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Abstract—One major branch of saliency object detection meth-
ods are diffusion-based which construct a graph model on a given
image and diffuse seed saliency values to the whole graph by a
diffusion matrix. While their performance is sensitive to specific
feature spaces and scales used for the diffusion matrix definition,
little work has been published to systematically promote the
robustness and accuracy of salient object detection under the
generic mechanism of diffusion.

In this work, we firstly present a novel view of the working
mechanism of the diffusion process based on mathematical
analysis, which reveals that the diffusion process is actually
computing the similarity of nodes with respect to the seeds
based on diffusion maps. Following this analysis, we propose
super diffusion, a novel inclusive learning-based framework for
salient object detection, which makes the optimum and robust
performance by integrating a large pool of feature spaces, scales
and even features originally computed for non-diffusion-based
salient object detection. A closed-form solution of the optimal
parameters for the integration is determined through supervised
learning.

At the local level, we propose to promote each individual diffu-
sion before the integration. Our mathematical analysis reveals the
close relationship between saliency diffusion and spectral clus-
tering. Based on this, we propose to re-synthesize each individual
diffusion matrix from the most discriminative eigenvectors and
the constant eigenvector (for saliency normalization).

The proposed framework is implemented and experimented
on prevalently used benchmark datasets, consistently leading to
state-of-the-art performance.

Index Terms—Saliency detection, diffusion, spectral clustering.

I. INTRODUCTION

The aim of saliency detection is to identify the most salient
pixels or regions in a digital image which attract humans’

first visual attention. Results of saliency detection can be
applied to other computer vision tasks such as image resizing,
thumbnailing, image segmentation and object detection. Due
to its importance, saliency detection has received intensive
research attention resulting in many recently proposed algo-
rithms.

In the field of saliency detection, two branches have devel-
oped, which are visual saliency detection [1]–[13] and salient
object detection [14]–[52]. While the former tries to predict
where the human eyes focus on, the latter aims to detect the
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whole salient object in an image. Saliency in both branches can
be computed in a bottom-up fashion using low-level features
[1], [2], [4], [5], [8]–[12], [14], [15], [18], [19], [22]–[24],
[29], [31]–[40], in a top-down fashion by training with certain
samples driven by specific tasks [3], [6], [7], [17], [26]–[28],
[30], or in a way of combining both low-level and high-level
features [16], [20], [21], [25], [48], [50]. Recently, researchers
start to use deep features for saliency detection [13], [41],
[42], [46], [47], [51], [52]. In this work, we focus on salient
object detection and utilize both high-level training and low-
level features.

Salient object detection algorithms usually generate bound-
ing boxes, binary foreground and background segmentation, or
saliency maps which indicate the saliency likelihood of each
pixel. Over the past several years, contrast-based methods [14],
[15], [19], [20] significantly promote the benchmark of salient
object detection. However, these methods usually miss small
local salient regions or bring some outliers such that the
resultant saliency maps tend to be nonuniform. To tackle these
problems, diffusion-based methods [22], [23], [28], [32], [36]–
[40], [43], [44] use diffusion matrices to propagate saliency
information of seeds to the whole salient object. While most of
them focus on constructing good graph structures, generating
good seed vectors and/or controlling the diffusion process,
they have not yet made sufficient effort in analyzing the
fundamental working mechanism of the diffusion process
and accordingly addressing the inherent problems with the
diffusion-based approaches.

The existing diffusion-based methods more or less follow a
restricted framework, i.e., a specific diffusion matrix is defined
in specific feature space and scale based on a specific graph
structure, usually with the seed saliency vector computed
according to specific color-space heuristics. As a result, they
usually lack in extensibility and robustness. This has moti-
vated our search in this work for an inclusive and extensible
diffusion-based framework that incorporates a large pool of
feature spaces, scales, and seeds for robust performance. Major
contributions of this work reside in the following aspects.
• Novel interpretation of the diffusion mechanism.

Through eigen-analysis of the diffusion matrix, we find
that: 1) the saliency of a node (called focus node) is
equal to a weighted sum of all the seed saliency values,
with the weights determined by the similarity in diffusion
map between the focus node and each seed node, and 2)
since the diffusion map is formed by the eigenvectors
and eigenvalues of the diffusion matrix, the process of
saliency diffusion has a close relationship with spectral
clustering. This novel interpretation provides the founda-
tion for the novel framework and methods proposed in
this work.
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• Super diffusion framework for salient object detec-
tion. We propose an inclusive and extensible framework,
named super diffusion, for salient object detection, which
computes the optimal diffusion matrix by exploiting a
pool of feature spaces, scales and even saliency features
originally computed for non-diffusion-based salient ob-
ject detection. The parameters for the optimal integration
are derived in a closed-form solution through supervised
learning. This contrasts with traditional diffusion-based
methods that define the diffusion matrices and seeds
with high specificity, compromising the robustness of
performance.

• Local refinement of saliency diffusion. We propose
to promote each individual saliency diffusion scheme
prior to its integration into the overall super diffusion
framework. Based on the close relationship between
saliency diffusion and spectral clustering, the promotion
is achieved by re-synthesizing an individual diffusion
matrix from the most discriminative eigenvectors and the
constant eigenvector (for saliency normalization). In addi-
tion, we propose efficient and effective ways to compute
seed vectors based on background and foreground priors.

