.1.2 Multiple Kernel Learning
Multiple Kernel Learning [22] leverages a predefined set
of kernels corresponding to different views and learns
an optimal linear or non-linear combination of kernels to
boost the performance. Lanckriet et at. [23] constructed a
convex Quadratically Constrained Quadratic Program by
conically combining the multiple kernels from a library
of candidate kernels and applied the method to several
applications. To extend this method to a large-scale
dataset, Bach et at. [24] took the dual formulation as a
second-order cone programming problem and developed
a sequential minimal optimization algorithm to obtain the
optimal solution. Further, Ying and Campbell [25] used the
metric entropy integrals and pseudo-dimension of a set
of candidate kernels to estimate the empirical Rademacher
chaos complexity.

2.1.3 Subspace Learning
Subspace learning [26] obtains a latent subspace shared
by multiple views by assuming that the input views
are generated from this subspace. The dimensionality
of the subspace is lower than that of any input
view, so the subspace learning alleviates the “curse
of dimensionality”. The canonical correlation analysis
(CCA) [27] is straightforwardly applied to select the
shared latent subspace through maximizing the correlation
between the views. Since the subspace is linear, it is
impossible to apply CCA to the real-world datasets
exhibiting non-linearities. To compensate for this problem,
Akaho [28] proposed a kernel variant of CCA, namely
KCCA. Diethe et at. [29] proposed the Fisher Discriminant
Analysis using the label information to find the informative
projections, more informative in the supervised learning
settings. Recently, Zhai et at. [30] studied the multi-view
metric learning by constructing embedding projections
from multi-view data to a shared subspace. Although
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the subspace learning approaches alleviate the “curse of
dimensionality”, the dimensionality of subspace changes
along with the task.

To address the problems mentioned above, it is crucial
to subtly leverage the correlation information among
modalities. We can roughly divide it into consistent and
complementary components, which to our knowledge,
has never been studied before. The consistent component
mainly refers to the common or shared information among
various modalities, such as the visual feature of “red
candy” and the textual feature of “lollipop”. On the
contrary, the complementary one presents typically the
exclusive information appearing only in one modality, like
the textual feature of “girl”. However, none of the models
has thoroughly exploited consistent and complementary
information. However, the consistent information can be
leveraged to alleviate the low-quality of the micro-video,
and the complementary information is able to make up for
the information insufficiency of the micro-video. Inspired by
this, we proposed a cooperative net to capture the consistent
and complementary information explicitly.

2.2 Micro-video Understanding
Micro-video, as a new form of medium, has attracted
much attentions in recent years, spanning from degree-
of-loop assessment [31], hashtag labeling [32], popularity
prediction [33], to venue category estimation [1, 5, 6].

2.2.1 Degree-of-loop Assessment
Degree-of-loop is used to evaluate the smoothness of the
connection between the first and the last frames of a
video. To address this problem, Sano et at. [31] proposed
a preliminary study by analyzing the spatial and temporal
statistics of visual features to classify the loop and non-loop
micro-videos.

2.2.2 Hashtag Labeling
Labeling micro-videos with semantic tags can facilitate
micro-video understanding, archiving and searching.
Towards this end, Chen et at. [32] designed a viewpoint-
specific and temporally-evolving model to label the micro-
videos with hashtags by leveraging the motion and visual
features.

2.2.3 Popularity Prediction
Micro-video popularity prediction enables the advertisers
to inject or bind their products into/with the to-be popular
micro-videos in advance and hence maximizes their profits.
Zhang et at. [1] proposed a transductive fusion model to
integrate social, acoustic, visual and textual modalities for
the popularity estimation.

2.2.4 Venue Category Estimation
Given a micro-video, estimating its venue category has
enormous commercial potential in many location-based
services, such as targeted advertising and location-based
organization.

Prior literature studies how to exploit the consistent
information encoded in the visual, acoustic, and textual
modalities to construct the representations of micro-videos

g1 g2 h

Concatenation(g1, g2)

Concatenation

Concatenation

Output

Fig. 3: Illustration of Cooperative Net. The cooperative
nets separate the consistent components from the
complementary ones, and yield an augmented feature
vector comprised of the enhanced consistent vector and
complementary vectors.

and accordingly identifies their specific venue category. On
the basis of the state-of-the-art review, we can roughly
categorize the existing efforts to shallow and deep fusion
models. The representative work in the shallow learning
group is introduced by [1]. This work projects the visual,
acoustic, and textual features into a common space via
simple mapping, and then adopts a tree-guided multi-task
learning classifier to encode the hierarchical structure of the
venue categories to eventually identify the leaf category.
Owing to the linearity of mappings, the shallow model
hardly captures the complex relations among modalities
which may further lead to negative transfer and suboptimal
prediction performance. To better enrich the expressiveness
of micro-videos, researchers turn to deep models. For
example, Liu et at. [5] employed parallel LSTMs to capture
the modality-wise sequential representations, projected the
representations into a common space, and adopted CNNs
to obtain the sparseness over the underlying concepts.
Considering compensating the original acoustic modality,
Nie et at. [6], more recently, proposed a neural transfer
model to enrich the acoustic features via harnessing the
external sound knowledge, and automatically learn the
nonlinear and complex relations among modalities via a
deep neural network.

