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We introduce a mass-driven curve skeleton as a curve skeleton representation for 3D point cloud data. The mass-driven curve
skeleton presents geometric properties and mass distribution of a curve skeleton simultaneously. The computation of the mass-
driven curve skeleton is formulated as a minimization of Wasserstein distance, with an entropic regularization term, between mass
distributions of point clouds and curve skeletons. Assuming that the mass of one sampling point should be transported to a line-like
structure, a topology-aware rough curve skeleton is extracted via the optimal transport plan. A Dirichlet energy regularization term
is then used to obtain a smooth curve skeleton via geometric optimization. Given that rough curve skeleton extraction does not
depend on complete point clouds, our algorithm can be directly applied to curve skeleton extraction from incomplete point clouds.
We demonstrate that a mass-driven curve skeleton can be directly applied to an unoriented raw point scan with significant noise,
outliers and large areas of missing data. In comparison with state-of-the-art methods on curve skeleton extraction, the performance
of the proposed mass-driven curve skeleton is more robust in terms of extracting a correct topology.

Index Terms—Curve skeleton, incomplete point clouds, optimal mass transport, Wasserstein distance.

I. INTRODUCTION

The skeleton of a shape provides an intuitive and effective
abstraction that facilitates shape understanding and manipu-
lation. The skeletons have been extensively used in various
applications, such as shape registration, model segmentation,
animation, morphing, shape recognition, and shape retrieval.
Since the medial axis was introduced by Blum [1], it has
become the basis for many shape descriptors [2]. The medial
axis of a 3D model is generally a non-manifold structure that
is composed of 2D surface sheets, and is difficult to store
and manipulate. The curve skeleton of a 3D model is a line-
like representation. In comparison with a medial axis, a curve
skeleton is more extensively adopted given the simplicity of
topology and ease of manipulation in the computer graphics
community [3]–[5]. In this work, we focus on curve skeleton
extraction from incomplete point clouds.

Many algorithms can be used for curve skeleton extrac-
tion [3], [6], but most of these algorithm are designed to
deal with shapes specified by closed polygonal meshes. In
contrast to meshes, no explicit topology connection exists be-
tween unorganized point samples, which makes curve skeleton
extraction from point clouds extra challenging. Furthermore,
raw scans typically contain large gaping holes, severe under-
sampling, heavy noise, and outliers. Two key problems, name-
ly, robustness and the accuracy, must be carefully addressed.

Another thread of algorithms [4], [5] first extract dense
points as a branch of rough curve skeleton and then construct
connections between different branches by estimating the
bridging points at joints. Various branches of the skeleton
may require to be extracted using different parameters, thereby
making the process tedious. When large regions of missing
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(a) Raw scan (b) Mass points (c) Mass skeleton

Fig. 1: Given an unorganized, unoriented, and highly incom-
plete raw scan corrupted with noise and outliers, we are able
to extract a complete and quality curve skeleton with respect
to mass distribution.

data are available in the input point clouds, the difficulty
rapidly increases in constructing a correct topology graph.

In this paper, we introduce a mass-driven curve skeleton
(MdCS) that simultaneously presents geometric properties and
mass distribution of a curve skeleton as a new type of curve
skeleton representation for 3D point cloud data. MdCS is
defined as a solution minimizing Wasserstein distance with
an entropic regularization term between two probability mea-
sures, namely, mass distribution of an original point cloud and
a MdCS.

To generate skeletons with an accutrate topology from
incomplete point clouds, we first extract a topology-aware
rough curve skeleton with sparse points (Fig. 1[b]) rather than
dense points, similar to that in existing works [4], [5]. By
interpolating additional points in the rough curve skeleton, a
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smooth MdCS (Fig. 1[c]) is constructed via an optimization
procedure. Numerical experiments show that our algorithm can
produce satisfactory curve skeletons, even when input point
clouds are heavily corrupted. In comparison with `1-medial
skeleton [5], our algorithm is more robust because it does not
depend on suitable neighborhood sizes, which are essential
in `1-medial skeleton [5]. Our algorithm naturally provides a
multi-scale curve skeleton in terms of the mass of each point
sampled in the curve skeleton.

The main theoretic and algorithmic contributions are pre-
sented as follows:
• Curve skeleton points are represented as a finite set of

centers of power diagram cells. Curve skeleton extraction
is formulated as an optimal mass transport problem.

• A MdCS as a new type of skeleton not only presents a
geometry position as other methods, but also provides a
mass distribution, of a curve skeleton.

• In comparison with state-of-the-art methods, the proposed
algorithm performs robustly on unorganized, unoriented,
and highly incomplete point cloud data.

II. RELATED WORK

A. Curve skeleton extraction from point clouds

The literature on skeletal shape extraction is vast. Here,
we only briefly review works on curve skeleton extraction
from point clouds. For the rest, we refer readers to two
comprehensive surveys [3], [6].

Ogniewicz and Ilg [7] proposed a Voronoi skeleton method
for point clouds via a Voronoi diagram of boundary points.
On the basis of a deformable model evolution, Sharf et al. [8]
tracked the front of a smooth blob from the inside of a point
cloud to generate a curve skeleton. Cao et al. [9] presented
an algorithm for curve skeleton extraction via Laplacian-
based contraction (LBC) by extending the mean curvature
flow based skeleton extraction method [10] to point clouds.
However, these algorithms require the input point cloud to
be sufficiently clean and dense to generate a correct curve
skeleton. Moreover, these algorithms may be ineffective for
curve skeleton extraction from raw scan point clouds that are
severely under-sampled, with heavy noise and outliers.

Tagliasacchi et al. [4] proposed a rotational symmetry axis
(ROSA) method to extract curve skeletons for point clouds
with considerable missing data. This method relies on a cylin-
drical shape prior and accurate point normals. Livny et al. [11]
proposed an algorithm for extracting a skeletal structure from
tree data. Li et al. [12] developed a deformable model called
arterial snakes for curve abstraction, which is targeted at input
models that can be represented well by 1D curves. Works [13]–
[15] constructed curve skeletons by extracting a Reeb graph
of point clouds. Song et al. [16] developed a distance field
guided `1-median method to extract curve skeletons from
points. Zhang et al. [17] proposed a skeletal representation
of a tree on internodes. In Table I, we summarize related
curve skeleton extraction methods of point clouds and their
performance level of robustness to various artifacts.

