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a b s t r a c t

Vast amounts of data are produced with the development of smart cities and urban computing
technologies. The data is often captured from multiple sensors, with heterogeneous structures and
highly decentralized connections. Integrated data representation and smart computational models are
required for more complex tasks in urban computing. We dwell deeply on two fundamental questions
— can we provide an integrated data representation for the whole cyber–physical–social system? And,
can we provide an integrated framework to choose the appropriate data for understanding a specific
urban event? A holography data representation and the quasi-holography computational model have
been proposed to address these problems. We describe case studies using the quasi-holography
computational model, and discuss further problems to solve regarding our model.
© 2019 ZhejiangUniversity and ZhejiangUniversity Press. Published by Elsevier B.V. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Intelligent devices, simulations and communications in mod-
ern cities produce massive data: GPS signals, personal images,
atmosphere, and 3D buildings are all examples. These data reflect
urban evolution in physical, social and cyber spaces, playing a
significant role in urban management, security, and activities.
However, these data are often captured by different sensors lo-
cated in disparate places, and may have different inherent data
structures. The multi-source, highly decentralized and heteroge-
neous attributes of urban data make them challenging to process,
fuse and analyze. An appropriate representation and computa-
tional model for processing and mining urban data is necessary,
and even critical for complex applications (Lazer et al., 2009;
Cook, 2012).

A cyber–physical–social system (CPSS) is proposed to describe
an ideal infrastructure which enables urban data computation,
communication and applications (De et al., 2017) in cyber, phys-
ical and social space. The fundamental idea of this conceptual
infrastructure is to integrate the multidimensional and multidis-
ciplinary nature of data sources that cross the three subspaces
in CPSS (Sheth et al., 2013; Cassandras, 2016; De et al., 2017).
Consequently, data are the most important constitutes of CPSS,
which can be organized and categorized to each subspace. The
physical space encompasses entity data, such as buildings and
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towers. Data in the social space are recorded from either visual
sensing or digital activities among social network, such as mobile
phone records and online messages. The cyber space contains
virtual information based on physical and social space, such as
POIs. Therefore, data from different subspaces are heterogeneous,
highly dispersed, and of low relevance. When analyzing a spe-
cific urban event, the data may be redundant on one hand, but
insufficient on the other. This inspires us to contemplate two
significant questions: can we provide an integrated data represen-
tation for the entire cyber–physical–social system? Furthermore, can
we provide an integrated framework to select the appropriate data
to understand a specific urban event?

Here we propose a unified temporal and spatial framework
for representing the heterogeneous, highly dispersed, and low-
relevant urban data, termed holography data representation. It
encompasses a holistic representation of three layers (e.g., data,
semantics and knowledge) based on the cyber–physical–social
system. Holography data representation is viewed as an ideal
model for the entirety of space, which unifies all the data, se-
mantic correlations among data, and high-level knowledge for
solving urban events. To analyze a specific event and focus on its
dynamic changes, we further provide a quasi-holography com-
putational model based on holography data representation. The
computational model takes a target event and quasi-holography
data as input, maps the different scales of data to depict the event,
resulting in sufficient data for the event. This computational
model helps people evaluate and track events, and even plant
new sensors for self-updating the compactness of data for specific
computing tasks.
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We illustrate the holography data representation and the quasi-
holography computational model in detail with cases and ex-
amples, showing their great compatibility and extendability in
event-driven urban computing tasks.

In summary, the main contributions of our study are as the
following:

• a conceptual holography data representation for unifying
data sources, their inherent semantics and latent knowledge
in urban computing.

• a quasi-holography computational model to address the
problem of sampling quasi-holography data for target
events.

• how to leverage our model to analyze urban computing
cases.

• promising open problems based on the quasi-holography
computational model.

2. Background work

2.1. Cyber–physical–social system

With the rapid development of Internet Plus, big data, Internet
of things and other related technologies, information and physical
systems have been further integrated. In addition, the develop-
ment of various emerging mobile services and the popularity of
mobile terminal equipment has made humans the most sensitive
‘‘social sens’’. In this case, the network and human society are
seamlessly combined, forming a more complex integration of
people, things and information all in one system, which is the
cyber–physical–social system (CPSS) (De et al., 2017).

Smart city is a typical CPSS, where a large amount of
physical space–time data can be obtained by detecting physi-
cal phenomena through distributed sensor networks, as citizens
provide human-related social data through wearable sensors,
smartphones, and online social networks. The vision of the CPSS
provides a unified idea to extract useful information and knowl-
edge from this data, in turn providing intelligent applications
and services for governments and citizens (Sheth et al., 2013;
Cassandras, 2016).