3 NEURAL MULTIMODAL COOPERATIVE MODEL

We first formally define the problem in this section. Assume
that we are given a set of N micro-videos X = {xi}Ni=1. For
each micro-video x ∈ X , we segment it into three modalities
{xv,xa,xt}, where v, a, and t denote the visual, acoustic, and
textual modality indices, respectively. Let m ∈M = {v, a, t}
denote the modality indicator, and xm ∈ RDm denote the
Dm-dimensional feature vector over the m-th modality. In
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our work, each micro-video is associated with one of K pre-
defined venue categories, namely a one-hot label vector y ∈
RK , where K refers to the number of venue category.

3.1 Multimodal Early Fusion
In this work, we argue that the information across
modalities can be categorized into two parts: the consistent
component and the complementary component. For
example, let certain features of xv indicate the visual
concepts of “sunshine” and “crowd”; and some of xa

describe the acoustic concepts of “wind” and “crowd
cheering”. From the angle of consistency, the visual concept
of “crowd” is consistent with the acoustic concept of
“crowd cheering”. For complementarity, the visual concept
of “sunshine” provides the exclusive signals, as compared
to the acoustic one of “wind”.

Uncovering the underlying modality relations in micro-
videos is already challenging, not to mention different
types of relations to the final prediction. To the best of
our knowledge, most existing efforts only implicitly model
the modality relations during the learning process, leaving
the explicit exhibition of relations untouched. Specifically,
the deep learning based methods, which feed multimodal
features together into a black box multi-layer neural
network and output a joint representation, are widely
used to characterize the multimodal data. With the deep
neural network, the correlations between different features
are involved in the new representations. However, the
corresponding features cannot be captured and filtered from
the vectors. Towards this end, we aim to propose a novel
cooperative learning mechanism to leverage the uncovered
relations and boost the prediction performance.

3.2 Cooperative Networks
Our preliminary consideration is to explicitly model the
relations comprised of the consistent and complementary
parts. A viable solution [28, 34] is to project the
representations of different modalities into a common latent
space, formally as

min
Am,B

λ1
2

M∑
m=1

‖XmAm −B‖2F +
λ2
2

M∑
m=1

‖Am‖2F , (1)

where B ∈ RN×K
′

is the representation matrix in the
common space learned from all modalities, and K ′ is the
latent feature dimension. Am ∈ Rm×K

′
is the transformation

matrix from the original feature space over the m-th
modality to the common space; λ1 and λ2 are nonnegative
tradeoff parameters. In this solution, the consistent cues
should be close to each other since they show the
same evidence, whereas the complementary cues in the
common space should be distant due to the fact they have
no overlapping information. To map the heterogeneous
information extracted from a micro-video to the same
coordinate, some information, especially the modality-
specific information, probably lose during the projection.
We term it as the common-specific method. Hence, such
direct mapping will lead to suboptimal expressiveness of
the method. Although through careful parameter tuning,
we can control the loss to a certain extent, it requires

extensive experiments which are not easily adapted to other
applications.

To avoid such information loss, we devised a novel
solution named the cooperative network, in which each
modality information was overall retained and augmented
by the other modalities. Specifically, this network assigns
each dimension of features with a relation score and
consequently divides the features into the consistent part
and the complementary part. Here the relation score for each
feature reflects how consistent the information is derived
from the other modalities. The use of relation score endows
our model with strong expressiveness and benefits further
cooperative learning. In what follows, we elaborate on the
key ingredients of the cooperative network.

3.2.1 Relation Score
The goal of the relation score is to select features from each
modality, where the underlying information is consistent
among modalities. As shown in Figure 3, we treated
one specific modality m as the host represented as hm;
the other modalities as the guests denoted as gm1 and
gm2 , respectively. Intuitively, we can explicitly capture the
varying consistency of the host and guest features by
assigning an attentive weight for each feature dimension.
The weights are considered as relation scores. Therefore,
given the representations of the host and guest modalities,
we presented a novel relation-aware attention mechanism
to score each feature.

Considering that the consistency should be the
correlation between host features and whole guest
information, we concatenated all the guest vectors together
as follows,

gm = [gm1 ,g
m
2 ], (2)

where the gm encapsulates all the features from the guest
modalities.

We took each dimension in the host modality as a feature
and used the attention mechanism to score the correlation
between each feature and the guest information. A higher
score suggests that the correlation is more consistent. In
contrast, a lower score means that the corresponding feature
is independent of the guest modal and can be treated as the
complementary features. It is formulated as,

smh,i = σ(hmi ,g
m), (3)

where the hmi and gm denote the i-th feature in the
host vector and the guest vector, respectively; and σ is
the nonlinear function to score the correlation, taking the
concatenation of the host and guest vectors as inputs.
Moreover, the host vector and the guest vector can be
concatenated to evaluate the relation scores for efficiency.
Specifically, we fed the guest vector gm and the host vector
hm into the attention scoring function, which is a neural
network composed of a single hidden layer and a softmax
layer. The output of this function is a host score vector,
where the value of each dimension reflects the degree of
a host feature derived from the whole guest features. The
degree reaches the highest at 1 and the lowest at 0. It is
formally defined as,

smh = softmax(Wm
h · [hm,gm]), (4)
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where Wm
h ∈ RDh∗D and smh ∈ RDh denote the learnable

weight matrix and relation score vector corresponding to
each dimension of the host vector, respectively; the Dh

denotes the dimension of the host vector, and D is the
dimension of the overall vector. For simplicity, we omit the
bias terms.

