
A Recursive Subdivision Technique
for Sampling Multi-class Scatterplots

Xin Chen, Tong Ge, Jian Zhang, Baoquan Chen,
Chi-Wing Fu, Oliver Deussen and Yunhai Wang

Fig. 1. Different sampling methods for presenting the four-class Person Activity data [8]. (a) The left shows the input scatterplots with
100K points and the right shows the four classes separately, where the patterns of each class are obscured in the main plot, e.g.,
the three sub-clusters in the purple class, due to overdraw. We re-sample the data into ∼5000 points using (b) random sampling,
(c) non-uniform sampling [4], (d) multi-class blue noise sampling [11], and (e) our method. The results show that our method better
preserves major outliers (see the rounded boxes labeled with “1”), relative data densities (see the ellipse labeled with “2” to compare (c)
with (d)), and the relative class densities (see the orange points shown in the squares labeled with “3” in (a)-(e)), without introducing
obvious visual artifacts such as highlighted by the square in (d) labeled with “4”. Points for all results are rendered in random order.

Abstract—We present a non-uniform recursive sampling technique for multi-class scatterplots, with the specific goal of faithfully
presenting relative data and class densities, while preserving major outliers in the plots. Our technique is based on a customized
binary kd-tree, in which leaf nodes are created by recursively subdividing the underlying multi-class density map. By backtracking, we
merge leaf nodes until they encompass points of all classes for our subsequently applied outlier-aware multi-class sampling strategy.
A quantitative evaluation shows that our approach can better preserve outliers and at the same time relative densities in multi-class
scatterplots compared to the previous approaches, several case studies demonstrate the effectiveness of our approach in exploring
complex and real world data.

Index Terms—Scatterplot, multi-class sampling, kd-tree, outlier, relative density

1 INTRODUCTION

Scatterplots are widely used for visualizing pairwise relationships be-
tween quantitative variables. By encoding data points as visual marks

• X. Chen, T. Ge and Y. Wang are with Shandong University. Email:
{cloudseawang, chenxin199634, getong95}@gmail.com.

• B. Chen is with Peking University. E-mail: baoquan.chen@gmail.com.
• C.-W. Fu is with the Chinese University of Hong Kong and Guangdong Prov.

Key Lab. of CV and VR Tech., SIAT. E-mail: cwfu@cse.cuhk.edu.hk.
• J. Zhang is with CNIC, CAS. E-mail: zhangjian@sccas.cn.
• O. Deussen is with Konstanz University, Germany and Shenzhen VisuCA

Key Lab, SIAT, China. E-mail: oliver.deussen@uni-konstanz.de.
• X. Chen and T. Ge are joint first authors.
• Y. Wang and C.-W. Fu are the co-corresponding authors.

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

(e.g., dots), they effectively show the correlations among variables, data
clusters, and outliers, as well as other data patterns [37]. Multi-class
scatterplots are effective in visualizing labeled data by color-coding
visual marks based on class labels. Such plots are also good for visualiz-
ing 2D data [40] generated by means of dimensionality reduction [29].

Scatterplots, however, often suffer from the overdraw problem, i.e.,
overlapping visual marks in high-density regions. As an example see
the purple class on the right of Fig. 1(a), which consists of three sub-
groups, but the separation between these sub-groups is obscured in the
plot that shows all the classes (left of Fig. 1(a)). The most straightfor-
ward way to alleviate this problem is to modulate the appearance of the
marks, e.g., reducing their size and making them semi-transparent. This,
however, will not work in cases with severe overdraw. Another simple
solution is to show a separate plot for each class (right of Fig. 1(a)).
However, this approach cannot represent how classes correlate with
one another and demands for much more screen space for showing
the details (e.g., outliers) in the classes. A number of other approach-
es [16] have been proposed to solve the problem, among which density
estimation and sampling are two commonly-used ones.

Density estimation computes a continuous density function for a
given scatterplot and displays this function in a color-coded way instead
of the data points. The approach is effective for showing patterns in
high-density regions, but it often misses outliers at low-density areas.
For multi-class scatterplots the density fields of different classes are
blended by this approach, which might yield to misleading visual
representations in overlapping regions due to color blending. Although
it is possible to alleviate these issues by highlighting dense regions with
smooth contours [35], the approach might introduce additional clutter
due to multiple contours, especially for data with many classes.

Another approach is sampling, which selects a subset of data points
for display to reduce overdraw and visual clutter. Since selecting points
by simple random sampling will void out data patterns in low-density
areas (see Fig. 1(b)), several non-uniform sampling methods have
been proposed. Bertini and Santucci [4] developed a perception-driven
method [6] for preserving the relative density difference between differ-
ent regions. This method, however, might not be able to preserve rela-
tive data densities for high-density regions (see the ellipse in Fig. 1(c)),
and since it was designed for single-class scatterplots, it also not able
to preserve class features in multi-class scatterplots. For example, the
orange points in the square with label “3” in Figs. 1(a) and (e) are not
shown in subfigure (c). More recently, Chen et al. [11] leveraged a
multi-class blue noise sampling method [45] for multi-class scatterplots.
This method preserves relative data densities and class densities to a
certain extent, but it might not be able to preserve outliers and rare
classes. For example, the rounded box labeled with “1” in Fig. 1(d)
has few points and the square with label “3” does not contain orange
points. Moreover, this method likely produces visual artifacts [17] (see
the round dashed box with label “4” in Fig. 1(d)).1

In this paper, we present a non-uniform recursive sampling method
for multi-class scatterplots. Our approach is based on four requirements
for exploring multi-class scatterplots [39]: (i) keep major outliers in the
scatterplots; (ii) preserve relative data densities, i.e., the data densities
between two regions; (iii) maintain relative densities between class-
es, i.e., more faithfully representing the densities of different classes
for each region; and (iv) minimize visual artifacts. Like other works,
non-uniform sampling [4] is adopted to meet the first two requirements.
While multi-class blue noise sampling [11] meets the second and third
requirements to some extent, as far as we know, all requirements have
not been fully adopted in any existing work on sampling for visualiz-
ing multi-class scatterplots. Fig. 1 compares the results produced by
different methods on the Person Activity data [8]. Only our results (see
Fig. 1(d)) meet all the four requirements.

Our approach is based on a recursive subdivision that hierarchically
partitions a given multi-class scatterplot into nonempty regions, mod-
eled as a customized 2D kd-tree. This subdivision is guided by the
sampling ratio of each two sibling nodes that describes how much data
is represented by the associated leaf nodes. If the sampling ratio of
one node is smaller than the other or only slightly larger, it should be
further partitioned so as to preserve relative data densities. By doing
so, low-density regions are maintained while their density difference to
regions of high-density is preserved, see an example in Fig. 3(c).

Once such a tree-based partition was created, randomly sampling a
single data point from each region would allow us to preserve relative
data densities between the different regions. On the other hand, the
relative class densities inside the regions might not be preserved, since
some classes with low densities might be lost. To address this issue,
we perform backtracking from each leaf node to find an internal node
whose number of visual points is large enough to preserve relative class
densities. Doing so, we represent each class with a single region at
least and classes with more data samples still have a larger chance to
be represented by more random samples.

We evaluated our approach using 37 multiclass scatterplots [8] and
quantitatively compared the quality of our results with previous meth-
ods. For the tested datasets, our method is capable of producing results
with a better preservation of relative data density, relative class density

1To avoid any bias on specific classes, points in all the results of Fig. 1 are
rendered in a random order.

and outliers. In addition, we present an extension to multi-dimensional
data and show some sampling results on multi-class scatterplot matrices.
In summary, the main contributions of this paper are:

• We propose a recursive subdivision based sampling approach,
which is based on a tree-based partition and a sampling approach
that aims at preserving relative data densities and relative class
densities (Section 4), and

• We quantitatively evaluate the sampling results of our method
and conduct three case studies that show the usefulness of our
approach (Section 5).