However, it has not been discussed on how to choose ap-
propriate data or evaluate whether the data is sufficient to un-
derstand a specific urban event. It intrigues us to search for
a holistic data representation for data and their relationships
within society.

2.2. Urban big data

With the development of digital city projects, more and more
cities in the world have built a better urban information infras-
tructure, providing a flood of urban big data. Urban big data
consists mainly of data captured from fixed and mobile sen-
sor networks (e.g., data captured through the digitalization of
physical entity: cities, transportation, medicine, etc.) and human
contributed e data (e.g., E-mail, instant messages, etc.), which can
provide (near) real-time sensing of the urban environment and
broad field coverage (De et al., 2017).

These data describe all aspects of a city’s real physical environ-
ment and social life from multiple dimensions, forming a virtual
mirror parallel to the real world. Urban big data has obvious
‘‘4V’’ features: massive data volumes (Volume), diverse data types
(Variety), real-time dynamic data (Velocity), and huge data values
(Value). It is important for a smart city to extract knowledge and
intelligence from these data through data mining and correlation
analysis.

2.3. Urban computing

In the urban computing community, many methods have been
proposed to capture, integrate and analyze heterogeneous data
sources in urban spaces (Paulos and Goodman, 2004; Varshney,
2007; Zheng et al., 2014; Tang et al., 2017; Zhao et al., 2018;
Silva et al., 2019), providing reasonable approaches to implement
conceptual cyber–physical–social infrastructure and improve city
intelligence.

Continuous urbanization processes, however, pose challenging
problems against the development and living quality of urban
residents. Urban computing is proposed to solve these problems
and improve the intelligence of modern cities. The term ‘‘urban
computing’’ was first proposed by Paulos and Goodman (2004)
and Paulos et al. (2004). Following their work, Zheng et al. (2014)
presented a more thorough definition for urban computing, con-
sidering it as a process of acquisition, integration and analysis of
tremendous heterogeneous urban data. Urban computing covers
problems in smart cities, such as traffic congestion, healthcare
monitoring (Varshney, 2007; Miotto et al., 2016), environment
monitoring (Ong et al., 2016; Yi et al., 2018; Qi et al., 2018), and
public safety (Anagnostopoulos et al., 2008; Liu et al., 2016; Tang
et al., 2017).

In urban computing, flow analysis is a crucial problem that
mainly focuses on the management of traffic or crowds mobility.
The key step of urban flow management is to understand and
capture multiple-sources of data (Zhao et al., 2017) from different
physical urban sensors. To extract urban flow information from
webcam images, Zhang et al. (2017a,b) introduced the method-
ology to count the number of cars from raw noisy data, with
consideration of challenging factors such as low resolution and
high occlusion. Zhao et al. (2018) further extended this method
for different kinds of image data sources captured from differ-
ent sensors. There are other useful and effective applications
in urban computing. However, most of the methods are task
oriented. Limited attention has been paid to the integration of
data representation and high-level computational model.

3. Model conceptualization

In this section, we introduce concepts and definitions to ad-
dress the problem of measuring data completeness, in analyzing
a specific urban computing event. On the basis of our newly
proposed (quasi-) holography data representation, we will in-
troduce an event-driven quasi-holography computational model,
accompanied by thorough constituents and examples in urban
computing.

3.1. Holography data representation

Data (e.g., geo-spatial coordinates, surveillance videos, 3D
models and mobile phone signals) in urban computing are often
decentralized, heterogeneous and redundant, making it difficult
to consolidate them for urban event analysis. We propose a
holography data representation to unify diverse data sources and
their relationships.

Holography data representation is defined as an integrated data
framework based on temporal τττ and spatial σσσ information for
unifying data sources and their correlations in the entire world.
The holography data representation is composed of three basic lay-
ers: the data source layer, the semantics layer, and the knowledge
layer, illustrated in Fig. 1. Ideally, the representation provides
a way to build connections for different types of data to fur-
ther help humans explore knowledge hidden within data. This
conceptualization can be formulated as the equation below:

H(τττ ,σσσ ) = Hd(τττ ,σσσ ) + Hs(τττ ,σσσ ) + Hk(τττ ,σσσ ) (1)
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Fig. 1. An illustration of the holography data representation.