It should be noted that an initial version of this work was
published as a conference paper [38], which has been extended
to this journal version mainly in the following aspects: 1)
proposal of the super diffusion framework with full-length
explanation, 2) significantly extended experiments to evaluate
the proposed framework in concrete implementation, and 3)
more comprehensive coverage and analysis of related works.

To help the clarity of description, we list in Tab. I all the
mathematical notations that are used later in the text.

II. RELATED WORKS

Most diffusion-based salient object detection methods, some
of which are given in the references [22], [23], [28], [36]–[40],
[43], [44], share the same main formula:

y = A−1s, (1)

where A−1 is the diffusion matrix (also called ranking matrix
or propagation matrix), s is the seed vector (diffusion seed),
and y is the final saliency vector to be computed. Here s
usually contains preliminary saliency information of a portion
of nodes, that is to say, usually s is not complete and we need
to propagate the partial saliency information in s to the whole
salient region based on a graph structure to obtain the final
saliency map, y [28]. The diffusion matrix A−1 is designed to
fulfill this task. The existing methods mostly focus on how to
construct the graph structure, how to generate the seed and/or
how to control the diffusion process. Accordingly, we review
them based on their approaches to the three sub-problems,
respectively, in the following sub-sections1.

1We have noted that some diffusion-based methods, such as the one given in
the reference [49], have different working procedures that can not be expressed
as Eq. 1 with a constant diffusion matrix. We do not study them in this section,
but still make comparisons with them in Sec. V.

TABLE I
A LIST OF NOTATIONS DEFINED IN THIS PAPER

Notation Dimension Description
N [1] Number of superpixels
vi [1] Mean feature value of the i-th node
W [N,N ] Affinity matrix
D [N,N ] Degree matrix
P [N,N ] Transition matrix
L [N,N ] Laplacian matrix
Lrw [N,N ] Normalized Laplacian matrix
A−1 [N,N ] Diffusion matrix
s [N, 1] Seed vector
y [N, 1] Saliency vector
ul [N, 1] The l-th eigenvector of A
U [N,N ] Matrix of eigenvectors
λl [1] The l-th eigenvalue of A
Λ [N,N ] Diagonal matrix of eigenvalues
ã(i, j) [1] The (i, j)-th element of A−1

Ψi [N,N ] Diffusion map for the i-th node
Aj−1

[N,N ] The j-th diffusion matrix
Uj ,Λj [N,N ] Eigenvector and diagonal eigenvalue matrices for Aj

sj [N, 1] The j-th seed vector
AI

−1 [N,N ] Integrated diffusion matrix
sI [N, 1] Integrated seed vector
ΨIi [N,N ×M ] Integrated diffusion map for the i-th node
yI [N, 1] Integrated saliency vector
yi,j [N, 1] Separate Saliency vector
Āj−1

[N,N ] The j-th diffusion matrix prior to normalization
ȳi,j [N, 1] Separate Saliency vector prior to normalization
Âj−1

[N,N ] The j-th diffusion matrix after local refinement
ŷi,j [N, 1] Separate Saliency vector after local refinement
ŷI [N, 1] Final integrated saliency vector
w [1,M ×K] Weight vector to be learned

A. Graph Construction

A diffusion-based salient object detection algorithm needs
to firstly construct a graph structure on a given image for
the definition of diffusion matrix. Specifically, it segments
the given image into N superpixels first by an algorithm
such as SLIC [53] or ERS [54], and then constructs a graph
G = (V,E) with superpixels as nodes vi, 1 ≤ i ≤ N ,
and undirected links between node pairs (vi, vj) as edges eij ,
1 ≤ i, j ≤ N , to define the adjacency. Note that superpixels
but not pixels are usually used as nodes for efficiency and
stability considerations.

Straightforwardly, two nodes are connected by an edge in
the graph if they are contiguous in the image. In order to
capture relationship between nodes farther on the image, some
methods [22], [23], [28], [36], [38], [40], [43] connect a node
to not only its directly contiguous neighbors, but also its
2-hop and even up to 5-hop neighbors [37]. Besides, some
methods [22], [23], [28], [36], [38]–[40], [44] make a close-
loop graph by connecting the nodes at the four borders of
the image to each other. As a result, the distance between
two nodes close to two different borders will be shortened
by a path through borders. There is also a method [36] that
connects each node to all the nodes at the four borders to
increase the connectivity of the graph, which provides certain
robustness to noise.

The weight wij of the edge eij which encodes the similarity
between linked nodes usually is defined as

wij = e−
‖vi−vj‖2

σ2 , (2)
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where vi and vj represent the mean feature value of two
nodes respectively, and σ is a scale parameter that controls
the strength of the weight. All the mentioned diffusion-based
methods use the CIE LAB color space as feature space.
Finally, the affinity matrix is defined as W = [wij ]N×N with
wij computed by Eq. 2 if i = j or edge eij exists in the
graph and assigned 0 otherwise; the degree matrix is defined
as D = diag{d11, ..., dNN}, where dii =

∑
j wij .