For the guest modality, we analogously scored the
feature dimensions to measure the degree of a guest feature
derived from the host features, defined as follows,

smg = softmax(Wm
g · [gm,hm]), (5)

where Wm
g ∈ RDg×D , the Dg and smg ∈ RRg denote the

trainable weight matrix, the dimension of guest vector and
the relation score vector corresponding to each dimension
of the guest vector, respectively.

3.2.2 Consistency and Complementary Components
Having established the attentive relation scores, we can
easily locate the consistent and complementary features
from each modality. Towards this end, we set a trainable
threshold denoted as ξmo , in which we use o ∈ O = {h, g}
as the host and guest indicator. This threshold divides the
relation score vector into two parts: consistent vector and
complementary vector, namely γmo and δmo . The element in
the consistent vectors is defined as follows,

γmo [i] =

{
smo [i], if smo [i] ≥ ξmo ;

0, otherwise,
(6)

where γmo [i] is the value of i-th the dimension in the
consistent weight vector γmo , indicating the degree of the
consistency. For the complementary weight vector δmo , we
formulated its element as,

δmo [i] =

{
1− smo [i], if smo [i] < ξmo ;

0, otherwise,
(7)

where δmo [i] is the value of the i-th dimension in the
complementary weight vector δmo , reflecting the degree of
the complementary relation.

Particular, since the original functions are not
continuous, we introduced a sigmoid function to make
them differentiable, as follow,{

γmo [i] =
smo [i]

1+e−w∗(s
m
o [i]−ξmo ) ,

δmo [i] = 1− γmo [i],
(8)

where w denotes a scalar weighting the difference between
smo [i] and ξmo to make the output γmo [i] as close as possible
to 0 or smo [i]. Through experiments, the best results are
obtained with a weight of 50.

After that, we gained four correlation weight vectors
from each host-guest pair, namely δmh , δmg , γmh , and γmg .
Based on these weight vectors, we separated the consistent
features and the complementary features from the mixed
information, which are the element-wise products of the
original feature vector and each weight vector, as,

αmh = hm ⊗ δmh ,
αmg = gm ⊗ δmg ,
βmh = hm ⊗ γmh ,
βmg = gm ⊗ γmg ,

(9)

where two complementary vectors and two consistent
vectors of host and guest are denoted as αmh , αmg , βmh and
βmg , respectively.

With the separated consistent and complementary
components, we can reconstruct the representations with
better expressiveness. We employed different strategies on
distinct components. To adequately exploit the correlations
between the consistent component pairs, we concatenated
these vectors and feed them into a neural network to learn
an enhanced consistent vector,

β̃
m

= ϕ(Wm
β · [β

m
h ,β

m
g ]), (10)

where Wm
β , ϕ(·), and β̃

m
denote the trainable weight

matrix, activation function, and the enhanced consistent
vector in the modality m, respectively.

To supplement the exclusive information from other
modalities, we integrated the enhanced consistent
components and the complementary components to
generate a feature vector with powerful expressiveness as,

x̂m = [αmh , β̃
m
, αmg ]. (11)

Meanwhile, to guarantee the consistency, the diversity
of the consistent component pairs should be minimized.
However, the dimension of each vector is different, and the
number of consistent features is dynamic. We hence failed to
capture the diversity of these features directly. Towards this
end, we proposed to compute the probability distributions
of venue categories represented by consistent vectors,
and further leverage the Kullback-Leibler divergence (KL
divergence) [35] to encourage them to be close.

Particularly, the probability distribution over categories
is defined as follows,

pmo = softmax(Um
o · β

m
o ), (12)

where Um
o ∈ RK∗Do and pmo ∈ RK denote the learnable

weight matrix and the probability distribution of the
venue categories represented by the consistent vector βmo ,
respectively.

Following that, we computed the KL divergence
between the two probability distributions pmh and pmg ,
formally as,

Lm1 =
∑
x∈X

(pmg logpmh − pmh logpmg ), (13)

where pmh and pmg both denote the probability distribution
of the venue categories. Based upon this, we calculated the
sum of the KL divergences from all modalities as,

L1 =
∑
m∈M

Lm1 . (14)

3.3 Attention Networks
Given the augmented representations above, a
straightforward way to estimate the venue category is
to adopt a classifier. However, we argue that the rich
information within the augmented representations is
redundant for the prediction task, and hence the simple
classifier can hardly select the discriminative features.
Several efforts have been paid to achieve a discriminative
representation from massive features, like Principal
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Component Analysis [36] and sparse representation [37].
These approaches, however, have many hyper-parameters
to tune. More principle components, for instance, can lead
to the suboptimal performance.

With the advance of the attention mechanism, we
employed an attention network to evaluate the attention
scores for each feature towards different venue categories.
These scores can measure the relevance and significance
of the features to the venue category. In addition,
continuous attention scores make the feature selection
flexible. Thereafter, we obtained the scored features and
leveraged them to learn a discriminative representation to
estimate the venue category in each modality.