2 RELATED WORK

2.1 Overdraw Reduction for Scatterplots
Overdraw is one of the main challenges for scatterplots. Various meth-
ods have been proposed to relieve it by altering the marker size, color,
transparency, position, density, or by animation [12]. The majority
of existing methods can be classified into four categories: appearance
optimization, data jittering, density estimation, and visual sampling.

Appearance optimization is an intuitive approach to relieve overdraw,
e.g., reducing marker sizes [30, 47], changing marker shapes [27],
and making markers semi-transparent [46]. The first two strategies
are suitable for moderate overdraw but cannot deal with the situation
that markers are already very small. Setting a proper opacity to make
markers semi-transparent is more scalable. Matejka et al. [34] presented
a user-driven model for automatically setting the opacity based on
crowdsourcing studies. Recently, Micallef et al. [36] pushed this line
further by simultaneously optimizing marker opacity, size, and aspect
ratio of a plot based on some visual quality metrics. When all these
variables cannot help, Dang et al. [13] suggested to stack visual markers
in an additional dimension based on the density. This strategy does not,
however, scale for large data.

While all the above methods focus on single-class settings, Lu-
boschik et al. [33] introduced a weaving technique to present overlap-
ping regions in multi-class scatterplots, where each class can be easily
identified by its distinct hue. Recently, Wang et al. [44] proposed a data-
aware method to automatically find the best color assignment scheme
to improve the perception of class separability. All these strategies are
orthogonal to our sampling method, and can be combined with it to
further reduce overdraw and to enhance user perception.

Data jittering relieves overdraw by slightly displacing the positions of
overlapping markers to reveal them. It has been used in commercial
systems like Spotfire [1]. Keim and Herrmann [26] proposed a space-
filling pixel-based technique to shift overplotted data points along pre-
defined curves to the nearest unoccupied pixels. Since a large jittering
might introduce non-existent fake patterns, Keim et al. [25] developed
generalized scatterplots, where users can control the overdraw and
distortion via a non-linear warping scheme. In general, data jittering
should be used with care, and cannot handle cases of extreme overdraw.

Density estimation is an alternative approach [10, 43] that shows the
point data as a color-coded density plot, or as a set of contour lines.
Hence, dense regions can be better characterized, but outliers and sparse
regions might be missed. Bachthaler and Weiskopf [2] created a contin-
uous density field by using respective interpolation schemes for the data
defined on continuous domains. Novotny and Helwig [38] converted
data into a density-based representation by using multi-dimensional
binning and specially treated sparse data regions to preserve trends and
outliers. Feng et al. [18] generated density plots using kernel density
estimation [41] and suggested to combine mean emphasis with densi-
ty plots to highlight outliers. Mayorga and Gleicher [35] introduced
splatterplots to explicitly show outliers as discrete markers and dense
regions as smooth contours. However, it is quite challenging to explore
these visualizations for multi-class color-coded density fields, espe-
cially for overlapping regions due to color blending. Our sampling
method also considers multi-class density information and is able to
show classes and outliers while preserving relative class densities.

Visual sampling is another common approach to avoid overdraw [16].
Ellis and Dix [14, 15] used random sampling to visually reduce data

density. To determine the right sampling ratio, Bertini and Santucci [5]
modeled the relationship between the visual density and clutter, and
presented an automatic method to preserve the relative densities. Later,
they introduced a non-uniform sampling method [4] for preserving low-
density areas. This method, however, might fail to represent relative
densities in high-density regions, since such regions might be occupied
by the same number of distinct pixels. Moreover, it cannot deal with
multi-class scatterplots. Instead, Chen et al. [11] converted a scatterplot
into a density field by kernel density estimation and applied multi-class
blue noise sampling [45] to reduce the overdraw. This approach might
not produce reasonable results, if the density field does not characterize
the data well. Furthermore, blue noise sampling could introduce local
patterns (typically hexagonal sub-arrangements of the dots) that do not
exist in the actual data points. Also, using such density fields to control
the minimum spacing between point samples might create additional
artifacts (see the holes highlighted in Fig. 1(d) rectangle 4), due to
the conflict between multi-class samples. Moreover, point selection
requires checking on all un-sampled points, while conflict checking
requires visiting all sampled points, thus resulting in an expensive
search that limits its applicability to large data sets encountered in
practice. In this work, we take a different approach to work directly
on the discrete input data points in the given scatterplots and explicitly
consider the relative class density to faithfully guide the re-sampling.

2.2 Quantitative Metrics for Scatterplots
The automatic evaluation of visualization quality is a fundamental topic
in information visualization. Bertini et al. [7] and Behrisch et al. [3]
systematically surveyed various quality metrics. Here, we mainly focus
on those designed for measuring the visual clutter in scatterplots.

The first attempt for defining metrics for visualizations came from
Tufte [42], who proposed a set of measures to assess the effectiveness
of paper-based visualizations. Among them, data density refers to the
ratio between the number of displayed data samples and the correspond-
ing area in the data graphics. To reduce the visual clutter in interactive
visualizations, Bertini and Santucci [5] proposed a quality metric to
compare the visible data density in image space relative to the data
density in data space, and used the metric to find an optimal sampling
factor. Later, they propose a metric [6] to compute low-density areas
removed by sampling. In this paper, we use these two metrics to quanti-
fy the preservation of relative data density and outliers of our approach.
We further extend them for quantifying the preservation of relative class
density and outliers (rare classes) in multi-class scatterplots.

3 FORMAL DEFINITIONS

In this section, we formally define basic components used in the design
of our approach. First, we represent a given multi-class scatterplot of
m classes as a multi-class data density map D: R2 → Rm+1, where
Di(x)(1 ≤ i ≤ m) is the density of the i-th class at pixel region x in
the density map, D0(x) = ∑

m
i=1 Di(x) is the density sum over all the

classes, and the density is measured by counting the number of points
in x. Likewise, the density of points in a region Ω⊂ R2 on the density
map is defined as Di(Ω) = ∑x∈Ω Di(x). Note that we use Di and D0 to
denote the density map of the i-th class and the whole data, respectively.
See Fig. 3(a) for a typical example of Di for a two-class scatterplot.

Our sampling method selects one data sample per pixel region. A
point sample is referred to as a data sample that is to be placed in a
pixel region in the output visualization. Similar to the density map,
we define a multi-class visual density map Dv: R2 → Rm+1, where
Di

v(x)(1≤ i≤ m) is one if the class label assigned to pixel region x is
i, else zero. and D0

v(x) = ∑
m
i=1 Di

v(x) is the density sum over all the
classes; here, D0

v(x) = 0 means that there are no point samples.

Visual density. Given a region Ω, we define the visual density of Ω as
the proportion of nonempty space inside Ω:

D0
v(Ω) =

∑x∈Ω δ (D0
v(x) 6= 0)
|Ω|

(1)

Di
v(Ω) =

∑x∈Ω δ (Di
v(x) == i)
|Ω|

. (2)

where |Ω|=∑x∈Ω 1 denotes the area of Ω and δ is an indicator function,
which returns one, if the condition is true, and zero, otherwise.