B. Diffusion Matrix and Seed Computation

Different algorithms derive diffusion matrices and seed
vectors in different ways. Some algorithms [22], [36], [40]
use inverse Laplacian matrix L−1 as the diffusion matrix.
Correspondingly, the formula of saliency diffusion is

y =L−1s, (3)

where L = D−W. Inverse normalized Laplacian matrix L−1rw

is also used by some algorithms [28], [39], [44] as the diffusion
matrix which normalizes weights by degrees of nodes when
computing similarity. Correspondingly, the formula of saliency
diffusion is

y =L−1rws, (4)

where Lrw = (I − D−1W) = D−1(D − W). Some
algorithms [22], [36], [39], [40] use binary background and
foreground indication vectors as seed vectors in two stages,
respectively. Seed vector s is also computed by combining
hundreds of saliency features F with learned weight w (s =
Fw) [28].

One method [23] works differently by duplicating the su-
perpixels around the image borders as the virtual background
absorbing nodes and setting the inner nodes as transient nodes.
Then, the entry of seed vector si = 1 if node vi is a transient
node and si = 0 otherwise. Correspondingly, the formula of
saliency diffusion is

y =(I−P)−1s = L−1rws, (5)

where P = D−1W and P is called transition matrix. Note that
Eq. 5 is derived from but not identical to the original formula
in the reference [23] and the derivation process is described
in Appendix A. Another method [43] also uses a variant of
Laplacian matrix to emphasize consistency between neighbor
nodes.

In general, the existing diffusion-based salient object de-
tection methods derive their diffusion matrices from the basic
form of Laplacian matrix. As a result, their performance is
restricted by the Laplacian matrix that makes the performance
sensitive to the scale parameter and the feature space used for
the matrix construction.

C. Diffusion Process Control

Applying Eq. 1 for once to complete the salient object
detection task may not produce satisfactory results, as the seed
saliency information may diffuse to the non-salient region or
may not diffuse to the whole salient region. One common
way to control the diffusion process is by applying multi-stage
diffusion instead of one-stage diffusion. Some algorithms [22],

[36], [39], [40] diffuse to estimate a non-saliency map using
the background prior, and reverse and threshold the map to
get the most salient seed nodes at the first stage; they conduct
another pass of diffusion at the second stage with the seed
saliency estimated at the first stage.

Another algorithm [39] further divides each pass of dif-
fusion into a sequence of steps that, instead of computing
saliency of all nodes at once, estimates saliency of a subset of
nodes as selected according to certain rules. Though effective
to a certain extent, these approaches lack in theoretical support
and may not be robust in general.

To summarize, researchers have devised good ways to
construct the graph structures, the diffusion matrices and
the seed vectors exploiting effective heuristics and priors.
In this work, we step further to explore novel views of the
fundamental diffusion mechanism and, accordingly, make the
systematic promotion of the diffusion-based salient object
detection performance.

III. DIFFUSION RE-INTERPRETED

As discussed before, diffusion-based salient objection de-
tection algorithms [22], [23], [28], [36], [37], [39], [40], [43],
[44] usually define diffusion matrices by certain forms of the
Laplacian matrix, denoted by A, which is real, symmetric and
positive semi-definite. As A is a real symmetric matrix, its
eigenvalues and eigenvectors are all real and its eigenvectors
are orthogonal to each other. Therefore, A can be decomposed
as A = UΛU−1 = UΛUT where Λ is a diagonal matrix
formed from the eigenvalues λl, l = 1, 2, . . . , N , and the
columns of U are the corresponding eigenvectors ul, l =

1, 2, . . . , N . Accordingly, A−1 =
(
UΛUT

)−1
= UΛ−1UT ,

and each element, ã(i, j), of A−1 can be expressed as

ã(i, j) =

N∑
l=1

λ−1l ul(i)ul(j), (6)

where ul(i) denotes the i-th element of ul. Then, each entry,
yi, of y is computed as

yi =

N∑
j=1

sj

N∑
l=1

λ−1l ul(i)ul(j)

=

N∑
j=1

sj 〈Ψi,Ψj〉 ,

(7)

Ψi = [λ
− 1

2
1 u1(i), ..., λ

− 1
2

N uN (i)], (8)

where 〈·, ·〉 is the inner product operation. According to the
reference [55], Ψi is called diffusion map (diffusion map at
time t = − 1

2 to be more exactly) at the i-th data point (node).
From Eq. 7, we see that yi (saliency value for the i-th

superpixel) is equal to the weighted sum of all the seed
saliency values and the weight for each seed is determined
by the inner product of diffusion maps defined by Eq. 8.
Accordingly, we make a novel interpretation of the working
mechanism of diffusion-based salient object detection: the
saliency of a node (called focus node) is determined by all the
seed saliency values in the form of weighted sum, with each
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weight determined by diffusion map similarity (measured by
inner product) between the corresponding seed node and the
focus node.

According to Eq.s 7 and 8, nodes with similar (resp.,
distinct) diffusion maps tend to obtain similar (resp., distinct)
saliency values. Therefore, the process of saliency diffusion is
closely related to the clustering of the nodes based on their
diffusion maps. Further, diffusion maps are derived from the
eigenvalues and eigenvectors of the diffusion matrix, i.e., we
form a matrix by putting the weighted eigenvectors in columns
and each row of the matrix gives one node’s diffusion map
(see Eq. 8). As such, the diffusion-map-based clustering is
almost identical in form to the standard spectral clustering of
the nodes [56], [57].