3.3.1 Attention Score
Given a feature vector, we assigned an attention score to
each feature according to the venue category and yielded
the scored feature to learn a discriminative representation.

Instead of computing the importance of each feature to
categories, we constructed a trainable memory matrix to
store the attention score of them. The matrix is denoted as
Ωm ∈ RDm×K in the modality m and the entry in row i and
column j represents the importance of i−th feature towards
j − th venue category. For each category, the scored feature
vector is obtained by calculating the element-wise product
of the feature vector and the corresponding row vector in
matrix Ωm. It is formulated as,

ψmj = ωmj ⊗ x̂m, (15)

where x̂m ∈ RD is the augmented vector in the modality m;
ωmj ∈ RD denotes the feature attention scores of the venue
category j and ψmj ∈ RD denotes the scored feature vector
towards venue category j.

To yield the discriminative representation, we feed the
scored feature vector into a fully connected layer as follows,

θmj = φ(Wm ·ψmj ), (16)

where Wm, φ(·), and θmj denote the trainable weight
matrix, the activation function and the discriminative
representation of j-th venue category in the modality m,
respectively.

3.3.2 Multimodal Estimation
After obtaining the discriminative representations, we
passed them into a fully connected softmax layer. It
computes the probability distributions over the venue
category labels in each modality, mathematically stated as,

p(ŷmk |θ
m
k ) =

exp(zTk θ
m
k )∑K

k′=1 exp(z
T
k′θ

m
k′)
, (17)

where zk is a trainable weight vector of the k-th venue
category, and θmk can be viewed as the discriminative
representation of k-th venue category in the modality m.
Thereafter, we gained the probabilistic label vector ŷm =
[ŷm1 , · · · , ŷmK ] over K venue categories.

For multiple modalities, the probabilistic label vector
over three modalities are fused, defined as follows,

ŷ =
∑
m∈M

(ŷm). (18)

Following that, we adopted a function to minimize the
loss between the estimated label vector and its target values,
as

L2 = −
∑
x∈X

K∑
k=1

yk log(ŷk). (19)

Ultimately, this function and the KL divergence of
consistent representation pairs are combined as the objective
function of our proposed method, as follows,

L = L1 + L2

=
∑
m∈M

∑
x∈X

(pmg logpmh − pmh logpmg )

−
∑
x∈X

K∑
k=1

yk log(
∑
m∈M

(
exp(zTk θ

m
k )∑K

k′=1 exp(z
T
k′θ

m
k′)

)).

(20)

3.4 Training
We adopted the stochastic gradient descent (SGD) to train
our model in a mini-batch mode and updated the model
parameters using back propagation until convergence. In
particular, a training instance x is iteratively selected and
used to optimize the parameters towards the direction of its
negative gradient:

ε = ε− η ∂L
∂ε
, (21)

where ε and η denote the trainable parameter and
learning rate that control the step size of gradient descent,
respectively. As the model is a multi-layered neural network
model, the gradient of each model parameter can be derived
using the chain rule. In our model, we initialed the attention
matrix and stored it in the memory during the training
phase. The attention vector of each category can be used
directly during the testing instead of calculating with input
vectors.

While deep neural networks are powerful in
representation learning, they easily lead to the overfitting
on the limited training data. To alleviate this issue, we
employed dropout [38] to improve the regularization of our
model. The idea is to randomly drop part of neurons during
training and update only part of the model parameters that
contributes to the prediction. It is important to note that in
the testing phase, dropout must be disabled and the whole
model is used for estimating. Therefore, dropout can be
treated as an approximate model averaging. Moreover, we
also conducted dropout on each hidden layer of our model
to prevent the overfitting.

4 DATA PREPARATION

In this section, we detail the data preparation, namely
dataset collection, feature extraction and missing data
completion.

4.1 Data Collection
We crawled the micro-videos from Vine through its public
API6. In particular, we first manually chose a small set
of active users as the seeds. We expanded the user sets
through incrementally gathering the seed users’ followers.

6. https://github.com/davoclavo/vinepy.
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TABLE 1: Features extracted from three modalities.
Modality Extracted Features
Textual 100-D paragraph vector

Acoustic 200-D DAE vector
Visual 2048-D CNN vector

With the user set, we then crawled the published videos,
descriptions and venue information if available from
the collected users. We picked out about 24,000 micro-
videos containing Foursquare check-in information from
the overall crawled micro-video set. After removing the
duplicated venue IDs, we further expanded our video set
by crawling all videos in each venue ID with the help of
API. Thereafter, we obtained a dataset of 276,264 videos
distributed in 442 Foursquare venue categories and served
the corresponding ID as the ground truth. Furthermore,
we observed that the category distribution is heavily
unbalanced. Thereinto, several categories contain a limit
number of micro-videos to train a robust classifier. We hence
removed the leaf categories with less than 50 micro-videos.
At last, we achieved 270,145 micro-videos distributed in 188
Foursquare venue categories.

4.2 Feature Extraction
In this part, we introduce the feature sets extracted from the
visual, acoustic and textual modalities, respectively.