Relative data densities. Bertini and Santucci [6] proposed the concept
of relative data densities, which is defined on the region level. Given
two regions ΩA and ΩB with the same area, the relative data density
between them is:

φ(D0(ΩA),D0(ΩB)) =

 1 if D0(ΩA)> D0(ΩB)
0 if D0(ΩA) = D0(ΩB)
−1 if D0(ΩA)< D0(ΩB).

(3)

where the comparison result is often weighted by the area density.

Relative class densities. As far as we know, the concept of relative
densities has not been explored between classes, although Chen et
al. [11] qualitatively evaluate multi-class sampling results by using
relative densities. Following the spirit of relative data densities, we
define relative class densities between two distinct classes i and j (i 6= j)
for a common area Ω as

φ(Di(Ω),D j(Ω)) =

 1 if Di(Ω)> D j(Ω)
0 if Di(Ω) = D j(Ω)
−1 if Di(Ω)< D j(Ω).

(4)

where the comparison resultis also weighted by the class density.
Preserving relative data and class densities has to be done on local

regions. Typically, if φ(D0(ΩA),D0(ΩB)) equals φ(D0
v(ΩA),D0

v(ΩB)),
we say that the output visualization preserves the relative data density
between regions ΩA and ΩB. Similarly, if φ(Di(Ω),D j(Ω)) equals
φ(Di

v(Ω),D j
v(Ω)), we say that the output visualization preserves the

relative class density between the ith and jth class in region Ω.

1 2 3

22

3

2

2
2 3

57

1

1

6

3 1 1

1

2

(a)

(b)

Fig. 2. (a) input s-
catterplot and (b)
multi-class densi-
ty map over 2D
grid cells.

Outliers. While there are no clear definitions,
data points in low-density areas are often regarded
as outliers [9]. For multi-class scatterplots, a point
in a high-density area may also be an outlier if its
class label differs from its nearby data points [39].

Since outliers are not precisely formalized, we
are not going to explicitly preserve outliers, but al-
low users to adaptively control the sampling ratio
in low-density areas. More fundamentally, pre-
serving outliers is often in conflict with the goal
of preserving relative data densities, since more
point samples selected in low-density regions may
distort relative data densities.

Local cells. Our sampling process in fact per-
forms on a 2D grid of local cells, meaning that
the pixel region x is a local cell region in the input
scatterplot domain (see Fig. 2(a)). For a grid of
w×h cells we compute the density values in the
multi-class density map per local cell by counting
the points inside each local cell (see Fig. 2(b)). The cell size sz× sz
with unit of pixel is a user-defined parameter.

4 SAMPLING BY RECURSIVE SUBDIVISION

Our goal is to design a non-uniform sampling technique that is able to
faithfully preserve relative data densities and relative class densities,
while at the same time trying to keep outliers. We approach the problem
by formulating a two-step sampling method: first find suitable regions
for placing point samples, then determine which class is to be shown in
each region. Our key idea is to use a kd-tree hierarchy to encode the
non-uniform density distribution so as to maximize the preservation
of relative data densities, and then to take the hierarchy to guide the
multi-class sampling process for preserving relative class densities.
Fig. 3 gives an overview of the working pipeline of our method.

4.1 Customized KD-Tree Construction
A kd-tree is a search tree built by recursively applying axis-aligned
splits to partition an n-dimensional space [21]. Such trees are mainly
designed for performing efficient nearest neighbor searches [19, 22,

(a) (b)

1

2 2

1

1

47 24

4

1

2 4 1

1

1

21

55

4

1

23

10 1

1517

101 51 422

55 30 8 10

5

13

623

25

5

49 26

4
2
2 5 1

1

1
1

21
2555
23
4
110 1

1517
101 56 422
55 30 8 10

5
13
623

26

17

56

15 22 9

49 101

11 2555

30

55

23 19 1723

23 3

(c) (e)(d)

49 26

4
2
2 5 1

1

1
1

21
2555
23
4
110 1

1517
101 56 422
55 30 8 10

5
13
623

Fig. 3. Pipeline of our method: (a) the original two-class scatterplot; (b) a multi-class density map Di is created from (a); (c) a binary kd-tree is built
based on the relative data density (black lines indicate the split axes); (d) we determine the class to be shown in each leaf-node region by ensuring
class visibility and locally preserving relative class densities; (e) the final point samples are randomly selected based on the results in (c).

(a) (b)

2
2 5 1

1
1

2
25
23
4
1 1

23

3

17

26
43

68

25

Fig. 4. An example iteration when building the binary kd-tree shown in
Fig. 3(c), lower right. The split along the thick red line in (a) leads to the
two new red leaf nodes boxed in (b).

23]. We employ a 2D kd-tree for choosing proper regions within a
scatterplot for placing point samples that preserve relative data and
class densities as well as outliers. Our customized binary kd-tree
hierarchically subdivides the input density map into disjoint regions.
Then we select a single point sample that is shown for each region
associated to a leaf-node at the end (see Fig. 3(d & e)).

Node attributes. We denote v as a node in the kd-tree and Tv as
the subtree rooted at v. When building the kd-tree, we associate the
following attributes to each node (for both interior and leaf) in the tree:

• Nleaf is the number of leaf nodes in Tv;
• Ncell is the number of grid cells covered by Tv;
• Nclass is the number of classes in the cells covered by Tv;
• Noccupied is the number of nonempty cells covered by Tv; and

• Dsum is the density sum on D0 in the region covered by Tv.

From these attributes, we define sampling ratio α(v) for the region
covered by Tv as

α(v) =
v.Nleaf

v.Dsum
, (5)

where each leaf node corresponds to a point sample in the final sampling
result. Likewise, we define cell-based visual density β (v):

β (v) =
v.Noccupied

v.Ncell
. (6)

Subdivision criteria. To simultaneously preserve relative data den-
sities and outliers, we introduce two criteria for guiding the recursive
subdivision that builds the kd-tree. First, we explicitly restrict the dif-
ference between the sampling ratios of each two children of an inner
node, so as to preserve the relative data densities between all siblings
in the tree. Without loss of generality, we define the condition for the
left child node v.leftchild:

α(v.leftchild)−α(v.rightchild)< λ , (7)

where λ is a threshold parameter. If the condition is met, the v.leftchild
is a candidate for a subsequent split.

A small λ requires the siblings to have almost equal sampling ratios,
meaning that we cannot subdivide the corresponding child nodes, if
we cannot find any split that can create two siblings with almost equal
sampling ratios. Please note that we do not use the absolute difference
here: v.le f tchild is split even when its sampling rate is λ larger than
of v.rightchild, see Sect. 4.3. The purple box in Fig. 4(a) shows a case

Algorithm 1 Building the customized kd-tree
Input: density map D0

Output: a kd-tree

function BuildTree(Node root) . starting point
while DivideTree(root , true) do . keep dividing until we cannot

; . an empty statement
end while

end function

function DivideTree(Node v , Boolean suggestToSplit)
if v.Nleaf >1 then

vl = v.leftchild , vr = v.rightchild
hasSplitL = DivideTree(vl , suggestToSplit and α(vl)−α(vr)< λ)
hasSplitR = DivideTree(vr , suggestToSplit and α(vr)−α(vl)< λ)
v.Nleaf = vl .Nleaf +vr.Nleaf
return hasSplitL or hasSplitR

else
if ((suggestToSplit or β (v) <τ) and v.Noccupied >1) then

[vl ,vr] = SplitNode(v, D0)
v.leftchild = vl , v.rightchild = vr
return true

end if
end if
return false

end function

where no further split can be made. In such a case, we keep a single
point sample to represent the data points in the entire corresponding
region. We use a small λ to create different density regions with similar
sampling ratioα . High density regions thus contain more samples.