Works [5], [18] and [19] are studies that are most related to
our work. Huang et al. [5] proposed an `1 projection operator

TABLE I: Categorization of curve skeleton extraction of
point clouds in terms of the ability to handle point cloud
artifacts and input requirements. Here, the symbol ◦ indicates
that the method is moderately robust to a particular artifact,
and • indicates that the method is robust. We use X to
indicate that input requirements are necessary. Non-uniform
sampling denotes that the sampling density spatially varies.
Noise indicates that sampling points are randomly distributed
near the surface. Missing data denote that the sampling density
is 0 in the region. Normals indicate that the normal of the
point is the direction perpendicular to the tangent space of
the point. Tubular represents an appropriate shape prior, and
the shapes of interest must be covered by a generally tubular
region, except at their joints.

Method
Point Cloud Artifacts Input Requirements

Non-
uniform
sampling

Noise Missing
data

Normals Tubular

Voronoi [7] ◦ ◦ ◦
LBC [9] ◦ ◦ ◦
`1 [5] ◦ ◦ •

Reeb Graph [14] • ◦ ◦
ROSA [4] ◦ ◦ • X X

Snake [11] ◦ ◦ • X X

Tree skel [12] ◦ • • X

to extract curve skeletons from point clouds. `1 projection
operator can be directly applied to an unoriented raw point
scan. Nonetheless, accurate parameters are difficult to set
during an iterative procedure to obtain satisfactory results. On
the basis of a topology structure prior, Lu et al. [18] con-
structed the curve skeleton of a shape using centroidal Voronoi
tessellation. Solomon et al. [19] constructed a curve skeleton
of a shape using Wasserstein propagation. Mérigot et al. [20]
proposed an algorithm for the optimal transport between a
simplex soup and a point cloud. In comparison with [5], we
represent a curve skeleton as the Wasserstein barycenter of the
probability measures of point clouds, rather than `1-median,
and improve the robustness of the curve skeleton extraction
method. In comparison with [18] and [19], our algorithm does
not require a topology structure prior but directly estimates
a topology graph of point clouds on the optimal transport
plan. We represent point clouds and their curve skeleton as
two probability measures to calculate Wasserstein distance,
rather than using barycentric coordinates [21], as probability
measures similar to those in [19]. De Goes et al. [22] and
Digne et al. [23] proposed optimal transport approaches for
the robust reconstruction of 2D and 3D shapes, respectively.
In comparison with their approaches, our method focuses
on extracting a topology structure rather than preserving a
geometric detail. Furthermore, our approach is based on a
simpler transport plan from 0-simplices to 0-simplices rather
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than {0,1,2}-simplices used in [22] and [23].

B. Optimal mass transport and curve skeleton extraction

Recently, optimal mass transport has been extensively ap-
plied to geometry processing [19], [22], [24], [25]. For com-
pleteness, we briefly review the Wasserstein distance in this
subsection. For an arbitrary space Ω, we use d : Ω×Ω→ R+

to denote the distance metric, that is, d(x, y) is the shortest
distance from x to y along Ω. We use P (Ω) to indicate the set
of probability measures on Ω, and P (Ω × Ω) to denote that
on the product space Ω× Ω,

P (Ω) = {µ | µ(∅) = 0, µ(Ω) = 1, 0 ≤ µ(U) ≤ 1(U ⊆ Ω)},

where µ(U) =
∫
U∈Ω

ρ(x)dx is a probability measure on Ω,
and ρ(x) ≥ 0 is a probability density function on Ω.

Given probability measures µ and ν in P (Ω) and p ≥ 1, the
p-Wasserstein distance [26] between µ and ν is defined as:

Wp(µ, ν) =

(
inf

π∈
∏

(µ,ν)

∫
Ω×Ω

d(x, y)pdπ(x, y)

)1/p

,

where d(x, y) is the cost of transporting one unit of mass
from x to y. In the present work, we represent d(x, y) as the
Euclidean distance between the points x and y, and

∏
(µ, ν) is

the subset of P (Ω×Ω) that satisfies mass conservation laws.∏
(µ, ν) = {π ∈ P (Ω,Ω) | π(·,Ω) = µ, π(Ω, ·) = ν},

where π is a transportation plan that describes the amount of
mass π(x, y) to be placed from µ at x towards y to create ν
in aggregation. Wasserstein distance, therefore, describes the
minimum cost of transporting the source µ to the target ν.

The 2-Wasserstein distance, which uses the L2 norm, is
most common and is frequently referred to as the earth mover’s
distance. Aurenhammer et al. [27] verified that capacity con-
strained partitions that minimize the 2-Wasserstein distance
for a given point set are power diagrams. Furthermore, De
Goes et al. [24] and Qin et al. [25] exploited the nature of the
2-Wasserstein distance to obtain the center of power diagram
cells for blue noise sampling. In our work, a power diagram
partition of given point cloud data is developed by optimizing
the 2-Wasserstein distance, and curve skeleton points are
represented as the center of power diagrams cells. In power
crust algorithm [28], [29], Amenta et al. considered the points
on the medial axis as the center of power diagram cells and
used the boundary of the power diagram cells to approximate
a surface. In comparison with [28] and [29], our approach for
curve skeleton extraction is an approximate inverse procedure
of the power crust algorithm.

The principle of attributing points with a mass is well
known in many skeletonization methods, such as in [30]–
[33]. In these methods, the mass of a surface is defined as
the product of the surface area and mass density. This mass is
considered uniform. Therefore, the mass of a sampling point
is proportional to the area element represented by the point.
In [30]–[33], the sampling points are uniformly distributed
and the mass of the points is the same. The skeleton detection
and the mass of skeleton points is modeled via an advection
principle that collapses mass from the surface to the surface

skeleton, then to the curve skeleton, and finally to the latter’s
center. In comparison with the collapse procedure in these
methods, the mass of a sampling point is estimated in terms
of the local sampling density in our approach, and the curve
skeleton points are defined as the center of the power diagram
cell. The mass in the power diagram cell is directly transported
to the center. The mass in [30]–[33] is accumulated step by
step via the collapse procedure. In these methods, the topology
structure of curve skeleton is preserved during the collapse
procedure. In our approach, the topology structure of a curve
skeleton is extracted from the transport plan Π. Locally defined
principal curves [34] are also modeled on mass distribution.
The principal curves are defined as the local maximum of the
probability density function in the orthogonal space defined by
the local Hessian matrix of the probability density function. A
fixed point iteration algorithm, which is analogous to mean-
shift algorithm, is provided for the principal curves extraction.