4.2.1 Visual Features
The information conveyed by the visual modality provides
intuitive and efficient signals to estimate the venue category.
For instance, if we observe “tables”, “desks”, “coffee cups”
and “employees” from a micro-video, we can easily and
accurately predict that the micro-video is recorded in a
coffee shop. This prompts us to extract rich features from
the visual modality to represent the micro-videos. Deep
CNN has been proved as an excellent model to represent
the images [39]. We applied the ResNet [40] model to
extract the visual features through the publicly available
Caffe [41]. Before extracting features, we first selected the
keyframes from each micro-video by using OpenCV7, and
then employed the ResNet to get features from each frame.
Following that, we took the mean pooling strategy over all
keyframes of the micro-video and generated a single 2,048-
dimensional vector for each micro-video.

4.2.2 Acoustic Features
The audio clips embedded in the micro-videos contain
useful cues or hints about the locations. For example, within
the coffee shops, audio clips capture that “the employees
are answering customers’ questions, and welcoming them
to the shop”. For the situation where the visual features
contain little information to predict the location, the
acoustic modality takes the upper hand to supplement the
exclusive information. To leverage the acoustic features,
the audio tracks were separated from each micro-video by
FFmpeg8. Then, we transformed the tracks into a uniform
format: 22,050Hz, 16 bits, mono-channel with pulse-code
modulation signals and performed a spectrogram with a
46ms window and 50% overlap via librosa9. Thereafter,

7. http://opencv.org/.
8. https://www.ffmpeg.org/.
9. https://github.com/bmcfee/librosa.

we adopted theano to extract the acoustic features with a
stack Denoising AutoEncoder (DAE) [42]. The DAE model
was pre-trained on an external set of 120,000 micro-videos
crawled from Vine containing three hidden layers, with 500,
400, and 300 neurons on each layer. We ultimately obtained
200-dimensional acoustic features for each micro-video.

4.2.3 Textual Features
The textual descriptions of micro-videos, including user-
generated text and hashtags, can provide strong cues for
micro-video venue estimation. For instance, the hashtag
from the “Vining the #beach while tanning the thighs on
a glorious Anzac Day” clearly indicates that the venue
category is “beach”. However, only around 27.7% of our
collected micro-videos have hashtags, and the total number
of hashtags is 253,474. Therefore, the traditional approaches
such as topic-level features [43] and n-grams [44] may
be unsuitable. Instead, we utilized the Paragraph Vector
method [45] proven to be effective to alleviate the semantic
problems of word sparseness [46]. To accomplish this, we
applied Sentence2Vector tool10 to extract a textual set of 100-
d features for each micro-video description.

We ultimately obtained a feature set from three
modalities as summarized in Table 1.

4.3 Missing Data Completion
Different from the visual modality, we found some micro-
videos lack acoustic and textual information. Statistically,
169 and 24,707 micro-videos miss the acoustic and textual
modality, respectively. Information missing deteriorates
the performance of most machine learning methods [47],
including the models of venue category estimation. To
alleviate the problem, we exploited the low-rank matrix
factorization method [48], which is a commonly used
technique in data compression, recommendation system,
and matrix completion, to complete the missing data.
In particular, we concatenated the multimodal features
extracted from micro-videos and formed all of the feature
vectors as an original feature matrix. And then, we
factorized this matrix into two low dimension matrices with
100 latent features. Following this, the missing features are
inferred through minimizing the empirical error between
the product of these two matrices and the original matrix,
and over-fitting is avoided through a regularized model.

5 EXPERIMENT
In this section, we validate our proposed model and its
components over micro-video understanding.

5.1 Experiment Settings
5.1.1 Metric
In this work, Macro-F1 and Micro-F111 are adapted to
measure the performance of the micro-video venue category

10. https://github.com/klb3713/sentence2vec.
11. The F1 scores will be the harmonic mean of precision and

recall. In the multi-classification, the macro one computes the metric
independently for each class and then take the average, whereas the
micro one aggregates the contributions of all classes to compute the
average metric.
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Fig. 4: ROC curves and AUC scores of methods.

TABLE 2: Performance comparison between our model and
the baselines (p-value*: p-value12over micro-F1.).

Micro-F1 Macro-F1 p-value*
Early Fusion 11.39±0.01% 0.12±0.01% 1.31e-9
Late Fusion 12.57±0.23% 0.20±0.04% 4.29e-8
Early+Att 31.24±0.37% 14.03±0.19% 2.48e-7
Late+Att 30.00±0.31% 13.71±0.51% 1.52e-7

TRUMANN 27.38±0.21% 10.87±0.05% 8.71e-8
DARE 34.40±0.32% 20.21±0.35% 5.94e-7
NMCL 40.04±0.37% 26.78±0.42% -

estimation. Both of them reach the best score at 1 and the
worst at 0. The averaging macro-F1 gives equal weight to
each class-label; whereas the averaging micro-F1 gives equal
weight to all instances. Besides, we provide the Receiver
Operating Curves (ROC) of our method and four baselines
and use Areas Under Curve (AUC) scores to evaluate the
results. AUC is the area under the ROC curve, which is
created by plotting the true positive rate against the false
positive rate. We divided our dataset into three chunks:
132, 370 for training, 56, 731 for validation, and 81, 044 for
testing. The training set is used to adjust the parameters,
while the validation one provides an unbiased evaluation
of a model fit on the training dataset and tunes the model’s
hyperparameters. The testing one is used only to report the
final solution to confirm the actual predictive power of our
model with the optimal parameter settings.