According to the references [56]–[58], the spectral cluster-
ing performance tends to be sensitive to the scale parameter
σ and the feature space used for computing the Laplacian
matrix (see Eq. 2), and only a subset of the eigenvectors are
the most discriminative while the rest are less discriminative
or even cause confusions to the clustering. Due to the close
relationship between spectral clustering and saliency diffusion,
we foresee that the limitations of the spectral clustering also
limit the performance of the saliency diffusion. As such,
we address these limitations in this work to fundamentally
promote the performance of saliency diffusion.

IV. SUPER DIFFUSION

A. Generic Framework

As discussed in Sec. III, the performance of saliency diffu-
sion is sensitive to scale parameter and feature space used for
Laplacian matrix definition. Therefore, we are motivated to de-
vise a generic and robust scheme to get rid of the sensitiveness
of traditional diffusion-based salient object detection methods
to feature space and scale (for diffusion matrix definition) and,
further, heuristics (for saliency seed definition). Specifically,
we propose a framework that systematically integrates diffu-
sion maps originally derived from various diffusion matrices
and seed vectors originally derived by various heuristics and
optimizes for the best performance. We call this framework
super diffusion.

Assume that we have M diffusion matrices, Aj−1, 1 ≤
j ≤ M , each defined on a specific scale and a specific
feature space, and the eigen decompositions of them are
Aj−1 = UjΛj−1UjT , 1 ≤ j ≤M . For promoted robustness,
we propose to construct an integrated diffusion matrix by

A−1I =

M∑
j=1

αjA
j−1

= UIΛI
−1UT

I

= UI

 α1Λ
1−1 · · · · · ·

...
. . .

...
· · · · · · αMΛM−1

UT
I ,

(9)

where UI =
[
U1, · · · ,UM

]
, ΛI

−1 is a diagonal matrix and
αj ≥ 0, 1 ≤ j ≤ M are the weights to be determined. Note

that the weights are constrained to be nonnegative to ensure
that A−1I is still positive semi-definite.

For a specific saliency seed, s, the corresponding inte-
grated saliency vector yI is computed by yI = A−1I s =∑M

j=1 αjA
j−1s. Also referring to Eq. 7, we compute each

entry, yIi , of yI as

yIi =

M∑
j=1

αj

N∑
k=1

sk

〈
Ψj

i ,Ψ
j
k

〉
=

N∑
k=1

sk(

M∑
j=1

αj

〈
Ψj

i ,Ψ
j
k

〉
)

=

N∑
k=1

sk 〈ΨI i,ΨIk〉 ,

(10)

where Ψj
i is the diffusion map associated with Aj−1 at the

i-th node, and ΨI i is the integrated diffusion map at the i-th
node, which is defined as

ΨI i = [α1
1
2 Ψ1

i , α2
1
2 Ψ2

i , · · · , αM
1
2 ΨM

i ]. (11)

Further, assume that we have K saliency seeds,
s1, s2, · · · , sK , each defined by specific heuristics. For pro-
moted robustness, we construct an integrated seed vector by

sI = [s1, s2, · · · , sK ][β1, β2, · · · , βK ]T , (12)

with βk, 1 ≤ k ≤ K, being the weights to be determined.
The integrated saliency vector yI is finally computed by

yI = A−1I sI . Referring to Eq.s 9 and 12, we have

yI = A−1I sI

=

M∑
i=1

K∑
j=1

αiβjU
iΛi−1UiT sj

=

M∑
i=1

K∑
j=1

αiβjA
i−1sj

=

M∑
i=1

K∑
j=1

αiβjy
i,j

= HwT ,

(13)

where yi,j = Ai−1sj is the separate saliency vec-
tor for diffusion matrix Ai−1 and saliency seed sj ,
H = [y1,1, · · · ,y1,K , · · · ,yM,1, · · · ,yM,K ] and w =
[α1β1, · · · , α1βK , · · · , αMβ1, · · · , αMβK ]. With Ai−1, 1 ≤
i ≤M , and sj , 1 ≤ j ≤ K, given, the variables of this system
are αi, 1 ≤ i ≤ M , and βj , 1 ≤ j ≤ K. In other words,
the degree of freedom (DOF) for our solution is M + K.
In order to increase the room for optimization, we increase
the DOF to M × K by replacing w in Eq. 13 with w =
[w1, w2, · · · , wM×K ] and solving for wi, 1 ≤ i ≤ M × K,
instead.
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We determine the weighting vector, w, by supervised learn-
ing from a training set of L samples, with the loss function
defined as

J =

L∑
i=1

(yI(i)− ygt(i))
2

=

L∑
i=1

(H(i)wT − ygt(i))
2,

(14)

where yI(i), ygt(i) and H(i) are the computed integrated
saliency vector, the ground-truth binary saliency vector and
the H matrix for the i-th training sample, respectively. As J
is convex, the optimal w has a closed-form expression of

w =

∑L
i=1 H(i)Tygt(i)∑L
i=1 H(i)TH(i)

. (15)

B. Local Refinement

While the proposed framework in Sec. IV-A promotes the
robustness by optimally integrating various diffusion matrices
and seeds, each individual diffusion matrix on its own may be
optimized as well.

As discussed in Sec. III, only a subset of A’s eigenvectors
are the most discriminative. Thus, in order to increase the
discriminative power of the diffusion maps associated with
each specific Ai, 1 ≤ i ≤M , in Sec. IV-A, we are motivated
to keep only the most discriminative while discarding the
rest of its eigenvectors. Specifically, we refine each individual
Ai−1 by re-synthesizing it from Ai’s most discriminative
eigenvectors followed by a normalization step, as detailed in
the following subsections. We call this process local refine-
ment for short.