III. OVERVIEW

The input to our algorithm is an unorganized set of points
Y = {yj}j∈J ⊂ R3, which are unoriented, thereby containing
large gaping holes and severely corrupted. The output is an
MdCS, which is a 1D curve skeleton X = {xi}i∈I ⊂ R3

with mass distribution {ρi} and topology connection. Here,
X represents a 1D local center of the shape underlying the
input Y , and ρi represents the mass that is transformed from
Y to xi. To reduce the impact of noise and missing data
on topology extraction and improve the robustness of our
algorithm, we initially extract a rough curve skeleton with
correct topology, rather than a smooth curve skeleton directly.
The pseudocode is demonstrated in Algorithm 1 and the main
algorithmic phases are presented as follows:

a) Topology extraction: Given that a curve skeleton of
a shape is a 1D structure, a rough MdCS of the shape is
extracted via the relaxed optimal transport problem between
two discrete probability measures. Additional details can be
found in Section IV-B.

b) Topology checking: The topology structure of curve
skeletons are checked via the symmetry detection of the
optimal transport plan, and the incorrect topology structure
is alleviated by computing a new optimal transport plan
on a large-scale parameter. Further details can be found in
Section IV-C.

c) Geometry optimization: A smooth curve skeleton
is generated by minimizing the Wasserstein distance with
a Dirichlet energy regularization. Additional details can be
found in Section IV-D.

IV. MASS-DRIVEN CURVE SKELETON

A. Defining a mass-driven curve skeleton

An unorganized set of points Y = {yj}j∈J ⊂ R3 represent
a discrete probability measure ν in R3.

ν =

n∑
j=1

%jδyj s.t.

n∑
j=1

%j = 1, δyj =


1 yj ∈ Y,

0 others,
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where n is the number of samples, %j is the probability at yj ,
and J indexes the set of input points Y .

An 1D curve skeleton point set X = {xi}i∈I ⊂ R3

represents another discrete probability measure µ.

µ =

m∑
i=1

ρiδxi s.t.

m∑
i=1

ρi = 1, δxi =


1 xi ∈ X,

0 others,

where m is the number of sampling points in the curve
skeleton, ρi is the mass or probability at xi, and I indexes
the set of sampling points of the curve skeleton.

We investigate the following definition for an MdCS that
leads to an optimal discrete probability measure µ:

arg min
µ

(1− λ)W 2
2 (µ, ν) + λR(X), (1)

where W 2
2 (µ, ν) is the Wasserstein distance between the

probability measures µ and ν. the second term R(X) regu-
larizes the local point distribution X , and λ ∈ [0, 1] is the
weight parameter to balance the Wasserstein distance and the
regularization term.

The first term in Eq. (1) denotes that the method aims to find
a µ that captures ν well. In terms of the theory that capacity
constrained partitions that minimize the 2-Wasserstein distance
for a given point set are power diagrams [27], the solution of
minimizing the first term provides power diagram partitions of
original point clouds, and xi is the center of the corresponding
power cell. However, these points xi may represent a surface
similar to that in [25], rather than a curve skeleton. The object
here is to compute a skeletal point cloud that provides a 1D
representation of the input geometry. In particular, we are
seeking an optimal probability measure µ with a line like
structure to represent a shape defined by ν . The second term,
therefore, is added to regularizes the curve fitting and avoids
unwanted oscillations.

In comparison with the power crust [29] that uses the power
diagram to approximate the medial axis, the main idea of
our algorithm is to use a finite set center of power cells
to approximate the curve skeleton. For a tubular model, the
medial axis degenerates to the curve skeleton. Therefore, the
quality of point set Y , which represents the input shape F
in our algorithm, must comply with r-sample [29] from the
theory view. Y is an r-sample from F when the distance
from any point y ∈ F to the nearest sample yi is at most
rLFS(y), and LFS(y) is the minimum Euclidean distance
from point y to any point of the medial axis. In practice, we
aim to implement the algorithm to provide favorable results
even when this assumption is unsatisfied. In comparison with
`1-medial skeleton [5], our definition provides a global optimal
transport plan to represent the mapping between Y and X ,
rather than using a local Gaussian decay weighting function.
Furthermore, the optimal transport plan also provides the cue
to extract topology structures of a curve skeleton. The details
of the optimal transport plan will be introduced in the next
subsection.

B. Topology extraction

We use the fact that the curve skeleton of a shape is a 1D
structure, and the optimal transport plan between probability
measures µ and ν is determined to extract the topology graph
of a shape via an iterative contraction.

For topology extraction, we must only extract a rough
MdCS with correct connection, and an accurate curve fitting
is unnecessary. Therefore, the first term in Eq. (1) is only used
to extract skeleton points, which are modeled as the minimum
of the Wasserstein distance. That is,

µ = arg min
µ

W 2
2 (µ, ν) = arg min

µ
inf
π

∫
X×Y

d(xi, yj)
2dπ(xi, yj)

s.t.

n∑
j=1

π(xi, yj) = ρi,

m∑
i=1

π(xi, yj) = %j .

(2)

Let V ω(xi) be the power diagram [35] region of xi.

V ω(xi) = {x ∈ R3 | ||x−xi||−ωi ≤ ||x−xk||−ωk,∀k 6= i}.

The optimal solution π of Eq. (2) establishes a power diagram
partition of point set X = {xi}; that is:

π(xi, yj) =


%j yj ∈ V ω(xi),

0 others.
(3)

However, a power diagram partition is a hard partition as
well as a Voronoi diagram partition, and is sensitive to heavy
noise and outlier of point clouds [7]. We, therefore, introduce
an entropic regularization term similar to that in [36] to relax
the transport plan and break the condition of Eq. (3).

The regularized Wasserstein distance is defined as:

W2(µ, ν) =

(
inf

π∈
∏

(µ,ν)

∫
Ω×Ω

d(x, y)2dπ(x, y)− εH(π)

)1/2

,

(4)
where ε is a positive regularization parameter, and

H(π) = −
∫

Ω×Ω

π(x, y)lnπ(x, y)dxdy,

is the entropy of π. This term expands the transport range,
rather than the nearest transport in Eq. (2). The parameter ε
plays a role in controlling the overlap range of Yi and Yk,
where Yi = {yj |π(xi, yj) > 0, yj ∈ Y }, as illustrated in
Fig. 2. Given an initial µ and ν, an updated set of points
X = {xi}i∈I and an optimal transport plan Π can be obtained
from Eq. 4 by fixing ρi(i ∈ I).