5.1.2 Baselines
We compare the performance of our proposed model with
several state-of-the-art baselines:
• Early Fusion [49]: For any given micro-video, we

concatenated multimodal features into one vector,
and then learned a model consisting of three fully
connected layers to estimate the venue category over the
concatenation vectors.

• Late Fusion [49]: To calculate the categories distribution,
we devised the classifiers which are respectively
implemented by a neural network with one, two and
three hidden layers for the textual, acoustic and visual
modality. And we fused these distributions to yield a final
prediction venue category.

• Early+Att [50]: This baseline is the combination of
the early fusion and attention model. In particular, the
attention model gives different attention weights to all
features integrated from multiple modalities according
to different venue categories. Here, the attention weights
are calculated by a scoring function of the concatenated

12. In statistical hypothesis testing, the probability value (p-value)
is the probability for a given statistical model that, when the null
hypothesis is true, the statistical summary would be greater than or
equal to the actual observed results.

features and venue category. After that, a neural network
is devised with three fully connected layers to categorize
the unsee micro-videos over the attended feature vectors.

• Late+Att [50]: For various venue categories, features
in each modality have varying contributions to the
final prediction. Therefore, this baseline introduces the
attention mechanism into classifiers of each modality to
obtain the venue category representations and then fuses
these representations to yield a final venue category.

• TRUMANN [1]: This is a tree-guided multi-task multi-
modal learning method, which is the first one towards the
micro-video venue category estimation. This model is able
to jointly learn a common space from multiple modalities
and leverage the predefined Foursquare hierarchical
structure to regularize the relatedness among venue
categories.

• DARE [6]: This work is a deep transfer model which
harnesses the external knowledge to enhance the acoustic
modality and regularizes the representation learning of
micro-videos of the same venue category to alleviate the
sparsity problem of unpopular categories.

5.1.3 Parameter Settings
We implemented our model with the help of Tensorflow13.
Particularly, we applied the Xavier approach to initialize the
model parameters, which has been proved as an excellent
initialization method for the neural network models. The
mini-batch size and learning rate are respectively searched
in {128, 256, 512} and {0.001, 0.005, 0.01, 0.05, 0.1}.
The optimizer is set as Adaptive Moment Estimation
(Adam) [51]. Moreover, we empirically set the size of
each hidden layer as 256 and the activation function as
ReLU. Without special mention, all the models employ
one hidden layer and one prediction layer. For a fair
comparison, we initialized other competitors with an
analogous procedure. The average results over five-round
predictions are illustrated in the testing set.

5.2 Performance Comparison

The comparative results are shown in Table 2 and Figure 4.
From this table, we have the following observations:
1) In terms of the Micro-F1, Early Fusion and Late Fusion

achieve the worst performance, since these standard
fusion approaches rarely exploit the correlations between
different modalities.

2) Integrating the attention model to the standard fusion
is able to improve the performance obviously. Taking
the advantages of the attention mechanism, Early+Att

13. https://www.tensorflow.org.
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TABLE 3: Representativeness of different modalities (p-
value*: p-value over micro-F1.).

Micro-F1 Macro-F1
Textual 13.40±0.14% 2.23±0.1

Acoustic 14.21±0.12% 3.40±0.02
Visual 28.16±0.23% 11.22±0.41

Acoustic+Textual 20.57±0.41% 7.08±0.09
Visual+Textual 38.45±0.34% 23.83±0.34

Visual+Acoustic 37.07±0.35% 23.34±0.11
All 40.04±0.37% 26.78±0.42

TABLE 4: Performance of each enhanced modality in
different modality pairs. (V-MicroF1, A-MicroF1, and T-
MicroF1 denote Micro-F1 score on the visual, acoustic and
textual modality, respectively.)

V-MicroF1 A-MicroF1 T-MicroF1
Acoustic+Textual - 20.12±0.15% 20.13±0.14%
Visual+Textual 37.46±0.26% - 35.75±0.36%

Visual+Acoustic 35.09±0.15% 34.8±0.16% -
All 36.07±0.28% 35.27±0.17% 33.73±0.51%

and Late+Att can dynamically select the discriminative
features, which are tailored to the prediction task. This
verifies the feasibility of revising the weight of each
feature.

3) When performing the estimation task, TRUMANN
outperforms Early Fusion and Late Fusion. It is
reasonable since it considers the hierarchical structure
of venue categories and employs the multi-task
learning, whereas Early+Att and Late+Att outperform
the TRUMANN. It again admits the effectiveness of
assigning the attentive weights to the features.

4) The performance of DARE exceeds the others except
ours, indicating that DARE benefits from the enhanced
audio modality via an external dataset and alleviates the
sparse problem of unpopular categories by regularizing
the similarity among the categories.

5) Our proposed model achieves the best w.r.t. micro-
F1 and macro-F1. By exhibiting the consistency and
complementary of features, our model achieves a better
expressiveness compared to all baselines. While DARE
and TRUMANN treat all features linearly independently
and equally, our model can capture and leverage the
correlation between different modalities, as well as
employ the attention networks to identify the tailored
attention of each feature. We further conducted a pair-
wise significant test to verify that all improvements are
statistically significant with p-value < 0.05.