The second criterion determines if a leaf node can be split to adjust
the sampling ratio. It is achieved by examining each leaf node v in
two steps. First, we check if there is only a single occupied cell in v
(i.e., v.Noccupied = 1). If so, we cannot split v (see the green node in
Fig. 4(a)). Otherwise, we check if the node meets one of the following
two conditions: (i) it is suggested to be split by its parent, and (ii) its
represented density β (v) is smaller than a threshold τ .

β (v)< τ. (8)

The root node is split by default. If the second condition is met, a leaf
has a small represented density β (v) with more than a single nonempty
cell, indicating that the related data samples are potential outliers. In
this case we should try to split it, to get more leaf nodes, each helping
to preserve an outlier point in the nonempty cells. In other words, the
threshold τ helps preserve outliers; see Fig. 9.

KD-Tree building procedure. The process starts by creating a root
node that encloses the entire density map (or scatterplot) and filling its
node attributes. Then, we look for a divisible node (or region) based
on the above criteria; if there is any, we divide the region by finding a
proper split axis and create two new leaf nodes. If its parent does not
suggest to split, we keep traversing to the leaf node to meet the sparsity
condition (see Eq. (8)). After each division, we need to update Nleaf for
all related parent nodes and then re-examine all existing interior nodes

Algorithm 2 Multi-class sampling guided by kd-tree
function MultiClassSampling(Tree t)

for each leaf ν in t do
if ν .Nclass >1 then

[µ,P] = BacktrackSearch(ν)
AssignClassLabel(P,µ)

end if
end for each
randomSample(t)

end function

from the root to determine which leaf nodes should be split. This is the
major difference from traditional kd-trees, where the split is determined
independently for all current leaves. Once all leaf nodes cannot be split
any more, we terminate. Algorithm 1 outlines the procedure.

Splitting a node. To split a leaf node, we have to find a split axis that
minimizes the density difference between the two subdivided regions.
To do so, we first locate the mass center over all cells in the leaf node
region weighted by their density values. Then, we consider two possible
splits, i.e., a horizontal split or a vertical split across the mass center,
and select the one that minimizes |vl .Dsum− vr.Dsum|, where vl and vr
denote the two child nodes generated by a split.

Note that for each leaf node we eventually pick only one point sample
to be shown in the visualization (see next subsection for details), so the
sampling ratio of the purple node in Fig. 4 is 1/17 and the sampling ratio
of the red node before its split is 1/26. The sampling ratio difference
for the purple node and its sibling is smaller than threshold λ , i.e.,
α(vl)−α(vr)< λ in Algorithm 1 becomes false, so we do not to split
it. The green node also cannot be split since it has only one nonempty
cell inside its region, i.e., v.Noccupied > 1 is false in Algorithm 1.

4.2 KD-Tree guided Multi-Class Sampling
After constructing the kd-tree, its leaf nodes might contain data samples
from multiple classes. If we would select data samples just randomly
from every leaf node, relative data densities will be preserved, but
we potentially would miss points of rare classes. Fig. 5(b) shows an
example, where all orange nodes shown in subfigure (a) are lost. On
the other hand, it is possible to give high priority to samples of the rare
classes by first assigning class labels to leave nodes with rare classes.
This, however, might distort the relative class densities. As an example,
the three orange points in the top-left corner of Fig. 5(c) are shown, but
the dense points of the blue class are lost.

To address these issues, we propose to use a larger part of the kd-tree
structure to guide the multi-class sampling process rather than individu-
ally checking only the leaf nodes. To ensure that the data samples of all
existing classes are shown, while minimizing the distortion of relative
class densities, we propose a three-step sampling strategy that first
backtracks each leaf node to an ancestor node that has enough point
samples, and then assigns class labels to each leaf node of the local
sub-tree. Finally, we randomly sample a single data sample in each leaf
with the assigned class label. Fig. 6 illustrates this strategy with two
examples; in the following, we discuss the details of the algorithm.

Backtracking search. For each leaf node ν that has data samples
from multiple classes, we backtrack to an ancestor node in order to
maximize the preservation of relative class densities.

236
4

17 20

11
18

7 ω = 0 29 4:
1 1:

ω = 1 66 4:
3 1:

ω = 1 84 22:
4 2:

A

B

C

Fig. 7. Backtracking procedure.

Suppose the ancestor node µ

has k leaves that are associat-
ed with samples from c (c≤ m)
classes, where the number of
samples in each class is ndsi. If
k < c, we continue and visit its
parent node; otherwise we mea-
sure the faithfulness of this node
in preserving relative class den-
sities. Specifically, we first col-
lect one point sample from each

(b) (c)(a)

Fig. 5. Two straightforward strategies for kd-tree based multi-class sam-
pling. (a) Input scatterplot (from Fig. 3(a)); (b) random sampling produces
a point set where all orange points are missed; (c) giving high priority to
rare class helps preserve them, but changes relative class densities.

47
2

101

0 :1

1 :0

1 :1

1 :1

148:2

(a) (b) (c) (d)

101

47
2

Fig. 6. Illustration of our three-step multi-class sampling. A sub-region
was extracted from the tree in Fig. 3(c); (b) Backtracking from the leaf to
an interior node in the sub-tree; (c) assigning a class label to each leaf
so that all classes are covered; and (d) final sampling result.

of the c classes, and then randomly select class labels for the remaining
k− c leaves using roulette wheel selection [32]. Hence, we obtain a
class allocation array P = {p1, · · · , pm}, where pi is the number of
point samples of the i-th class and ∑

m
i pi = k. After sorting the ar-

ray {nds1, · · · ,ndsc} in descending order, we compute the consistency
between the data and visual density for all pairs of classes by

ω(µ) =
∑

m
i ∑ j<i ρi, jδ (φ(Di(µ),D j(µ)),φ(pi, p j))

∑
m
i ∑ j<i ρi, j

, (9)

where ρi, j =
ndsi
nds j

is the data density ratio between classes i and j, and
δ returns one if the relative class density is preserved, else zero. By
testing different interior nodes, we choose the one with the largest ω .

Fig. 7 illustrates this procedure, where the consistency values of
nodes A and B are both one, but we prefer node B, since the deeper the
interior node is, the easier it is to maintain the relative class densities,
because the effect of keeping rare classes in the visual representation
will diminish. In addition, backtracking applied an large parts of the
tree can be quite slow. Thus, we set the maximum search depth to four
by default. Fig. 8 shows the influence of different values.

Class label assignment. Starting from the selected interior node µ

and the class allocation array P, we recursively compute such arrays
for the children until all leaf nodes have an assigned class label. At
each step, we first compute two class allocation arrays Pl and Pr for the
two children of µ . In order to preserve rare classes, we select the node
with the larger Nclass for the class label assignment at the first place.
Once the array Pi for the selected node is created, the class allocation
array for the other node can be obtained by computing the difference
between P and Pi. During the assignment, we first allocate one leaf
node for each of the classes that do not appear in the sibling node and
then randomly select class labels for the remaining leaf nodes.

Random sampling. After assigning a class label l to each leaf node,
we randomly sample one point from the data samples with the label l
associated with this leaf. Doing so, the final sampling result is obtained
as shown in Fig. 3(e).