Subsequently, we initially describe the methods that we use
in identifying and labeling points that belong to a rough curve
skeleton. Then, we explain the merging of points that do not
belong to a rough curve skeleton.

Considering that a curve skeleton is locally a line-like
structure, we assume that the most mass of a sampled point yj
must be transported to a line-like structure when the parameter
ε is sufficiently small. To label a curve skeleton point from
the candidates, we initially identify if the mass of a point
yj is transported to a line structure. For every point yj , we
find three curve skeleton points xi1 , xi2 , xi3 , to which the
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(a) Initiation (b) ε = 0.001 (c) ε = 0.001 (d) ε = 0.001 (e) ε = 0.0012 (f) MdCS

Fig. 3: Overview of mass skeleton extraction. Given a raw scan, we randomly sample a subset (a) as shown in red dots. These
points are iteratively projected and merged onto a skeletal point cloud (b-c). Topology checking is applied to find the wrong
curve skeleton points (d). The points that do not satisfy the symmetry condition are shown in blue dots. The points that satisfy
the symmetry condition are shown in green dots. The cycles, which are formed by blue or green dots, need to be merged
furthermore. The parameter ε is updated, and new iterations are applied until no points need to be merged (e). The final MdCS
is obtained in (f) via geometry optimization.

(a) Correct topology graph (b) Incorrect topology graph

Fig. 2: Illustration of the merging procedure. (a) When the
mass of one point in the original point clouds is transported
to two skeleton points at most, the mass of the point is
transported to a line-like structure, and a correct topology
graph is extracted. (b) When the mass of one point in the
original point clouds is transported to three skeleton points at
least, and the three points do not position in a line, the mass
of the point is not transported to a line-like structure, and an
incorrect topology graph is formed. Two of the skeleton points
must be merged.

transported mass π(xi1 , yj), π(xi2 , yj), and π(xi1 , yj) from
yj are the largest among π(·, yj). The point yj is labeled
as a major point of the point xi1 with the largest π(xi1 , yj)
among π(·, yj). If the sum of the two largest π(xi1 , yj) and
π(xi2 , yj) is larger than 0.99%j , then we assume that the
mass of the point yj is only transported to two points and
set m(xi1 , xi2) = 1. Therefore, the mass of yj is transported
to a line-like structure. Otherwise, we assume that the mass
of the point yj is transported to three points at least, and we
set m(xi1 , xi2) = m(xi1 , xi3) = 1. Then, we check whether
the three points xi1 , xi2 , xi3 lie in a line-like structure. If
cos(∠(−−−→xi1xi2 ,

−−−→xi1xi3)) ≤ −0.9, then the mass of the point
yj is considered transported to a line-like structure. If at least
90% of the total major points of xi exists, the mass of which
is transported to a line-like structure, then we label the point
xi as a curve skeleton point.

For convenience, a point xi denotes the point in this
paragraph, which is not labeled as a curve skeleton point. We
will apply a merging procedure to gradually eliminate them.
The merging procedure includes two steps. The first step is

to select point pairs, which will be merged. We first select a
point xi with minimum mass in points {xi}, which are not
yet selected. Then, a point pair (xi, xj) is selected if xj is the
nearest neighbor of xi, and a connection is observed between
xi and xj . Point pair selection will be performed gradually
until no point pair is found. The second step is to merge every
point pair (xi, xj) as xi and delete the point xj . The coordinate
of xi is updated as xiρi+xjρj

ρi+ρj
, and the probability density of

xi is updated as ρi + ρj .
After every merging procedure, we update the adjacent

matrix M. An existing topology connection must be preserved,
that is m(xi, xk) = 1 if m(xj , xk) = 1. Furthermore,
the original topology connection is based on the transport
plan of only one sampling point. The topology connection
can be corrupted by heavy noise. To reduce the impact
of noise, we introduce a constrain condition to check the
updated element m(xi, xk). For topology points xi and xk,
if
∑
yj∈Y (π(xi, yj) + π(xk, yj)) < 0.1(ρi + ρk), it denotes

that the mass of very few sampling points is transported to the
points xi and xk simultaneously, and we set m(xi, xk) = 0.

C. Topology checking

While Wasserstein distance is robust to noise and outliers,
an incorrect topology connection may be obtained if the given
point cloud contains large gaping holes ( Fig.3[e]) or sudden-
change-scale structures ( Fig.14[b]). To alleviate this problem,
we propose a symmetry check to correct the extracted topology
structure.

We adopt the classical principal component analysis (PCA)
to detect three directions, which are used to check the sym-
metry of the transport plan π(xi, ·) at every point xi. At each
point xi, we compute the eigenvectors of a 3 × 3 covariance
matrix.

Ci =
∑

yi∈Y ∧{yk|π(xi,yk)>0.01%k}

(xi − yj)T (xi − yj),

where the corresponding eigenvectors {v0
i ,v

1
i ,v

2
i } form an
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Algorithm 1 Extraction of a curve skeleton

Input: Unorganized points set Y = {yj}j∈J ⊂ R3; parame-
ters m, ε, λ, θ and τ ;

Output: Curve skeleton points set X = {xi}i∈I ⊂ R3;
Discrete probability measure µ; Adjacent matrix M of
curve skeleton points;

1: function MDCS(Y ,m, ε, λ, θ and τ )
2: ν = {νj |νj is the local sampling density at the point
yj};

3: X = {xi|xi ∈ Y, xi 6= xj(i 6= j), i ∈ {1, 2, ...,m} };
4: µ ={µi = 1/m|i ∈ {1, 2, ...,m}};
5: M = {mij = 0|i, j ∈ {1, 2, ...,m}};
6: L = {li = 0|i ∈ {1, 2, ...,m} };
7: while ε < 0.002 do
8: do
9: {X,Π}= Optimize(Y, ε,X,Π, ν, µ) ;

10: Update M in terms of Π;
11: li ← 1 if xi being labeled as a curve skeleton

point;
12: Find (xi, xj) satisfying the merging condition;
13: Update X,Π, µ in terms of merging strategy;
14: while No (xi, xj) being merged
15: Find incorrect cycle structures C;
16: if size(C)=0 then
17: break;
18: li ← 0 if xi ∈ C;
19: else
20: ε← ε+ ∆ε
21: end if
22: end while
23: Insert new points xk in X in terms of Eq. 7;
24: {X,Π}= Optimize(Y, ε,X,Π, ν, µ);
25: return X,M, µ;
26: end function