6) As shown in Figure 4, NMCL achieves an AUC score of
more than 96% and is superior to the baselines, further
demonstrating the effectiveness of our proposed method.
Despite DARE yields the AUC score of 95.12% and ranks
the second-best performance among all the methods,
our proposed method outperforms it by a gain of about
1%. Besides, in terms of the macro-average ROC curve,
NMCL gets an AUC score of about 89%, which increases
by 3% ∼ 10% than the baselines.

5.3 Study of NMCL Model

5.3.1 Representativeness of Modalities

In this section, we studied the effectiveness of combining
different modalities. Table 3 and Table 4 show the
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Fig. 5: Convergence and effective study of the NMCL.

performance of different modality pairs and each enhanced
modality with our proposed model, respectively. In
addition, we plotted the Macro-F1 and Micro-F1 w.r.t. the
number of iterations in Figure 5 to illustrate the convergence
and efficiency of our model in each modality. From these
tables and the figure, we observe that:
1) On the first row in Table 3, solely considering the visual

modality achieves the best performance compared to the
other mono-modal estimation methods. This is consistent
with the finding in [1, 6, 52], verifying the rich geographic
information conveyed by the visual features. In addition,
the CNN features are capable of capturing the prominent
visual characteristics of the venue categories.

2) The acoustic modality and textual modality perform
similarly in estimating the venue categories, which
are listed on the second row and the third row in
Table 3, respectively. Only using one modality, however,
is insufficient to estimate the categories for most micro-
videos, since the textual and acoustic information is
noisy, sparse, and even irrelevant to the venue categories.

3) The more modalities we incorporate, the better
performance we can achieve, as the display on last three
rows in Table 3 and in Table 4. This implies that the
information of one modality is insufficient and multiple
modalities are complementary to each other rather than
conflicting. This is a consensus to the old saying “two
heads are better than one”.

4) Table 4 shows that the performance of each modality
enhanced by our proposed approach is improved
obviously, especially when the acoustic and textual
modalities are combined with the visual modality.
This improvement validates that each modality can be
enforced by the other modalities in our model.

5) Comparing each row in Table 4 to the first three rows
in Table 3, the performance of each modality, which is
enhanced by the other two modalities with our model,
is better than that of the early fusion integrating the
attention model. It indicates that our model can capture
the correlations between different modalities.

6) Jointly analyzing the curves in Figure 5, we find that
utilizing our proposed cooperative learning to seamlessly
integrate multiple modalities can boost the performance
effectively. This demonstrates the rationality of our
model. And the performance tends to be stable at around
30 iterations. This signals the convergence property of
our model and also indicates its efficiency.

5.3.2 Study of Components
In this section, we list several variants based on our
proposed cooperative net. These methods group the features
of each modality into consistent and complementary parts,
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(a) Park Example (b) Piazza Place Example

Fig. 6: Visualization of the correlation scores between the same acoustic concept-level features and different visual and
textual features.

TABLE 5: Performance of variants (p-value*: p-value over
micro-F1.).

Micro-F1 Macro-F1
Variant-I 39.17±0.27% 25.05±0.28
Variant-II 39.01±0.37% 23.70±0.19
Variant-III 38.11±0.40% 22.78±0.10
Variant-IV 38.48±0.33% 24.49±0.18

NMCL 40.04±0.37% 26.78±0.42

and then we adopted different fusing strategies to leverage
the consistent and complementary features, including:
• Variant-I: In this model, Eq. 10 is removed. In

other words, we integrated the guest complementary
information into the host modality without enhancing the
consistent parts, while the guest consistent part is retained
to calculate the KL-diversity for keeping the consistency.

• Variant-II: This variant discards Eq. 11 and merely
harnesses the consistent vector pairs to learn an enhanced
feature vector for each modality and categorize the venue
with these enhanced feature vectors.

• Variant-III: After obtaining the consistent and
complementary features from each host and modality
pair, Eq. 10 is replaced, and a new enhanced consistent
vector is learned by integrating all host consistent
vectors. Afterthat, the category is estimated by fusing the
predictions of the newly enhanced consistent vector and
each complementary vector.

• Variant-IV: In this variant model, we respectively
concatenated all complementary parts and all consistent
parts, instead of Eq. 10 and Eq. 11. Finally, we estimated
the venue category of the two concatenated parts and
fused them to gain the result.

From Table 5, we have the following observations:
1) In terms of Macro-F1, Variant-I and Variant-IV

outperform Variant-II and Variant-III, respectively. This
may because combining the complementary information
can involve more information, strengthening the
expressiveness of the representations.

2) The accuracy of the first two variants is comparatively
higher than the other variants. This benefits from
capturing the correlation between the host and the guest
features which is ignored by the Variant-III and the
Variant-IV.

3) Our proposed method outperforms its all variants,
justifying the rationality and effectiveness of cooperative

learning. Different from several variants, the original one
considers the consistency between each host and guest
modality pairs and supplements the exclusive signals
from the guest modalities.

4) We observe that Variant-I, which discards one of the
consistent parts, does not cause a significant reduction
in accuracy. It shows that the information contained in
the two consistent vectors is almost the same, and it also
demonstrates that our model can correctly distinguish
and capture the consistent features.