Fig. 2. An illustration of the quasi-holography data representation and quasi-holography computational model.

In the above formulation, Hd, Hs, and Hk depict the three
fundamental layers. Data sources can be represented and regis-
tered according to their temporal and spatial information in a
hierarchical way, while semantic correlations among data sources
and corresponding latent knowledge are addressed as well. The
three fundamental data layers will be further explained below.

Data source layer aims to ensure the integrality of data
sources, which is constructed based on the concept of the CPSS.
We categorize data sources to the cyber, physical and social
spaces of CPSS. Thus, Hd can be further defined as the formulation
below:

Hd(τττ ,σσσ ) = Hp
d (τττ ,σσσ ) + Hc

d (τττ ,σσσ ) + Hs
d(τττ ,σσσ ) (2)

In this formulation, Hp
d represents entities in the physical sub-

space, such as buildings, trains and signal base stations. Hs
d rep-

resents data from the social network, such as instant messages,
microblog, and personal information from wearable sensors. Hc

d
indicates virtual information based on physical and social space,
such as GPS, a satellite image or super-computing simulation
data.

Semantics layer is a higher level computation based on the
data source layer, composed of typical data processing and data
fusion schemes. Our holography data representation on this layer,
denoted as Hs(τττ ,σσσ ), is able to infer common semantic embed-
dings based on the multi-model heterogeneous data, maximizing
the intelligence of data processing and fusion. As an example,
people can build efficient temporal–spatial correlations for multi-
view surveillance videos, which can track a target in 3D space.

Knowledge layer aims to reason understandable knowledge
from existing data sources and their semantic correlations. Ide-
ally, the holography data representation on this layer can cover all
the effective and useful knowledge reasoned from the whole data
space. Imaging a thief were to escape with his goods, surveillance
videos could record his actions, which would be further matched
with his private ID information from the national security system.
Based on thorough data sources, we can infer higher knowledge,
such as his escaping velocity, his next station and even his reasons
to steal. This knowledge layer can be denoted as Hk(τττ ,σσσ ).

3.2. Quasi-holography computational model

Our holography data representation is an ideal framework with
a complete expression of tremendous urban data. However, in
most realistic cases, it is impossible and unnecessary to pro-
vide all the data for urban computing tasks. Suppose we fo-
cus on a stampede accident, data sources that are spatially far
away from the accident are not necessary to represent the event.
Consequently, we define the concept of quasi-holography data
representation as a subset of the ideal holography data represen-
tation, encompassed with event-dependent data sources and their
correlations. See the left side of Fig. 2.

Usually, quasi-holography data is accessible to people to some
extent. For example, in a stampede accident, it is possible to
acquire GPS signals and human trajectories inside the stampede
region. It is unclear whether the data is sufficient to depict the
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Fig. 3. The visualization interface (Chen et al., 2017) of our case study I.

urban event, or how much data is required for analysis. A compu-
tational model to measure the sufficiency of a quasi-holography
dataset is significant to represent the dynamic urban event.

To measure the sufficiency of a quasi-holography dataset, we
propose a quasi-holography computational model. In our vision,
the quasi-holography computational model takes an event and a
set of quasi-holography data as input, to return a new quasi-
holography data representation just enough to analyze the event
and suggest solutions. With this computational model, urban
data sources and their correlations can be dynamically updated,
computed and evolved. Interactions from users can be integrated
to strengthen the accuracy and improve intelligence of the com-
putational model. The whole process is depicted in Fig. 2. We can
also depict the computational model with the equation below:{
∆i

= f (Ĥ i(τττ ,σσσ ),eee),
Ĥ i+1(τττ ,σσσ ) = Ĥ i(τττ ,σσσ ) + ∆i,

(3)

In this formulation, f depicts our quasi-holography computa-
tional model. ∆i is the ith feedback of model f , which could be
either positive or negative. If ∆i is negative, it means that the
current data sources are redundant for expressing an event; if
positive, more data sources are required for the event. Ĥ i depicts
the ith iterative quasi-holography data representation. eee denotes
an input event; in our model, we refer to it as the temporal and
spatial resolution of an urban event, or event granularity.

Event granularity is a free parameter in our computational
model that can be leveraged to measure data sources and their
correlations in a certain scale. For example, crowd gathering
activities have a larger granularity, covering data sources on a
larger scale; while traffic accidents have a smaller granularity,
requiring more fine-grained information.