Algorithm 2 Extremize the variational problem of Eq. 1

Input: Y, ε,X,Π, ν, µ;
Output: X, Π;

1: function OPTIMIZE(Y, ε,X,Π, ν, µ)
2: Compute the distance matrix D between X and Y;
3: E0 ← (1− λ)W p

p (µ, ν) + λR(X);
4: do
5: Compute Π via iterative Bregman projection [37]
6: X← (1− θ)X− θB/A ;
7: E1 ← (1− λ)W p

p (µ, ν) + λR(X);
8: dE ← E1 − E0;
9: E0 ← E1;

10: while dE is convergent
11: end function

orthogonal frame. Then, we define the value:

mαβ+
i =

∑
yj∈Yi

%j (xi − yj)T · vγi > 0,

mαβ−
i =

∑
yj∈Yi

%j (xi − yj)T · vγi < 0,

s.t. α, β, γ = 0, 1, 2 and α 6= β 6= γ,

(5)

as the transported mass to xi from two opposite directions.
To check the symmetry of the transport plan π(xi, ·) at xi,

we define a testing value as:

md
i = max

αβ
‖mαβ+

i −mαβ−
i ‖/(mαβ+

i +mαβ−
i ), (6)

which measures the maximal difference of the transported
masses to xi from two opposite directions. If md

i is larger
than a threshold τ , xi does not lie in the center of a local
structure. This condition can occur when large data are missed
in the local structure ( Fig.3[e]) or a large scale structure
is present around xi ( Fig.14[b]). We, therefore, label these
topology points, such as xi, as candidates, which are rep-
resented as {x1

c , x
2
c , ...}, and label other topology points as

non-candidates.
Furthermore, we obtain several connected subgraphs G

containing the candidates xic by traversing the topology graph
from xic. In this process, the non-candidates are treated as
terminal points. If more than one missing area or a large scale
structure exists, an incorrect cycle structure C may exist in
G, as depicted in Fig. 3[e] and 14[b]. To correct an incorrect
MdCS, we label the points that belong to C as non-skeleton
points and update the parameter ε = ε + ∆ε. Then, a new
merging procedure is applied until there isn’t non-skeleton
point. In our algorithm, a small overlap range of Yi and Yj is
necessary. We set 0.001 ≤ ε ≤ 0.002 and 4ε = 0.0002.

D. Geometry optimization

To obtain a smooth MdCS, we insert additional skeleton
points in the rough MdCS. Then, a geometry optimization is
used to determine the final positions of points X using Eq. (1).

To preserve the smallest branch contained in input point
clouds, we find the shortest edge es(xi, xk) in the rough
MdCS, where xi and xk are the vertexes of the edge es. For
every edge e ∈ E in the rough MdCS G(X,E), if the length
of the edge e is longer than the length es, we insert l isometric
points. The number l of inserted points is set in terms of the
condition, that is,

|e|
l + 1

≤ |es| <
|e|
l
, (7)

where |e| is the length of the edge e. Then, we apply a
linear interpolation to set the probability measure of inserted
points and a normalization procedure to update the probability
measures of all skeleton points X , including original and
inserted skeleton points.

If the set of points X contains additional points, the solu-
tion of Eq. (2) may lead to unwanted oscillations. To avoid
unwanted oscillations, a regularization term R(X) is used as in
Eq. (1). Similar to the works in [38] and [18], we use Dirichlet
energy (a squared Laplacian) to define the regularization term
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R(X), which minimizes the coordinate’s variations on each
one-ring neighborhood.

R(X) = λ

n∑
i=1

‖xi −
1

v(xi)

∑
xk∈N(xi)

xk‖2, (8)

where N(xi) is the one-ring neighbors of xi, v(xi) is the
number of points N(xi), and λ ≥ 0 controls the influence of
the regularization term.

E. Numerical optimization

In this subsection, we discuss the computation of the
solutions of Eqs. (2) and (1). The pseudocode is presented in
Algorithm 2. When λ = 0, Eq. (1) degenerates to Eq. (2). We,
therefore, only consider the numerical optimization of Eq. (1).

The variational problem of Eq. (1) is a non-convex optimiza-
tion problem. We apply an iterative algorithm to extremize the
variational problem by repeatedly performing a minimization
step over X followed by a projection step over transport plans
π. We initiate curve skeleton points X = {x1, x2, ..., xm}
from Y via a random sampling and set ρi = 1/m, i =
1, 2, ..., m. By fixing a set of points X , we compute a relaxed
transport plan using Eq. (4), which is discretized as:

W p
p (µ, ν) = arg min

Π
< D,Π > −εH(Π),

s.t. Π1 = ρ, ΠT1 = %,
(9)

where D,Π ∈ Rm×n
+ , D is the distance matrix, and

Dij = d(xi, yj)
p. Π is the transport plan matrix, and

Π(i, j) = π(xi, yj) represents the mass transported from
yj to xi. Here, ρ and % are the probability density vectors,
ρ = (ρ1, ρ2, ..., ρm), % = (%1, %2, ..., %n), 1 is an all-1 vector,
and < ·, · > denotes the Frobenius product of two matrices.

Furthermore, Eq. (9) can be rewritten as the smallest
Kullback-Leibler (KL) divergence [19], [37];

W p
p (D,Π) = εmin

Π
KL(Π|ξ), (10)

from Π to the distance-based kernel ξ = e−
D
ε . The expo-

nential is computed component-wise. Eq. (10) provides a new
interpretation for the regularized transportation problem: the
optimal plan π is the projection of the distance-based kernel
ξ. The KL divergence is then defined as:

KL(Π|ξ) =
∑
i

∑
j

Πij

(
log
(Πij

ξij

)
− 1
)
.

This minimization is convex. The optimal transport plan Π is
the projection of the distance-based kernel ξ onto Π, and can
be obtained by iterative Bregman projection [37], [39].

Π = diag(u)ξdiag(v), (11)

where u ∈ Rn+, and v ∈ Rm+ . Further details can be found
in [36], [37] and [39].

(a) Rough MdCS (b) Smooth MdCS

Fig. 4: Extracted MdCSs on different models.