In practice, we first refine each individual diffusion matrix,
Ai−1, and then use the refined diffusion matrices to compute
all the saliency values in matrix H in Eq. 13 and H(i) in
Eq.s 14 and 15. Regarding the choice of Ai, 1 ≤ i ≤M , we
use a slightly modified Lrw, L̃rw (c.f . Sec. IV-B1), as the basic
form and define a series of diffusion matrices by varying the
feature space and scale parameter when computing the edge
weights (c.f . Eq. 2). Our choice is motivated by the fact that
Lrw often leads to better intra-cluster coherency and clustering
consistency than L for spectral clustering [57].

1) Constant Eigenvector: The eigenvalues, λl, and eigen-
vectors, ul, 1 ≤ l ≤ N , of Lrw (the same for L) are ordered
such that 0 = λ1 ≤ λ2 ≤ . . . ≤ λN with u1 = 1 [56].
We avoid zero eigenvalues by approximately setting L̃rw =
D−1(D − 0.99W ) such that L̃rw is always invertible [22].
Assuming λ̃l and ũl, 1 ≤ l ≤ N , are the corresponding
eigenvalues and eigenvectors of L̃rw = D−1(D − 0.99W),
it can be proven that ũl = ul and λ̃l = 0.99λl + 0.01. Thus,
0.01 = λ̃1 ≤ λ̃2 ≤ . . . ≤ λ̃N with ũ1 = 1.

The constant eigenvector ũ1 contains no discriminative
information. Thus, we discard it and re-synthesize the diffusion
matrix, as done in our early conference version [38] of this
work. But novelly, we reuse the constant eigenvector later in
Sec. IV-B4 for normalization of saliency.

2) Eigengap: In each diffusion matrix, except u1 that is
a constant vector, the more ul (l ∈ [2, N ]) is to the front
of the ordered array, the more indicative it usually is for
the clustering. For instance, we visualize in Fig. 1 a leading
portion (excluding u1) of the ordered array of eigenvectors
for each of four sample images. From Fig. 1, we see that, for
each sample image, the first few eigenvectors well indicate
node clusters while the later ones often convey less or even
confusing information about the clustering. The key is how to
determine the exact cutting point before which the eigenvec-
tors should be kept and after which discarded.

In practice, Lrw (the same for L) often exhibits an eigengap,
i.e., a few of its eigenvalues before the eigengap are much
smaller than the rest. Specifically, we denote the eigengap as
r and define it as

r = argmax
l
|∆Υl|,

∆Υl = λl − λl−1, l = 2, . . . , N.
(16)

Usually, Eq. 16 is called eigengap heuristic. According to [57],
some leading eigenvectors (except u1) before the eigengap
are usually good cluster indicators which can capture the data
cluster information with good accuracy (as observed in Fig. 1),
meanwhile the location of the eigengap often indicates the
right number of data clusters. Further, the larger the difference
between the two successive eigenvalues at the eigengap is,
the more important the leading eigenvectors are, since ul is
weighted by λ−

1
2

l in diffusion map Ψ (c.f . Eq. 8). Ideally, the
eigenvalues before the eigengap are close to zero while the rest
are much larger, which means that the leading eigenvectors
(except u1) will dominate the behavior of the diffusion map.

With the eigengap identified, we then keep only the eigen-
vectors prior to the eigengap, which are usually the most
discriminative ones for the task of node clustering. It may
sometimes happen that r = 2 according to Eq. 16, meaning
that all the eigenvectors will be filtered out. In this case,
we assume the position of the second largest |∆Υl| as the
eigengap.

3) Discriminability: In some cases, an eigenvector may
only distinguish a tiny region from the background, e.g., u5 ,
u6 in the second row and u6 in the last row of Fig. 1. Usually,
these tiny regions are less likely to be the salient regions we
search for. Besides, these tiny regions often have been captured
by other leading eigenvectors as well. Therefore, such eigen-
vectors usually have low discriminability and may even worsen
the final results by overemphasizing tiny regions.Therefore, we
evaluate the discriminability of eigenvector ul by its variance
var(ul), and filter out eigenvectors with variance values below
a threshold, v.

4) Normalization: After the above local refinement opera-
tions, each original diffusion matrix Ai−1 becomes Āi−1 =

ŪiΛ̄i−1ŪiT (1 ≤ i ≤ M ) in Eq. 13. Immediately, we may
compute H̄(i) of the i-th (1 ≤ i ≤ L) training sample
using its refined diffusion matrices to replace H(i) in Eq. 15
and obtain w. However, this usually is problematic as the
saliency vectors computed on different samples and/or by
different matrix-seed combinations often exhibit inconsistent
ranges of componential values. Therefore, in order to derive
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Fig. 1. Visualization of normalized eigenvectors by color coding. Pixels in each node are assigned a single color and nodes with similar values in an eigenvector
are colored similarly. The eight columns show the source images (SRC), the corresponding eigenvectors (u2-u7) and eigenvalue curves (λ), respectively. We
use a white margin between successive eigenvectors to indicate an eigengap (all the eigenvectors, u2 to u7, are before the eigengap, if there is no white
margin in that row.). Besides, on the eigenvalue curves, we use red solid segments to indicate the final eigengaps and a red dash segment to indicate an initial
eigengap of r = 2 to be reset.

an optimal w of generic applicability, we first normalize the
saliency vector of each sample computed by each matrix-seed
combination, as explained below.