We can depict an event granularity, eee, in both temporal and
spacial space, denoted as eτττ and eσσσ respectively. The temporal
granularity, eτττ , refers to temporal scales, e.g., ‘‘1 min’’ and ‘‘1
h’’ are two temporal resolutions for representing an event. The
spacial granularity eσσσ refers to spatial scales, e.g., ‘‘1 m’’ and
‘‘1 km’’. Imagine a simple case that a user requires an analysis
on ‘‘tracking a bus with a 1 min temporal resolution’’. In this
setting, ‘‘bus’’ denotes the spatial resolution and ‘‘1 min’’ depicts
the temporal resolution.

Furthermore, the spacial granularity has abundant connota-
tions for different sources in our computational model, denoted
as eσσσ = (epσσσ , ecσσσ , esσσσ ). Each connotation is determined by features
of the data sources. To be more specific,

• The spatial resolution epσσσ for physical data p indicates the
continuous variations in distance space, e.g., ‘‘1 m’’, ‘‘100 m’’
and ‘‘1 km’’ are three exemplary spatial resolutions.

• The spatial resolution ecσσσ for information data corresponds
to the scale of information, which has different meanings
for various information source devices. For example, ecσσσ for
satellite images is the display resolution of the image, it
relates to distance space for astronomy simulation data.

• The spatial resolution esσσσ for social data corresponds to the
scalability of the social factors. For car trajectories, esσσσ can
be represented by spatial distance. Crowd social networks
can be described with the concept of crowd scalability,
e.g., ‘‘1000 people’’, ‘‘10 people’’ and an individual.

Dynamic update: Our computational model is able to support
dynamic updates of data sources. As depicted in , with the feed-
back of ∆i for the ith iteration, the original quasi-holography data
Ĥ i for an event will be updated to Ĥ i+1. The process is easily
extended to support new iterations with dynamically updated
data.

4. Case study

In this section, we demonstrate how to leverage our quasi-
holography computational model for urban event analysis with
two case studies: one regarding congestion exploration and the
other on conceptual analysis for public security control.

4.1. Case I: Congestion exploration

The fundamental idea of our quasi-holography computational
model – sampling appropriate data for a specific event and making
decisions with dynamically updated information – can be applied to
increase the effectiveness of urban event analysis. In this section,
we apply our computational model to analyze an urban traffic
congestion case (Chen et al., 2017).

Fig. 3 illustrates the interactive tool for urban traffic conges-
tion. As depicted, city managers often wish to locate congestion
and find the cause of congestion and traffic jams. In the very
beginning, the accessible data are taxi trajectories (social space
data), denoted as Ĥ0. Our quasi-holography computational model
takes Ĥ0 and the event as input. Ĥ0 appears sufficient in locat-
ing two congestion streets (see Fig. 3(a)), but not indicating its
reasons. Our computational model suggests more data sources to
help explore the reasons: city structures (physical space data) and
POI data (cyber space data), denoted as ∆0. With the additional
data sources, the city managers find that one congested street
is located on the region with many automotive service shops
where taxis are going for maintenance (see Fig. 3(b)), and the
other congested street is near a commercial center (see Fig. 3(c)).
The city managers provide interactions to explore the duration
of the congestion on the second street, and the corresponding
information is shown as a partial view of the quasi-holography
data ∆1 (see Fig. 3(d).
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Fig. 4. Illustration of our case study II.

4.2. Case II: Public security control

Our computational model can be leveraged to provide appro-
priate data sources for analyzing complex and dynamic urban
events, such as security control, intelligent office management
and traffic monitoring. We demonstrate how to utilize the quasi-
holography computational model through a complete study of a
public security control case.

The goals of typical security control in a complex public space
encompass: (1) monitoring the security dynamic of the region,
(2) detecting possible insecurity trends, (3) tracking crowd con-
gestion incidents, and (4) providing solutions for a catastrophe
if necessary. These goals are with different event granularities,
and highly related to crowd number and the physical space. The
crowd size (social space data), the granularity ranges from the
‘‘group’’ level to the ‘‘individual’’ level; and for physical space, it
ranges from the whole square to an individual.

E1: Monitoring the security dynamics of the region. Sup-
pose at the very beginning, only 3D constructions on the square
(physical space data) and surveillance videos (cyber space data)
are available, which can be considered as a quasi-holography rep-
resentation Ĥ0. With data sources in Ĥ0, we can infer the crowd
number and density (semantics layer of Ĥ0), and consequently
evaluate if the crowd density is above a dangerous threshold δ or
if the crowd number is increasing too much (knowledge layer of
Ĥ0) semantics information such as crowd density.