Suppose Π is fixed, we use an efficient quasi-Newton solver
to compute X . The gradient of W p

p (p = 1) is expressed as:

∂W p
p

∂xi
=

n∑
j=1

xi − yj
‖xi − yj‖

Πij + 2λ

xi − 1

v(xi)

∑
xk∈N(xi)

xk


− 2λ

∑
xi∈N(xl),v(xl)>1

1

v(xl)

(
xl −

1

v(xl)

∑
xk∈vxl

xk

)
.

(12)
where v(xi) is the number of one-ring neighbors of xi. Let
∂Wp

p

∂xi
= 0, system of equations with xi can be written as:

Axi = −B, (13)

where

A =


C + 2λD + 2λ v(xi) > 1,

C + 2λD others,

and

B =


F − 2λG− 2λ

v(xi)

∑
xk∈N(xi)

xk v(xi) > 1,

F − 2λG others.

Here, C, D, F and G are represented as C =
n∑
j=1

Πij
‖xi−yj‖ ,

D =
∑

xi∈N(xl),v(xl)>1

1
v2(xl)

, F =
n∑
j=1

yj
‖xi−yj‖Πij , and

G =
∑

xi∈xl,v(xl)>1

1

v(xl)

xl − 1

v(xl)

∑
xk∈ql,xk 6=xi

xk

 .

By applying a fixed point iteration, xi is updated as:

xi = (1− θ)xi − θB/A, 0 < θ < 1. (14)

V. RESULT AND ANALYSIS

We demonstrate the effectiveness of MdCSs extraction on
various point clouds, such as complete and clean point clouds,
point clouds with large gap holes, and raw scan point clouds
(Fig. 4). We also compare our results with state-of-the-art
methods. In our experiments, %j is initiated in terms of
sampling density. We initially compute the minimum radius
rj of k-nearest neighbors for every point yj and use r2

j as an
original %j . Then, the final %j is obtained via normalization.
In all the figures, we use the size of points to represent the
mass of skeleton points. All the models used in this work are
listed in Table IV.
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TABLE II: Models. n is the number of original sampling points of the model. We use X to indicate that the model has holes.

Fig. 1 4 10 11 12 14 15 16

Model Deer Leaf Couple IndiaLady Wolf Man-3 Y Man-1 Man-2 Dumbbell Gecko Dancers RecSkirt Scan-1 Scan-2 Scan-3 Scan-4

n 22568 579 43545 8690 4344 3252 7029 3252 2231 736 14182 15585 21358 18831 17518 18086 18668

Holes X X X X X X

TABLE IV: Number of topology errors with respect to different point cloud artifacts.

Method

Model

Man-1 Man-3 Wolf

Noise(σ) Missing(r) Missing(%) Noise(σ) Missing(r) Missing(%) Noise(σ) Missing(r) Missing(%)

1.5 2.5 3.5 1.5 1.8 2.0 20 40 50 1.5 2.5 3.5 1.5 1.8 2.0 20 40 50 1.5 2.5 3.5 1.5 1.8 2.0 20 40 50

`1 0 1 2 2 1 1 2 1 1 1 0 0 0 0 0 0 2 0 0 0 2 2 1 2 1 1 2 1 2 1

LBC 0 0 1 2 1 1 1 1 1 1 0 0 0 2 0 0 1 0 0 0 0 0 2 3 0 0 1 0 0 0

ROSA 1 1 1 2 0 0 2 1 0 1 0 0 1 0 1 1 1 0 0 0 0 1 1 4 1 1 2 0 0 1

MdCS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0

Rough MdCS

λ = 0 λ = 0.15 λ = 0.3 λ = 0.45

MdCS with 13 points

λ = 0 λ = 0.15 λ = 0.3 λ = 0.45

MdCS with 27 points

(a) Using 10 initiated points to extract an MdCS

Rough MdCS

λ = 0 λ = 0.15 λ = 0.3 λ = 0.45

MdCS with 19 points

λ = 0 λ = 0.15 λ = 0.3 λ = 0.45

MdCS with 26 points

(b) Using 20 initiated points to extract an MdCS

Fig. 5: Comparison of the MdCS generated using different
numbers of initiated points, different numbers of final skeleton
points, and different values of parameter λ.

(a) λ = 0 (b) λ = 0.15 (c) λ = 0.3 (d) λ = 0.6 (e) λ = 0.9

Fig. 6: Comparison of the different values of the parameter λ.

TABLE III: Default settings used for user controllable param-
eters.

Parameter m/n ε ∆ε λ θ τ

Default value 0.1 0.001 0.0002 0.3 0.1 0.15

A. Impact of parameters.

Several parameters are adopted in our algorithm. The pa-
rameter ε plays the role of controling the intersection set of
Yi ∩ Yk. The larger ε is, the larger numbers of points in the
intersection sets Yi∩Yk are. Furthermore, ε represents the scale
of the curve skeleton, and is updated step by step till there is
no any non-skeleton point. The parameter τ is a threshold,
which is used to test the symmetry of the transport plan πi.
The smaller τ , more possible the π is tested as non-symmetry.
The parameter θ is used to compute the position of points xi
iteratively. The larger θ is, the faster the convergence rate is.
Nonetheless, an excessively θ may lead to divergence. The
parameters τ and θ are fixed in our algorithm. The parameters
m and λ are free parameters, and play important roles. The
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(a) Using a few initiated curve skeleton points

(b) Using numerous initiated curve skeleton points

Fig. 7: Impact of the different numbers of initiated skeleton
points.

default parameter sets listed in Table II are applied throughout
all the presented experiments, except for the example demon-
strated in Figs. 5, 6, and 7, in which we demonstrate the
influence of the change of parameters m and λ.

Figs. 5 and 6 demonstrate the influence of the parameter
λ. A high value of λ tends to obtain a line branch of a
curve skeleton. Unwanted oscillations occur avoidable when
too more points are inserted into topology graphs. With the
increase in λ, the MdCS tends to converge to line segments.