On each specific image sample, for each matrix-seed com-
bination

(
Āi−1, sj

)
, 1 ≤ i ≤M , 1 ≤ j ≤ K, we need to nor-

malize the saliency vector, ȳi,j = Āi−1sj = ŪiΛ̄i−1ŪiT sj ,
to range its componential values to [0, 1]. It is commonly
known that a vector x whose componential values extend a
range of [p, q] may be normalized by

x̂ = b1 +
x

a
,

b =
p

p− q
,

a = −(p− q).

(17)

Similarly, we normalize ȳi,j with a componential value range
of [p, q] by

ŷi,j = [u1, Ū
i]

[
λ′1
−1 0T

0 1
âΛ̄i−1

]
[u1, Ū

i]T sj

= λ′1
−1u1u

T
1 sj +

1

â
ŪiΛ̄i−1ŪiT sj

= λ′1
−1u1u

T
1 sj +

ȳi,j

â
,

(18)

where u1 is the constant vector and λ′1 and â are scalars to
be determined. By comparing Eq.s 17 and 18, we set â = a
and λ′1

−1u1u
T
1 sj = b1 for the normalization. Equivalently,

we have â = −(p− q) and λ′1 =
∑N

i=1 sj(i)(p− q)/p.
In essence, the above normalization process refines Āi−1

to

Âi,j−1 = ÛiΛ̂i−1ÛiT

= [u1, Ū
i]

[
λ′1
−1 0T

0 1
âΛ̄i−1

]
[u1, Ū

i]T ,
(19)

which is used as the final diffusion matrix for sj on the specific
image sample.

Using the finally refined diffusion matrices, we compute
Ĥ(i) for the i-th (1 ≤ i ≤ L) training sample to replace H(i)
in Eq. 15 and finally obtain the solution of w.

C. Choice of Seeds

We utilize the foreground and background prior to design
two kinds of seed vectors and use them as sj , 1 ≤ j ≤ K in
Eq.s 12 and 13.

Firstly, we assume that nodes closer to the center of image
are more salient, and initialize a sequence of Gaussian-filter-
like images (with different variances) to compute the first kind
of seed vectors, as people usually put salient objects in the
central foreground area when taking a photo.

Secondly, we assume that nodes located at the border of
image are the least salient, and compute the time that other
non-border nodes random walk to them to form the seed
vector. Nodes that take more time to reach the border nodes are
more salient. Note that the transition matrix of random walk
can also be derived from the highly discriminative diffusion
matrices, Āi−1, 1 ≤ i ≤ M , as explained in Appendix A
with an in-depth analysis of the working mechanism of this
proposed seed vector construction method.

The foreground and background prior leads to not only
good accuracy of seed value estimation, but also high time-
efficiency as it avoids an extra pass of color-based preliminary
saliency search.

D. Implementation Details

When constructing the graph, we have N = 2000 su-
perpixels, and, in order to utilize the cross-node correlation
in a broader range, we connect not only nodes that are
directly adjacent, but also those that are up to 7 hops apart.
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Algorithm 1 Super Diffusion (Training)
Require:

(a) A list of training images, [I1, · · · , IL],
(b) A list of scale parameters, [σ1, · · · , σm],
(c) A list of feature spaces, [f1, · · · , fn],
(d) A list of seed computing methods, [c1, · · · , cK ],

Initialization:
Segment each training image into N superpixels, use the
superpixels as nodes, connect border nodes to each other
and connect nodes that are up to 7-hop away to construct
a graph G.

Local refinement: For each training image in (a),
1: Compute Ai = Di−1(Di−0.99Wi) and its eigenvectors

Ui and eigenvalues Λi for each setting i in combination
of (b)(c);

2: For each Ai, discard the constant eigenvector, the eigen-
vectors after the eigengap or with low discriminability to
get Āi−1, Ūi, Λ̄i and H̄ by local refinement operations
described in Sec.s IV-B1 to IV-B3;

3: For each Āi−1 and seed computing method, cj , in (d),
(i) Compute the seed vector, sj ;

(ii) Re-add the constant eigenvector with an updated
eigenvalue, and scale Λ̄i to normalize ȳi,j by Eq. 18;

(iii) Correspondingly, re-synthesize Āi−1 to get the final
diffusion matrix Â−1i,j by Eq. 19;

4: Integrate all ŷi,j to get Ĥ.
Global optimization: With Ĥ(i), 1 ≤ i ≤ L, for all the

training images computed,
5: Substitute Ĥ(i) for H(i) in Eq. 15 to compute the optimal

weight w.
Ensure: Weight w.

Furthermore, we connect the nodes at the four borders of an
image to each other to make a close-loop graph.

The main training steps of the proposed salient object
detection algorithm are summarized in Algorithm 1. As for
testing, given an input image I , we conduct the superpixel
segmentation and graph construction on it and compute its Ĥ,
following the same initialization and local refinement steps in
Alg. 1, and apply the learned weight w to Ĥ to obtain the final
integrated saliency vector (after local refinement) ŷI = ĤwT .
Finally, we obtain the saliency map S by assigning the value
of ŷIi to the corresponding node vi, 1 ≤ i ≤ N .