E2: Detecting possible insecurity trends. Our quasi-
holography computational model will not update the original
representation Ĥ0 until the crowd density is close to a predefined
dangerous threshold |δ − ϵ|. If this happens, our computational
model will give alert to the managers and suggest more data
sources to avoid the increasing number of visitors. Data sources
such as GPS signals from telecommunication companies (cyber
space data), passenger data from the Metro office (social space
data) and taxi trajectories (social space data) are helpful. With
GPS signals, we can estimate the number of visitors on their way.
With subway passenger data and taxi trajectories, we can analyze
the visitors and suggest them to cancel their schedule or avoid the
region with coercive measures if possible.

E3: Tracking the crowd congestion incident. When the
crowd density is at a dangerous threshold, our quasi-holography
model will update the original quasi-holography data Ĥ0 to dis-
perse the crowd. Data sources such as online messages from com-
munication companies (cyber space data), trajectories of security
guards (social space data), and positions of mobile guard bars
(physical space data) can be leveraged to achieve this goal. Online
messages help to locate individuals and their status (whether
they are within the crowded region or not). Using trajectories of
security guards, we can coordinate them to help disperse people.

With positions of mobile guard bars, we can move them to build
any temporary dispersing path.

E4: Providing solutions for a catastrophe. E3 will evolve to
a catastrophe if no solution is effectively executed, e.g., injuries
or death caused by the stampede accident. Suppose the quasi-
holography data representation before the catastrophe is Ĥ i, our
computational model will reorganize and update Ĥ i to Ĥ i+1,
providing an appropriate solution to the catastrophe. To achieve
the goal, our computational model would suggest additional data
sources at the temporal and spatial scale with the finest granu-
larity. Data sources will be requested and updated, such as UAV
drones (physical space data), individual ID information (cyber
space data), the number of security guards in nearby areas (social
space data), and traffic conditions in the surrounding area (social
space data). UAV drones are introduced to track and capture the
environments and visitors trapped in the catastrophe. The indi-
vidual ID information helps to analyze an individual’s health and
former medical history for effective medical treatment. Security
guards and traffic conditions in nearby areas will be invoked to
help disperse the crowd safely.

The data sources mentioned in E2–E4 are potential feedbacks
from our quasi-holography computational model, which updates
the original data representation to a new one for analyzing an
event. Fig. 4 shows the iterative process. This case study demon-
strates a typical analysis process of our quasi-holography compu-
tational model, which can be easily extended and applied to more
complex and dynamic events.

5. Potential problems

Our quasi-holography model demonstrates significant com-
patibility for data analysis adapting to events of different natures.
However, there are still quite a few potential issues to address
with the proposed model as discussed below:

Multi-events joint optimal computation: One goal of the
proposed model is to provide interactive computational analy-
sis and optimal guidance for processing a specific event. When
multiple events or conditions occur simultaneously, they bring
multiple constraints, thus the output results need to be opti-
mized based on the co-occurrences. Consider an ‘‘urban traffic
congestion‘‘ occurring in a ‘‘restricted area with potential security
problems’’ on a rainy day, obviously, an optimal solution for
this case would not be optimal for another. How to solve such
multi-objective optimization problem becomes important.

Self-evolution data representation: Our holography data rep-
resentation is a spatial and temporal framework to depict data,
information and knowledge in the entire world. For a dynamic
event that is constantly unfolding and developing, the incoming
data are frequently updated, how to define a self-evolution data
representation and how we best explore temporal coherence, are
essential issues to address.
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6. Concluding remarks

Multi-source and heterogeneous data captured from different
sensors in urban space is highly decentralized and fragmented,
which pose great challenges to urban computing and applications.
In this paper, we propose a concept - holography data represen-
tation - to unify data sources and their correlations based on
temporal and spatial information. Based on the holography data
representation, a novel event-driven quasi-holography computa-
tional model is defined, which can measure the sufficiency of
data sources and choose appropriate data to analyze a given
event. Two case studies are presented to further explain the
quasi-holography computational model. Finally, We discuss two
interesting problems to solve when extending and implementing
our quasi-computational model. Though our model is proposed as
a conceptual framework, it builds the bridge for analysis of effi-
cient data and on-the-fly event. We shall leave it to future efforts
to maximize the usage of the quasi-holography computational
model in large-scale urban computing.
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