In Fig. 5, we demonstrate the role of the parameters m.
The initiated m plays a role to control the smallest scale
of an MdCS. In Fig. 5[b], a high number of initiated curve
skeleton points indicates that the extracted curve skeleton can
capture further geometry details of point clouds. In general, a
satisfactory MdCS can be obtained when m = b0.1nc. For the
RecSkirt displayed in Fig 15, the initiated m is set to be b0.2nc
because the RecSkirt includes small scale structure. In Fig. 7,
we apply a different parameter m to extract an MdCS from
point clouds with large gap holes. To highlight the difference in
MdCSs on different values of m, only locally enlarged MdCSs
are presented in Fig. 7. Whole MdCSs with larger value of
m are shown in Fig. 15. The parameter m is less in Fig. 7[a]
than in Fig. 7[b] for every model. We can find that certein thin
structures in the MdCS are missed in Fig. 7[a] in contrast to
the MdCS demonstrated in Fig. 7[b]. Furthermore, we evaluate
the stability of our algorithm over complex data with large
gaping holes exhibited in Fig. 8 by setting different points
with the same number as the initiation of skeleton points.
In these experiments, m = b0.1nc. While the main topology
structures are preserved, various details of the curve skeletons
may be different under various initiations of skeleton points.
For example, the labeled small branch displayed in Figs. 8[c-
e] are lost in Figs. 8[a-b]. To capture further details of point
clouds, m must be initiated as a high value, rather than a low
value. However, additional computational cost will be taken if
additional initiated curve skeleton points are selected.

B. Quantification analysis.

In Figs. 9 and 10 and Table III, we make a quantitative anal-
ysis of the extracted curve skeleton from point clouds with d-

(a) (b) (c) (d) (e)

Fig. 8: Comparison of curve skeletons on different initiation
points with the same number of points.

(a) Noise(σ)

(b) Missing(r)

(c) Missing(%)

Fig. 9: Comparison of the Haudorff distance between a ground
truth curve skeleton and the extracted curve skeleton with
respect to different point clouds artifacts and various methods.

ifferent artifacts. Mean curvature skeleton (MCS) method [40]
is used to extract a curve skeleton from the mesh model, which
is reconstructed from clean point clouds. The extracted curve
skeleton from the mesh model considered as the ground truth
of the curve skeleton of the corresponding point clouds. In
our experiments, clean point clouds is perturbed via random
Gaussian noise or two kinds of missing data. In Gaussian noise
perturbations, the standard deviation of a Gaussian function is
σdmin, and dmin is the minimum distance between points in
point clouds. Gaussian noise perturbations are represented as
Noise(σ). Missing data are generated by two methods. In the
first one, the points within a ball are deleted from the original
point clouds. The center of the ball is a random point in the
original point clouds, and the radius of the ball is the r times
of the minimum distance from the random point to the curve
skeleton extracted from the mesh model. The first missing
data are presented as Missing(r). In the second one, several
points are randomly deleted from the original point clouds,
and the second missing data are presented as Missing(%). In
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MCS [40] `1 [5] LBC [9] ROSA [4] MdCS

Wolf

Man-3

Fig. 10: Skeleton extraction comparisons of point clouds with
different artifacts. The first and fifth rows show the extracted
curve skeleton from the point clouds without artifacts. The
extracted curve skeletons from the point clouds with Noise
(σ = 3.5), Missing (r = 2) and Missing (50%) levels are
shown in the second and sixth, third and seventh, fourth and
eighth rows, correspondingly. The curve skeleton shown on
the left is the ground truth.

Fig. 9, we compute the Hausdorff distance [41] between the
extracted curve skeleton from the point clouds and the ground
truth of the curve skeleton of the corresponding model. Under
the cases of the three kind of point cloud artifacts, we can
find that the curve skeletons extracted in our algorithm are
the closer to the ground truth than those extracted from other
methods, namely, LBC [9], ROSA [4] and `1-medial [5], on
the Hausdorff distances. In Table III, we count the number of
wrong topology connections of the extracted curve skeleton. In
27 curve skeletons extracted from 27 point cloud data, there
are 13, 17, 19 and 1 curve skeletons, in which the incorrect
topology connection exists, and separately extracted from
LBC [9], ROSA [4], `1-medial [5], and MdCS. Furthermore,
we analyze the robustness of our algorithm under different
point cloud artifacts. In the Fig. 9, the Hausdorff distance
changes slightly with the increase of the standard deviation
of Gaussion noise or the ratio of random missing data, and
the Hasudorff distance changes abruptly when the radius of
the missing ball changes from 1.8 to 2. This result shows that
our algorithm performs more robustly for the case of Gaussian
noise and sparse sampling than for the case of Missing(r).
The skeleton branches may be far from the ground truth of
the curve skeleton of the model for the case of Missing(r).
The main reason is that the skeleton points is defined as the
center of the local power cell, which depends on the local point
distribution, other than the geometry center of the local shape.
When the radius of the missing ball is equal to 2, there are
two errors of the topology structure of the model Man-3 in the
curve skeletons extracted in the `1-medial and MdCS methods,
and only one error in the LBC and ROSA methods (Fig. 9).
The reason is that the `1-medial and MdCS methods depend
on the initiation of skeleton points. Only when sufficient points
are sampled as the initiation in the blue box in the `1-medial
and MdCS methods, the topology connection at the blue box
can be reconstructed as the curve skeleton extracted in the
LBC and ROSA methods.

In Fig. 11, we compare the results of the incomplete models
generated via interactive manipulations step by step. When
small areas of missing data exist, the correct MdCS can be
extracted. If a large area of missing data exists, the topolo-
gy connection can be changed, as illustrated in Figs. 11[e]
and 11[j]. In Fig. 12, the incorrect MdCS may be generated
with the increase of σ of Gaussian noise.

C. Non-uniform sampling.

The robustness of MdCS extraction from non-uniform point
clouds is demonstrated in Fig. 13. The original point cloud
Y is represented as a non-uniform probability distribution
in according with the local sampling density, and an initial
skeleton point set X is still represented as a uniform proba-
bility distribution. From the experiments, the extracted MdCSs
from non-uniform point clouds can accurately match with the
curve skeletons from the corresponding uniform point clouds,
even when the ratio of the local point density reaches 1:7.
The mass property of the initiated curve skeleton points plays
an important role. Although random sampling is applied to
initiate curve skeleton points, a uniform distribution of these
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(a) A = 0 (b) A = 10% (c) A = 20% (d) A = 31% (e) A = 36% (f) A = 0 (g) A = 5% (h) A = 10% (i) A = 16% (j) A = 25%

Fig. 11: Impact of the different levels of missing data on Models Y and Man-1. Rough and smooth MdCSs are presented in
the first and second rows, respectively. (a) and (f) are the original point clouds without missing data. (b-e) and (g-k) are point
clouds with missing data. The value of A denotes the percentage of missing data.