E. Saliency Features as Diffusion Maps

Diffusion-based salient object detection methods [22], [23],
[28], [36]–[40], [43], [44] usually rely on raw color features,
e.g., they use the mean color vectors of two linked nodes to
compute the edge weight (c.f . Eq. 2) and, correspondingly,
the affinity matrix and the diffusion matrix. However, the
raw color features may sometimes not be well indicative of
the saliency. As such, more saliency features have been de-
vised and used by non-diffusion-based salient object detection
methods. In particular, hundreds of saliency features for the
task of salient object detection are effectively integrated in
some algorithms [26], [46], [50], [51]. This has motivated us

to integrate more saliency features seamlessly into our super
diffusion framework.

By our interpretation of the diffusion mechanism (c.f .
Sec. III), diffusion maps play a key role in saliency com-
putation and nodes with similar (resp., dissimilar) diffusion
maps tend to be assigned similar (resp., dissimilar) saliency
values. Therefore, good diffusion maps themselves should
be discriminative which are similar for nodes of similar
factual saliency and dissimilar otherwise. As saliency features
discriminate salient from non-salient nodes, we use them to
construct discriminative maps at the nodes to imitate the
diffusion process. We call them diffusion maps as well for
the convenience of description.

We denote the Z saliency features by g1,g2, . . . ,gZ with
each gj , j ∈ [1, Z], being an N -dimensional vector containing
the corresponding feature values of the nodes. Then we
construct a diffusion map for node i by

Ψ′i = [1i,g
1
i ,g

2
i , · · · ,gZ

i ]. (20)

Incorporating Ψ′i into Eq. 11, we update ΨI i to

ΨI i = [α
1
2
1 Ψ1

i , α
1
2
2 Ψ2

i , · · · , α
1
2

MΨM
i , α

1
2

M+1Ψ
M+1
i ], (21)

with ΨM+1
i = Ψ′i. Correspondingly, we make AM+1−1 =

UM+1ΛM+1−1UM+1T with UM+1 = [1,g1,g2, · · · ,gZ ]

and ΛM+1−1 = diag{1, 1, · · · , 1}, and update A−1I in Eq. 9
to

A−1I = UIΛI
−1UT

I

= UI

 α1Λ
1−1 · · · · · ·

...
. . .

...
· · · · · · αM+1Λ

M+1−1

UT
I ,

(22)

where UI =
[
U1, · · · ,UM+1

]
. Further, we update H and

w by H = [y1,1, · · · ,y1,K , · · · ,yM+1,1, · · · ,yM+1,K ] and
w = [w1, w2, · · · , w(M+1)×K ] for Eq.s 13, 14 and 15.

Finally, for the training and the testing, the procedures
described in the previous sections are still conducted except
that the steps in Sec.s IV-B1–IV-B3 are not applied on any
AM+1−1 as it is not a common graph-based diffusion matrix.
But still, the normalization step in Sec. IV-B4 is conducted for
each matrix-seed combination,

(
AM+1−1, sj

)
, 1 ≤ j ≤ K,

on each specific image sample.

V. EXPERIMENTS AND ANALYSIS

A. Datasets and Evaluation Methods

Our experiments are mainly conducted on four datasets: the
MSRA10K dataset [15], [33] with 10K images, the MSRA-B
dataset [26] with 5K images (MSRA-B contains many images
from MSRA10K), the DUT-OMRON dataset [22] with 5K
images and the ECSSD dataset [24] with 1K images. Each
image in these datasets is associated with a human-labeled
ground truth.

In order to study the performance of our final super diffu-
sion method, we adopt prevalently used evaluation protocols
including precision-recall (PR) curves [14], F-measure score
which is a weighted harmonic of precision and recall [14],
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mean overlap rate (MOR) score [25], area under ROC curve
(AUC) score [28] and mean square error (MSE), as described
in Sec. V-E. Among these protocols, F-measure and MOR re-
quire firstly thresholding the images, and we set the threshold
as twice the mean saliency value over the ground truth set.
Further, to analyze how much the local refinement operations
benefit our method, we propose to measure the quality of a
diffusion matrix by visual saliency promotion and constrained
optimal seed efficiency (COSE), as detailed in Sec. V-C and
Sec. V-D, respectively. Finally, in Sec. V-F, we give an ablation
study of all the global and local refinement operations, to show
the effects of different steps in Alg. 1.

B. Experimental Settings

We choose 11 different settings for the scale parameter σ,
σ2 ∈ [10, 11, · · · , 20], and 3 different color spaces, Lab, RGB
and HSV , for the feature space, which leads to 11× 3 = 33
different diffusion matrices, i.e., M = 33 for Eq.s 11, 9 and 13.
We set v = 300 as the threshold to filter out eigenvectors
of low discriminability in Sec. IV-B3. For the first kind of
seed vectors, we take the Gaussian variance from {0.5, 1, 2}.
We integrate the saliency features of the work [26] into our
super diffusion framework (c.f . Sec. IV-E). For each dataset,
we use a half of the images for training, and the other half
for testing and evaluation. In Sec. V-C and Sec. V-D, in
order to avoid zero eigenvalues, we approximately set L̃rw =
D−1(D − 0.99W) and L̃ = D − 0.99W when comparing
diffusion matrices, as done in the reference [22]. However,
our each diffusion matrix Âj is directly re-synthesized from
Lrw = D−1(D−W) by the local refinement.