Fig. 6 shows the process for a sub-tree of Fig. 3(c). Since we have
much more blue than orange samples, a random assignment due to
relative densities would assign blue to both leaves, while our algorithm
first backtracks to the parent node and then guarantees that at least one

(a) original (b) search depth = 2

(c) search depth = 4 (d) search depth = 8

Fig. 8. Effect of backtracking depth on a synthetic dataset with two
Gaussian-distributed classes (40k blue points and 200 red points). The
red class is rendered purposely upon the blue one to show its structure
clearly. A small search depth value is beneficial to keep rare classes but
also amplifies them, a larger value converges to random sampling.

leaf will be orange. In doing so, each leaf has been assigned one point
sample, one from the orange class and the other from the blue.

4.3 Time Complexity & Parameter Analysis

Time complexity. As shown in Algorithm 1, to determine every new
split, we have to traverse the tree from the root to the leaves, involving
log(n) computations of the mass centers with a time complexity of
O(n) (n is the number of grid cells). Thus, the time complexity of each
division is O(n logn). Given a scatterplot with n non-empty cells, the
overall time complexity is O(n log2 n). Note that n is independent of
the number of data samples, due to our grid-based structure.

Cell size. The cell size sz determines the number of grid cells, where
too few grid cells will make it hard to perceive density differences in
dense areas of the plot, while too many grid cells will lead to significant
overdraw. A good heuristics for the cell size is to have it in the order
of the radius of the drawn circles for the points (in pixels). Figs. 9(a-c)
shows the effect of different grid sizes while all other parameters of the
algorithm are constant. In our experiment, we set the size as 6×6 for
the Person Activity data set in Fig. 1 and Figs. 9(d-i).

Parameters λ and τ . Parameter λ influences how many interior nodes
will be split during the recursive subdivision; see examples in Figs. 9(d-
f). For a high λ , e.g., λ = 1, both children of the interior nodes are
likely to be split and the subdivision will reach the bins of grid, so all
outliers will be visible, but relative densities will be disturbed in dense
areas. If we set λ = 0, only one of the children will be split every time,
the algorithm will slow down and outliers will become less visible.

In contrast, τ mainly influences the results in sparse areas. As shown
in Figs. 9(e,g,h), a large τ reveals more outliers, but changes relative
class densities between dense and sparse regions. Hence, an extremely
large λ and τ would result in strong overdraw and strong disturbances
of relative data densities; see the example in Fig. 9(i). Depending on
the application, we have to find good parameter values, e.g., we set
both λ and τ to 0.02 for the Person Activity data set in Fig. 1.

5 EVALUATION

This section presents a quantitative comparison with the state-of-the-art
sampling methods and three case studies on both synthetic and real
datasets, and an extension for scatterplot matrix on a PC with an Intel
i5-7400 3GHz CPU and 24GB RAM. All density maps are 1600×900.

5.1 Quantitative Evaluation
We implemented all the above-mentioned sampling methods: ran-
dom sampling, non-uniform sampling [4], multi-class blue noise sam-
pling [11] (blue noise for short), and our method, in C++. Unless clearly
specified, all data samples in our scatterplot results are rendered in a
random order. Since random sampling and non-uniform sampling both
do not exploit class information, we take our multi-class scatterplots
as single-class ones as their input and randomly sample a class sample
from each point. For a fair comparison, we adapt them from the origi-
nal pixel level sampling into our local cell level. Blue noise sampling
heavily depends on the density field, so we adopted Silverman’s rule of
thumb [41] to determine the bandwidth, but this might not be exactly
the same as the authors’ version [11]. By default, we set the parame-
ters of our method to the following values: sz = 6,λ = 0.02,τ = 0.02,
and adjusted the parameters of the other sampling methods to obtain a
similar number of point samples as with our method.

Datasets. For a comprehensive evaluation, we collected 37 labeled
datasets that are substantially different from Kaggle [24] and the UCI
data repository [31] in terms of the number of data samples (ranging
from 4K to 1,6M) and number of classes (2 to 18). Among them, 10
synthetic datasets were manually created with random Gaussian classes,
and 27 real datasets were collected from the UCI data repository [31]
and Kaggle [24].

Metrics. Since our approach attempts to preserve relative data density,
relative class density, and outliers, we employ the following four metrics
to quantitatively evaluate the quality of the sampled results:

• Perceived Data Densities ratio (PDDr) is adopted from Bertini
and Santucci [4]. Given two regions ΩA and ΩB of the same area,
it measures how much relative data densities are preserved by
visual densities

PDDr =
∑i ∑ j<i χi jδ (φ(D0(Ωi),D(Ω j)),φ(D0

v(Ωi),D0
v(Ω j)))

∑i ∑ j<i χi j
,

(10)

where χi j = D0(Ωi)+D0(Ω j), and δ returns 1 if the relative data
density between ΩA and ΩB is preserved, else 0. The range of
PDDr is [0,1], where a large PDDr ∼ 1 means better relative data
density preservation. PDDr looks similar to ω(µ) in Eq. (9), but
ω(µ) is defined on relative class densities in the region µ .

• Perceived Class Densities ratio (PCDr) aims to evaluate how
a sampling method preserves relative class densities. Here, we
formulate the metric PCDr based on the weighted Spearman’s
ranking correlation coefficient γs, which has been widely used
for measuring the rank correlations [20]. Given a region Ωi, we
compute two ranks xk and yk of each kth class in terms of data
density D(Ωi) and visual density Dv(Ωi) and then compute the
Spearman correlation coefficient by:

γs(Ωi) = 1− 6∑k (xk− yk)
2

m(m2−1)
,

where γs is a value between 0 and 1 and m is the number of classes.
By weighting γs with the density value D0(Ωi), we compute the
change in the relative class density over the whole scatterplot by

PCDr =
∑i D0(Ωi)γs(Ωi)

∑i D0(Ωi)
. (11)

• Erased Sample Regions ratio (ESRr) is adopted from Bertini
and Santucci [4] that measures how many outliers are lost in the
low-density areas. Specifically, it computes the portion of empty
regions caused by sampling:

ESRr =
∑i δ (D0(Ωi),0)

N
, (12)

where N is the number of sample regions. Hence, a small ESRr
indicates a better outlier preservation.

(a) sz = 6,λ = 0.02,τ = 0.02 (b) sz = 12,λ = 0.02,τ = 0.02 (c) sz = 18,λ = 0.02,τ = 0.02

(d) sz = 6,λ = 0,τ = 0.02 (e) sz = 6,λ = 0.02,τ = 0.02 (f) sz = 6,λ = 0.2,τ = 0.02

(g) sz = 6,λ = 0.02,τ = 0 (h) sz = 6,λ = 0.02,τ = 0.2 (i) sz = 6,λ = 0.2,τ = 0.2

Fig. 9. Parameter analysis on the Person Activity data set. (a,b,c) Grid size influences the number of point samples. From left to right, the results
have 5969, 2273, and 1217 points, respectively. (d,e,f) For a large λ , many outliers become visible, but overdraw happens in dense areas, while a
small λ reduces overdraw but miss a few outliers. (g,e,h) A large τ shows too many outliers and regions of medium density are suppressed, while a
small τ is more balanced but outliers are reduced. (i) When λ and τ both are large, the overdraw issue becomes severe while showing many outliers.

• Erased Class Sample ratio (ECSr) is designed for measuring
how many rare classes are lost after sampling (samples of rare
classes are also regarded as outliers in multi-class scatterplots).
For each region Ωi, we count the number of classes before and
after sampling, obtain the difference ρ(Ωi) and finally count all
lost classes due to sampling:

ECSr =
∑i D0(Ωi)|ρ(Ωi)|

∑i D0(Ωi)
. (13)

Results. We measure the results of all sampling methods with a region
size of 40 × 40. Screen shots of the results generated by all four
sampling methods on each dataset and the according scores for each
metric can be found in the supplemental material. Fig. 10 gives an
overview of the scores of all metrics for all datasets. Our method seems
to outperform the others in terms of PCDr and ECSr, indicating our
method is the best in preserving relative class densities and rare classes.
On the other hand, it is ranked as the second in terms of the other two
metrics and performs very similarly to the best methods. This result is
expected and confirms that our method makes a good balance between
preserving relative data densities and class densities.