(a) (b) σ = 1.0 (c) σ = 1.8 (d) σ = 2.8 (e) σ = 3.0

Fig. 12: Impact of the different levels of noise on Model Man-
2. Rough and smooth MdCSs are exhibited in the first and
second rows, respectively. (a) is the original point clouds. (b-
e) are the point clouds corrupted by Gaussian noise with zero-
mean and standard deviation σ.

points is initially obtained in Line 9 of Algorithm 1 before
these points are merged because the probability density is the
same for every initiated curve skeleton point. Moreover, we
consider the non-uniform probability distribution of Y. Thus,
our algorithm is feasible for non-uniform sampling points Y.

D. Comparison.

In Fig. 14, we use the codes provided by the authors in [5] to
extract `1-medial skeleton from a Dumbbell model using dif-
ferent parameters. The MdCS accurately captures the structure
of the Dumbbell, better than the generated `1-medial skeleton.
The possible reason is that the supporting neighborhood radius,
used in the definition of `1-medial skeleton, must be gradually
increased to contract non-branch points to produce skeleton
branches. Nonetheless, this key radius may require a sudden
change from the rod to the bell for the Dumbbell-shape model.
The `1-medial skeleton cannot catch the local centers of the
road and two bells well. In our algorithm, topology checking
provides a strategy to find the different scale structures and
the structure with holes.

In Figs. 15 and 16, we separately make comparisons
between our algorithm and LBC [9], ROSA [4], and `1-
medial [5] on point clouds with large gap holes and raw scan
point clouds. For point clouds with large gap holes depicted in
Fig. 15, the curve skeletons from our algorithm contain fewer
geometrical and topological errors than the curve skeletons
from LBC [9], ROSA [4], and `1-medial [5]. For raw scan
point clouds from a Kinect displayed in Fig. 16, the curve

(a) 1:1 (b) 1:3 (c) 1:5 (d) 1:7

(e) 1:1 (f) 1:3

(g) 1:5 (h) 1:7

Fig. 13: Non-uniform sampling. We evaluate the efficiency of
an MdCS on non-uniform sampling by comparing with that
of on uniform sampling (a). Ratio of non-uniform sampling
is 1:3 (b), 1:5 (c), and 1:7 (d), correspondingly. We show the
side views of (a-d) in (f-j) on the right.

skeletons from our algorithm can accurately capture geometry
and topology properties of the point clouds. The curve skele-
tons from LBC [9], ROSA [4], and `1-medial [5] may contain
several incorrect branches or lost certain branches.

E. Complexity and performance.

Our algorithm has been developed within the MATLAB
environment. Thus the speed of execution is not optimized.
In Table V, we analyze the computational complexity of
the single steps of the algorithm. The overall computational
cost is O(n2log(n)). The most time-consuming step is the
computation of Π via iterative Bregman projection, which
is in the step of topology extraction, and the computational
complexity of the computation of Π is O(n2). We also
compare our algorithm with other methods in terms of running
time listed in Table VI. The performance is measured on
an Intel Core i5-4590 @ 3.30 GHz with 8.00 GB RAM. In
the future, we may develop or use another fast method for
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(a) Initiation (b) ε=0.001 (c) ε=0.0012 (d) MdCS

(e) (f) (g) (h)

Fig. 14: Comparison of MdCS and `1-medial skeleton [5] on a Dumbbell model. (a-d) are the results from our algorithm.
(e-h) are the `1-medial skeletons [5] with different parameters. In (e-h), the blue points are possible skeleton points, and the
green points are final skeleton points.

(a) LBC [9] (b) ROSA [4] (c) `1-medial [5] (d) Ours

Fig. 15: Skeleton extraction comparisons of point clouds that
are highly incomplete, thus containing large gaping holes.

computing Π, such as fast proximal point method [42], to
relax the computational complexity of our algorithm further.

F. Limitations.

Skeletonization from point clouds is generally an ill-posed
problem, especially with the existence of missing data. If the
amount of noise or missing data are too large, our algorithm
may produce erroneous outputs (e.g., Fig. 11[j] and Fig. 12[j]).
We also notice that certain fine-scale structures may be missed
( Fig. 7[a]) when the amount of missing data is too large, and
the number of initiated curve skeleton points is too small. To
capture a complete curve skeleton from point clouds with large
missing data, numerous initiated curve skeleton points must
be used, as illustrated in Fig. 7[b], which will increase the
computational cost of our algorithm. Although our algorithm

(a) LBC [9] (b) ROSA [4] (c) `1-medial [5] (d) Ours

Fig. 16: Skeleton extraction comparisons of various raw scan
point clouds of human.

TABLE V: Computational cost of the main steps of the
proposed approach, where n is the number of original point
clouds, m, s, and t denote the number of original, rough, and
final curve skeleton points, respectively.

Task Computational cost

Load O(n)

Topology Extraction O(nmlog(m− s))

Topology Checking O(n+ s)

Geometry Optimization O(nt)
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TABLE VI: Comparison of running times.

Model n m
Times(s)

LBC `1 ROSA MdCS

Man-1 3252 300 18 15 61 50

Man-3 3252 300 18 18 61 48

Gecko 14182 500 103 34 21654 661

Dancers 15585 1500 189 36 14708 676

RecSkirt 21358 4200 234 53 29275 1360

performs better than ROSA [9] in terms of computational cost,
our algorithm performs worse than `1-medial skeleton [5]. The
performance of our algorithm must be improved in the future.

VI. CONCLUSION

With the Wasserstein distance, we introduce an MdCS
as a novel abstraction representation for point clouds. By
using an entropic regularization term, topology extraction and
geometric optimization of a curve skeleton from point clouds
are modeled as a unified framework, thereby minimizing
the Wasserstein distance between point clouds and its curve
skeleton. Experiments clearly demonstrate that our proposed
algorithm performs robustly on unorganized, unoriented, and
highly incomplete point cloud data.

In the future, we aim to extend an MdCS to represent the
principal curves of high-dimensional data [43]. It is also quite
interesting to explore the ability of the optimal mass transport
to capture the relationship between surfaces and their MdCSs,
similar to that [44]. Furthermore, our goal is to improve the
efficiency of the current framework for large-scale point clouds
and explore the possibility of using an MdCS for the robust
surface reconstruction [45] from low-quality point clouds.
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