5) Comparing the method with Variant-II, we observe
that the improvement in terms of Micro-F1 is not
significant. For further analysis, we believe that the
main reason is that the concepts contained in micro-
videos are sparse. Moreover, the information contained
in any single modality is almost covered by the other
two modalities. In other words, the complementary
parts contain little external information. Therefore, the
removal of the complementary parts barely affects the
performance.

5.4 Visualization
Apart from achieving more accurate prediction, the key
advantage of NMCL over other methods is that it exhibits
the consistent and complementary features. Towards this
end, we show examples drawn from our model to visualize
two representation components.

Since the acoustic modality is the hardest one to be
visualized among the multiple modalities, we utilized
the concept-level features to present the acoustic one. To
extract the concept from fine-grained acoustic features, we
leveraged an external dataset namely AudioSet, which is a
large-scale dataset released by Google14.

The AudioSet consists of an expanding ontology of 632
audio event classes and a collection of 2,084,320 human
labelled 10-second sound clips drawn from YouTube15

videos. The ontology is specified as a hierarchical graph
of event categories, covering a wide range of human
and animal sounds, musical instruments and genres, and
everyday common sounds from the environment, like
“Speech”, “Laughter” and “Guitar”.

14. The external audio dataset was just used for the visualization.
https://research.google.com/audioset/.

15. https://youtube.com.
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Fig. 7: Visualization of the attention scores of acoustic
concept-level features and venue category pairs.

To estimate the concepts in the audio, we employed
a VGG-like model [53] and trained it over the AudioSet.
According to the input format of the CNN model, we
regenerated the acoustic features of the micro-videos. The
extracted audios are divided into non-overlapping 960 ms
frames, and then the spectrogram transformed from the
frames are integrated into 64 Mel-spaced frequency bins.
Finally, we took the mean pooling strategy over all the
frames of the micro-video to yield a new acoustic feature
vector.

With the new acoustic conceptual features, we conducted
experiments to shed some light on the correlation between
the acoustic modality and the other modalities. In addition,
we visualized the attention score matrix between the
acoustic concepts and venue categories to validate our
proposed model intuitively.

• To visualize the consistent and complementary parts
among modalities, we selected exemplary demonstrations
of two micro-videos categorized as “Park” and “Piazza
place”, as shown in Figure 6(a) and Figure 6(b). For
these demonstrations, we treated the acoustic modality
as the host part, the visual and the textual modalities
as the guests. And we showed a heat map to illustrate
the correlation between the host and guest feature pairs,
where the darker color indicates that the host feature is
consistent with the guest modalities and vice versa. From
the Figure 6(a), we observe that several acoustic concepts
are consistent with the visual and textual modalities,
such as “Music” and “Violin”, and some are exclusive
ones hardly revealed from the other modalities, such
as “Applause”, “Noise” and “Car alarm”. In contrast,
given the Figure 6(b), we find that the correlation score
distribution is totally different. The concepts, such as
“Applause”, “Crowed” and “Noisy”, can be represented
by the guest features, and the “Music” and the “Violin”
are barely captured in the other modalities. However,

these “lighter-colored” features provide the exclusive
and discriminative information to predict the venue
category. In our proposed model, we can explicitly
capture the exclusive information as a supplement, rather
than omitting it during the learning produce. These
observations verify the assumption that the information
from different modalities is complementary to each
other and demonstrate that our proposed model can
explicitly separate the consistent information from the
complementary one.

• To save the space, we performed the part of the attention
matrix via a heat map, where lighter color indicates
weak attention and vice versa, as shown in Figure 7. We
can see that every selected venue category has various
relations to each acoustic concept. For instance, the micro-
videos with the venue of “Mall” have strong correlations
with “Speech” and “Children shouting”; the correlation
with “Babbling” is loose. In addition, for the venue of
“Pet store”, the colors representing “Kid speaking” and
“Whoop” are dark, and the color representing “Battle
cry” is lighter. These observations agree with our common
sense and demonstrate that the attention score can select
the discriminative features towards the venue category.

6 CONCLUSION AND FUTURE WORK

In this paper, we shed light on characterizing and
modeling the correlations between modalities, especially the
consistent and complementary relations. The consistent part
is to strengthen the confidence and the complementary one
is able to supplement much exclusive information. We argue
that explicitly parsing these two kinds of correlations and
treating them separately within a unified model can boost
the representation discrimination for multimodal samples.
Towards this goal, we devised a cooperative learning
model. In this model, we introduced a novel relation-aware
attention mechanism to split the consistent information
from the complementary one. Following that, we integrated
the consistent information to learn an enhanced consistent
vector and supplemented the complementary information
to enrich this enhanced vector. To learn a discriminative
representation from this richer information, we devised an
attention network to score the features. To validate the
proposed model, we applied it to the application scenario:
venue category estimation of micro-videos. And the results
outperformed several state-of-the-art baselines, verifying
the efficiency of the method. As a side contribution, we have
released our codes, parameter settings, and the involved
baselines to facilitate other researchers.

In the future, we expect to capture more complex
correlations among multiple modalities, such as conflict.
In addition, we plan to leverage the extracted correlations
to various applications, such as image caption and frame
recommendation.
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