Since random sampling uniformly samples a scatterplot, it certainly
performs the best in terms of PDDr, but it is the worst w.r.t. outlier
preservation, see Fig. 10(c). In contrast, non-uniform random sampling
is the best in maintaining outliers, because it explicitly preserves all
low density regions. However, such preservation might loose relative
data densities, see the PDDr scores in Fig. 10(a). Both methods are
not intentionally designed for multi-class data, but their scores in PCDr
and ECSr are better than blue noise sampling, which is ranked last. We
think the reason is that the artifacts introduced by blue noise sampling
method severely hurts the proper representation of relative data and

Blue noiseRandomNon-uniformOurs

(d) Erased Sample Regions ratio
0.30.20.10.0

(c) Erased Class Sample ratio
3210

(b) Perceived Class Densities ratio
1.00.60.2-0.2

(a) Perceived Data Densities ratio
1.00.80.60.40.2

Fig. 10. Boxplots summarizing the scores of four measures for four
sampling methods over all tested datasets: (a) PDDr and (b) PCDr,
where a higher score indicates better sampling for both measures; (c)
ESRr and (d) ECSr, where a lower score indicates better sampling.

class densities (seen Fig. 1(d)). Instead, our multi-class sampling
method more faithfully represents all the wanted characteristics, see
Section 5.2.

Runtime. Fig. 11(a) shows the log-scale runtime of the four methods
on all datasets. Non-uniform sampling seems to perform the best,
followed up by random sampling and our method, while the blue noise
sampling is more than 1000 times slower than the others on average.
After carefully looking at the runtime for each dataset, we found that

Blue noiseRandomNon-uniformOurs
Ti

m
e

(s
ec

)

10-3

10-1

10

103

105

(a)

10-2

0 10K3K 20K 30K 40K 50K

10-1

10

1

102

103

104

Ti
m

e
(s

ec
)

Number of sample points
(b)

Fig. 11. (a) Runtimes of the four sampling methods; (b) relationship
between runtime and sampled points (logarithmic scale).

(a) Input

(b) Random

(d) Blue noise

(c) Non-uniform

(e) Ours

Fig. 12. Sampled results of the synthetic dataset with 250K points. (a)
original scatterplot (left) and four classes sampled individually (right), the
transparency of each point is proportional to its density value; (b,c,d,e) re-
sults for 6K points generated by random sampling, non-uniform sampling,
blue noise sampling, and our method.

the blue noise method requires around 20 mins for 100K data samples
and 27 hours for 1,560K data samples, because it heavily depends
on the number of data samples, cf. [45]. In contrast, the other three
methods handle all data almost in less than 1 second.

To understand how the number of sampled points influences the
runtime, we applied the four methods to a synthesized dataset (250K
points) with varying amount of sampled points and run the algorithm
multiple times for each setting. Fig. 11(b) shows the results and indi-
cates that the running time of the blue noise sampling is not related to
the number of sampled points, while the runtimes of the other three
methods gradually increase as the number of sampled points increases
but still are below a 1 second even for 50K points. This means that our
method is able to efficiently work with large scale datasets.

5.2 Case Studies
We conducted case studies with one synthetic dataset and two real
datasets from daily life and computer science.

5.2.1 Synthetic data
To ensure that our method is able to preserve outliers and rare classes,
we synthesized a dataset with 250K data points and four separated
Gaussian clusters. A small number of points coming from the other
three classes were mixed among the point distribution of each class.
In order to represent rare classes in each region, we sort all classes in
terms of numbers of points in descending order and render the classes

(a) Input (b) Random

(c) Non-uniform (d) Ours

0 1 2 3 6 7 8 94 5

1 10 # points102 1 10 # points102

1 10 # points102 1 10 # points102

Fig. 13. Sampled result of the MNIST dataset: (a) original scatterplot with
70K data points; (b,c,d) sampled results generated by random sampling,
non-uniform sampling and our method.

in this order. Fig. 12(a) shows the input scatterplot (left) and each of
the individual classes (right), where the dark blue cluster is denser than
the green cluster but is similar to the other two clusters.

Figs. 12(b,c,d,e) show the sampled results of the four methods with
around 6K points. Density differences between the dark blue cluster
and the green cluster are well preserved in Figs. 12(b,e), but are lost in
Figs. 12(c,d). The non-uniform sampling almost keeps all outliers as
shown in Fig. 12(c), but causes a deficiency in preserving relative data
densities. Blue noise sampling shows the density of the green cluster
similar to the other clusters and introduces a gap between the light blue
and dark blue clusters, which does not appear in the input and the other
results. Because of such artificial patterns, the PCDr score in Fig. 12(d)
is much lower than for the other methods. Compared to Fig. 12(b),
our method almost preserves all major outliers in Fig. 12(e), while
non-uniform sampling in Fig. 12(c) seems to show even too much. We
can spot a few outliers from rare classes in our result, e.g., the ones
shown with a black box in Fig. 12(e), which are not presented by the
other methods. In this sense, our method seems to be best in preserving
rare classes while balancing the other characteristics well.

5.2.2 Real Data

Since the blue noise method is quite slow and furthermore seems to
create some unwanted patterns as shown in Fig. 1(d) and Fig. 12(d), we
do not include it for this study.

MNIST. Exploring dimensionality reduction (DR) results with scat-
terplots is a common practice in data analysis [40]. For a large dataset,
working with the sampled version with well-preserved data characteris-
tics can greatly improve the efficiency. Here, we explore the DR result
for the MNIST dataset [28], which consists of 70K samples and 10
classes with handwritten digits from 0 to 9. Like Fig. 12, we render the
rare classes on top. Fig. 13(a) shows the original scatterplot produced
by t-SNE, where the major structure of each class is clearly revealed
but is contaminated by a few points from other classes. Since such
points heavily influence the classification accuracy, it is important to
preserve them in the sampled result. Figs. 13(b,c,d) show the results
generated by random sampling, non-uniform sampling and our method.
In terms of ECSr, our method (0.16) performs much better than the
other methods (1.12).

To further study the properties of our method, we selected an ex-
ample region (denoted by the black frame in Fig. 13) and counted the
number of points of each class in this area (shown as bar charts in the

kitchen laundry room water-heater & air-conditioner

(a)

Po
w

er
 C

on
su

m
pt

io
n

00:00 08:00 16:00 24:00

20

0

40

60

80

20

0

40

60

80

(b) 00:00 08:00 16:00 24:00

Po
w

er
 C

on
su

m
pt

io
n

Fig. 14. Exploration of the power consumption dataset with 1,570K data
points: (a) the original scatterplot; (b) the sampled result generated by
our method.

right bottom of each subfigure). The bar charts indicate that our method
keeps most points of rare classes while preserving relative class ratios
among them.

Electric Power Consumption. To study the effectiveness of our
method for handling large data sets, we applied our method to the
electric power consumption [8] dataset, which contains around 1,570K
measurements of electric power consumption gathered from a house in
each minute. Those measurements are classified into 3 classes: power
consumption in kitchen, laundry room, and on an electric water-heater
as well as an air-conditioner.

A scatterplot with the variables of power consumption (y axis) and
time (x axis), cf. Fig. 14(a), shows that the laundry room is heavily used
from 8:00 to 24:00, and the points are equally distributed at all levels
of power consumption. For the rest of the day a constant low power
consumption seems to appear, which is counter intuitive to our daily
life. By applying our sampling method to this scatterplot (Fig. 14(b))
we receive a sampled scatterplots with 3K points, which reveals three
interesting findings that can be hardly spotted in Fig. 14(a). First, the
blue points in the black box denote the laundry room usage is mostly
from 12:00 (noon) to 20:00 with a power consumption of 40Wh. This
indicates that the householder mostly does laundry in the afternoon and
evening, meanwhile the power consumption of the washing machine is
most likely to be 40Wh. Second, the green points are mainly at 20Wh
all day long, and the rest of the green points are sparsely distributed
under 20Wh. This seems to indicate that the air-conditioner might be
functioning all day and its power consumption is about 20Wh. Both
patterns are not clearly visible in Fig. 14(a). In addition, we see that the
constant low consumption under 5Wh in the laundry room is not just
from 0:00 to 8:00, but lasts for the whole day. After further investigating
the input data, all patterns are confirmed, the constant consumption
under 5Wh comes from the refrigerator.

5.3 Extension for Scatterplot Matrix
Finally, we extend our method for sampling multi-class scatterplot
matrix. Taking the multi-dimensional data as an input, we define the
cells in multi-dimensional space and then construct a multi-dimensional
kd-tree for multi-class sampling. Note that the splitting axis is selected
from all related axes, not only from the x and y axes anymore. Fig. 15
shows an example with two scatterplots of three selected variables. Our

H
or

iz
on

ta
l_

D
is

ta
nc

e_
To

_F
ire

_P
oi

nt
s

Elevation Aspect

Elevation Aspect

H
or

iz
on

ta
l_

D
is

ta
nc

e_
To

_F
ire

_P
oi

nt
s

2

0

2

1

4

3

6

5

7

2.5 3 3.5 0 1 2 3

(a)

(b)

2

0

2

1

4

3

6

5

7

2.5 3 3.5 0 1 2 3

1

2

3

4

5

6

7

Fig. 15. Sampling of a multi-class scatterplot matrix. (a) Two input scat-
terplots with 50K data samples defined by the selected three variables;
(b) the corresponding two sampled scatterplots with 4K samples.

sampled results show the spatially-varying densities of the two blue
classes, especially the top part, while preserving outliers of the red
class in both subfigures. Results of the full scatterplot matrix can be
found in the supplemental material.

6 CONCLUSION

We presented a recursive subdivision technique for sampling multi-
class scatterplots, that allows to preserve relative data densities while
faithfully maintaining relative class densities and showing major out-
liers. It is achieved by first subdividing the multi-class density field
into a customized binary kd-tree and then using this kd-tree to per-
form multi-class sampling. We conducted a quantitative evaluation to
compare our method with the state-of-the-art techniques, and present
three case studies and an extension for scatterplot matrix, which helps
exploring multi-dimensional data.

There are still some limitations in our technique. First, our kd-tree-
guided sampling does not take into account the spatial neighborhood
information which might cause gaps between regions. Second, we
only tested a few examples of scatterplot matrices and would like to
investigate applications in sampling of multi-class parallel coordinates
and star coordinates in the future. Last, we would like to conduct
a large user study to confirm that our method is able to sufficiently
support users in completing analysis tasks such as identifying outliers
and characterizing distributions.

ACKNOWLEDGMENTS

This work is supported by the grants of the National Key Research &
Development Plan of China (2016YFB1001404), NSFC (61772315,
61861136012), NSFC-Guangdong Joint Fund (U1501255), Science
Challenge Project (TZ2016002), the Leading Talents of Guangdong
Program (00201509), the DFG Center of Excellence 2117 “Centre
for the advanced Study of Collective Behaviour” (ID: 422037984),
the DFG Project 493/19 “Perception-based Information Visualiza-
tion,” and Shenzhen Science and Technology Program (No. J-
CYJ20170413162617606).

REFERENCES

[1] C. Ahlberg. Spotfire: an information exploration environment. ACM
SIGMOD Record, 25(4):25–29, 1996. doi: 10.1145/245882.245893

[2] S. Bachthaler and D. Weiskopf. Continuous scatterplots. IEEE Trans. Vis.
& Comp. Graphics, 14(6):1428–1435, 2008. doi: 10.1109/TVCG.2008.
119

[3] M. Behrisch, M. Blumenschein, N. W. Kim, L. Shao, M. El-Assady,
J. Fuchs, D. Seebacher, A. Diehl, U. Brandes, H. Pfister, et al. Qual-
ity metrics for information visualization. Computer Graphics Forum,
37(3):625–662, 2018. doi: 10.1111/cgf.13446

[4] E. Bertini and G. Santucci. By chance is not enough: preserving relative
density through nonuniform sampling. In Proc. Int. Conf. on Information
Visualisation, pp. 622–629. IEEE, 2004. doi: 10.1109/IV.2004.1320207

[5] E. Bertini and G. Santucci. Quality metrics for 2d scatterplot graphics:
automatically reducing visual clutter. In International Symposium on
Smart Graphics, pp. 77–89. Springer, 2004. doi: 10.1007/978-3-540
-24678-7 8

[6] E. Bertini and G. Santucci. Give chance a chance: modeling density to
enhance scatter plot quality through random data sampling. Information
Visualization, 5(2):95–110, 2006. doi: 10.1057/palgrave.ivs.9500122

[7] E. Bertini, A. Tatu, and D. Keim. Quality metrics in high-dimensional
data visualization: An overview and systematization. IEEE Trans. Vis.
& Comp. Graphics, 17(12):2203–2212, 2011. doi: 10.1109/TVCG.2011.
229

[8] C. Blake and C. J. Merz. UCI repository of machine learning databases.
https://archive.ics.uci.edu/ml/datasets.html, 1998.

[9] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander. LOF: identifying
density-based local outliers. In Proc. ACM SIGMOD International Con-
ference on Management of Data, vol. 29, pp. 93–104. ACM, 2000. doi: 10
.1145/342009.335388

[10] D. B. Carr, R. J. Littlefield, W. Nicholson, and J. Littlefield. Scatter-
plot matrix techniques for large N. Journal of the American Statistical
Association, 82(398):424–436, 1987. doi: 10.2307/2289444

[11] H. Chen, W. Chen, H. Mei, Z. Liu, K. Zhou, W. Chen, W. Gu, and K.-
L. Ma. Visual abstraction and exploration of multi-class scatterplots.
IEEE Trans. Vis. & Comp. Graphics, 20(12):1683–1692, 2014. doi: 10.
1109/TVCG.2014.2346594

[12] H. Chen, S. Engle, A. Joshi, E. D. Ragan, B. F. Yuksel, and L. Harrison.
Using animation to alleviate overdraw in multiclass scatterplot matrices.
In Proc. SIGCHI Conference on Human Factors in Computing Systems, p.
417. ACM, 2018. doi: 10.1145/3173574.3173991

[13] T. N. Dang, L. Wilkinson, and A. Anand. Stacking graphic elements to
avoid over-plotting. IEEE Trans. Vis. & Comp. Graphics, 16(6):1044–
1052, 2010. doi: 10.1109/TVCG.2010.197

[14] A. Dix and G. Ellis. By chance enhancing interaction with large data sets
through statistical sampling. In Proceedings of the Working Conference
on Advanced Visual Interfaces, pp. 167–176. ACM, 2002. doi: 10.1145/
1556262.1556289

[15] G. Ellis and A. Dix. Density control through random sampling: an archi-
tectural perspective. In International Conference on Information Visuali-
sation, 2002. doi: 10.1109/IV.2002.1028760

[16] G. Ellis and A. Dix. A taxonomy of clutter reduction for information
visualisation. IEEE Trans. Vis. & Comp. Graphics, 13(6):1216–1223,
2007. doi: 10.1109/TVCG.2007.70535

[17] R. Fattal. Blue-noise point sampling using kernel density model. ACM
Trans. Graph. (SIGGRAPH), 30(4):48, 2011. doi: 10.1145/2010324.
1964943

[18] D. Feng, L. Kwock, Y. Lee, R. M. Taylor, et al. Matching visual saliency to
confidence in plots of uncertain data. IEEE Trans. Vis. & Comp. Graphics,
16(6):980, 2010. doi: 10.1109/TVCG.2010.176

[19] Y. Frishman and A. Tal. Multi-level graph layout on the gpu. IEEE Trans.
Vis. & Comp. Graphics, 13(6):1310–1319, 2007. doi: 10.1109/TVCG.
2007.70580

[20] E. Frøkjær, M. Hertzum, and K. Hornbæk. Measuring usability: are
effectiveness, efficiency, and satisfaction really correlated? In Proceedings
of the SIGCHI conference on Human Factors in Computing Systems, pp.
345–352. ACM, 2000. doi: 10.1145/332040.332455

[21] H. Fuchs, Z. M. Kedem, and B. F. Naylor. On visible surface generation
by a priori tree structures. In Proc. SIGGRAPH, vol. 14, pp. 124–133.
ACM, 1980. doi: 10.1145/800250.807481

[22] T. Itoh, Y. Yamaguchi, Y. Ikehata, and Y. Kajinaga. Hierarchical data
visualization using a fast rectangle-packing algorithm. IEEE Trans. Vis.

& Comp. Graphics, 10(3):302–313, 2004. doi: 10.1109/TVCG.2004.
1272729

[23] J. Jo, J. Seo, and J.-D. Fekete. Panene: A progressive algorithm for
indexing and querying approximate k-nearest neighbors. IEEE Trans. Vis.
& Comp. Graphics, 2018. doi: 10.1109/TVCG.2018.2869149

[24] Kaggle Inc. Kaggle. https://www.kaggle.com/.
[25] D. A. Keim, M. C. Hao, U. Dayal, H. Janetzko, and P. Bak. Generalized

scatter plots. Information Visualization, 9(4):301–311, 2010. doi: 10.
1057/ivs.2009.34

[26] D. A. Keim and A. Herrmann. The gridfit algorithm: An efficient and
effective approach to visualizing large amounts of spatial data. In Proc.
IEEE Conf. on Visualization, pp. 181–188. IEEE, 1998. doi: 10.1109/
VISUAL.1998.745301

[27] M. Krzywinski and B. Wong. Points of view: plotting symbols, 2013. doi:
10.1038/nmeth.2490

[28] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, et al. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–
2324, 1998. doi: 10.1109/5.726791

[29] J. A. Lee and M. Verleysen. Nonlinear dimensionality reduction. 2007.
doi: 10.1007/978-0-387-39351-3

[30] J. Li, J.-B. Martens, and J. J. van Wijk. A model of symbol size discrim-
ination in scatterplots. In Proc. SIGCHI Conference on Human Factors
in Computing Systems, pp. 2553–2562, 2010. doi: 10.1145/1753326.
1753714

[31] M. Lichman. UCI machine learning repository, 2013.
[32] A. Lipowski and D. Lipowska. Roulette-wheel selection via stochas-

tic acceptance. Physica A: Statistical Mechanics and its Applications,
391(6):2193–2196, 2012. doi: 10.1016/j.physa.2011.12.004

[33] M. Luboschik, A. Radloff, and H. Schumann. A new weaving technique
for handling overlapping regions. In Proc. Int. Conf. on Advanced Visual
Interfaces, pp. 25–32. ACM, 2010. doi: 10.1145/1842993.1842999

[34] J. Matejka, F. Anderson, and G. Fitzmaurice. Dynamic opacity optimiza-
tion for scatter plots. In Proc. SIGCHI Conference on Human Factors in
Computing Systems, pp. 2707–2710. ACM, 2015. doi: 10.1145/2702123.
2702585

[35] A. Mayorga and M. Gleicher. Splatterplots: Overcoming overdraw in
scatter plots. IEEE Trans. Vis. & Comp. Graphics, 19(9):1526–1538, 2013.
doi: 10.1109/TVCG.2013.65

[36] L. Micallef, G. Palmas, A. Oulasvirta, and T. Weinkauf. Towards percep-
tual optimization of the visual design of scatterplots. IEEE Trans. Vis.
& Comp. Graphics, 23(6):1588–1599, 2017. doi: 10.1109/TVCG.2017.
2674978

[37] T. Munzner. Visualization analysis and design. AK Peters/CRC Press,
2014. doi: 10.1201/b17511

[38] M. Novotny and H. Hauser. Outlier-preserving focus+ context visual-
ization in parallel coordinates. IEEE Trans. Vis. & Comp. Graphics,
12(5):893–900, 2006. doi: 10.1109/TVCG.2006.170

[39] A. Sarikaya and M. Gleicher. Scatterplots: Tasks, data, and designs. IEEE
Trans. Vis. & Comp. Graphics, 24(1):402–412, 2018. doi: 10.1109/tvcg.
2017.2744184

[40] M. Sedlmair, T. Munzner, and M. Tory. Empirical guidance on scatterplot
and dimension reduction technique choices. IEEE Trans. Vis. & Comp.
Graphics, 19(12):2634–2643, 2013. doi: 10.1109/tvcg.2013.153

[41] B. W. Silverman. Density Estimation for Statistics and Data Analysis.
Routledge, 1986.

[42] E. R. Tufte. The visual display of quantitative information, vol. 2. Graphics
press Cheshire, CT, 2001.

[43] A. Unwin, M. Theus, and H. Hofmann. Graphics of large datasets:
visualizing a million. 2006. doi: 10.1007/0-387-37977-0

[44] Y. Wang, X. Chen, T. Ge, C. Bao, M. Sedlmair, C.-W. Fu, O. Deussen, and
B. Chen. Optimizing color assignment for perception of class separability
in multiclass scatterplots. IEEE Trans. Vis. & Comp. Graphics, 25(1):820–
829, 2019. doi: 10.1109/TVCG.2018.2864912

[45] L.-Y. Wei. Multi-class blue noise sampling. ACM Trans. Graph. (SIG-
GRAPH), 29(4):79, 2010. doi: 10.1145/1778765.1778816

[46] L. Wilkinson. The grammar of graphics. Springer, New York, NY, 2006.
doi: 10.1007/0-387-28695-0

[47] A. Woodruff, J. Landay, and M. Stonebraker. Constant density visual-
izations of non-uniform distributions of data. In Proc. ACM Symposium
on User Interface Software and Technology, pp. 19–28, 1998. doi: 10.
1145/288392.288397

https://archive.ics.uci.edu/ml/datasets.html
https://www.kaggle.com/

	Introduction
	Related Work
	Overdraw Reduction for Scatterplots
	Quantitative Metrics for Scatterplots

	Formal Definitions
	Sampling by Recursive Subdivision
	Customized KD-Tree Construction
	KD-Tree guided Multi-Class Sampling
	Time Complexity & Parameter Analysis

	Evaluation
	Quantitative Evaluation
	Case Studies
	Synthetic data
	Real Data

	Extension for Scatterplot Matrix

	Conclusion