To comprehensively report the effectiveness of our proposed
local refinement operations in Sec. IV-B, in Sec. V-C and
Sec. V-D, we design two experiments to compare the diffusion
results with and without the local refinement. In Sec. V-E
and Sec. V-F, we further demonstrate how much our method
gets promoted after global enhancement by the integration of
diffusions. We have noted that recently published methods start
to incorporate deep features to detect saliency and achieve
state-of-the-art performance. As such, we introduce deep fea-
tures as saliency features into our super diffusion framework,
and compare with deep learning (feature) based methods in
Sec. V-E and Sec. V-F.

Note that, for each dataset, we derive the optimal weights,
w, from the training set and apply the learned model on the
test set. This approach is justified as follows. Firstly, samples
in the same dataset share (more or less) similar properties such
as object scale and center bias, such that the optimal weighting
learned from the training set may apply well on the test set.
Secondly, the logic of learning the weights from the training
set and testing the performance on the test set has been widely
used in other learning-based methods [17], [26] and proved to
be effective.

C. Promotion of Visual Saliency

Visual saliency detection predicts human fixation locations
in an image, which are often indicative of salient objects
around. Therefore, we use the detected visual saliency as the

seed information, and conduct diffusion on it to detect the
salient object region in an image. In other words, we promote
a visual saliency detection algorithm by diffusion for the task
of salient object detection.

In this experiment, we use the results of nine visual saliency
detection methods (i.e., IT [1], AIM [7], GB [2], SR [8],
SUN [9], SeR [10], SIM [11], SS [4] and COV [12]) on the
MSRA10K dataset as the seed vectors, respectively, and com-
pare the saliency detection results before and after diffusion.
For the diffusion, we test three matrices including Ā1−1, L̃−1

and L̃−1rw , which are all computed in Lab feature space with
σ2 = 10. It’s worth noting that Ā1−1 is only one of our locally
refined diffusion matrices (without normalization yet) before
the integration.

The PR curves of the nine visual saliency detection methods
before and after diffusion by Ā1−1, L̃−1 and L̃−1rw are plotted
in Fig. 2(a), (b) and (c), respectively. Remarkably, as shown
in Fig. 2, previous visual saliency detection methods which
usually can not highlight the whole salient object all get
significantly boosted after diffusion with any of Ā1−1, L̃−1

and L̃−1rw . The promotion is so significant that some promoted
methods even outperform some state-of-the-art salient objec-
tion detection methods, as observed by comparing Fig. 2 and
Fig. 4. This means that, with a good diffusion matrix, we can
fill the performance gap between two branches of saliency
detection methods.

Comparing Fig.s 2(a), 2(b) and 2(c), we observe that Ā1−1

leads to more significant performance promotion and more
consistent promoted performance than L̃−1 and L̃−1rw , demon-
strating higher effectiveness and robustness of the refined
diffusion matrix, Ā1−1, in visual saliency promotion.

D. Constrained Optimal Seed Efficiency

In this section, we design experiments to demonstrate the
effectiveness of the proposed local refinement method as
proposed in Sec. IV-B. Firstly, we propose constrained optimal
seed saliency (OSE) curves to measure the upper bound
of a diffusion matrix’ potential best performance by using
the ground truth to optimize the best seeds. Secondly, we
compare the OSE curves of Ā1−1, L̃−1 and L̃−1rw to show
the effectiveness of the proposed local refinement method.

Given the ground truth GT and the diffusion matrix A−1,
we hope to find the optimal seed vector, s, that minimizes the
residual, res, computed by

res = GT−A−1s. (23)

Aiming to reduce the number of non-zero values in s, we
turn the residual minimization to a sparse recovery problem,
to solve which we adapt the algorithm of orthogonal matching
pursuit (OMP) [59], as described in Alg. 2.

As shown in Alg. 2, we adapt the residual computation to
˜res = GT− bin(A−1s) in Step 4, where bin is the binariza-

tion operation since GT is binary; we multiply a factor GT(j)
in Step 1 to ensure that the non-zero seed values are selected
from only the salient region; we solve the nonnegative least-
squares problem in Step 3 to ensure nonnegative elements of s.
The adapted OMP will stop when ‖ ˜res‖2 is below a threshold,
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Fig. 2. PR curves of nine visual saliency detection methods before (dash line) and after (solid line) diffusion by (a) Ā1−1, (b) L̃−1, and (c) L̃−1
rw . The

constrained optimal seed efficiency curves for Ā1−1, L̃−1 and L̃−1
rw on the MSRA10K dataset are shown in (d).

c, or the nonnegative seed values at the salient region are all
selected, as shown in Step 5. We see that the optimization
process in Alg. 2 is constrained, e.g., the seeds are selected
from only the salient region, the optimization is conducted in
a greedy fashion and so forth. Although the saliency detection
performance of these resultant seed vectors provides a good
reference for our diffusion matrix evaluation, it should be
noted that their optimal performance is constrained but not
absolute. Accordingly, we name the measured performance as
constrained optimal saliency detection accuracy.

In order to obtain the OSE curve over the full range of
nonnegative seed value budget, we set c = 0 in Alg. 2 and, at
the i-th (0 ≤ i ≤ 100) iteration, we compute and record the
pair of nonnegative seed percentage, ri, and saliency detection
accuracy, ai, according to the following formulae:

ri =
100× ‖s‖0
‖GT‖0

%,

ai =
‖GT‖2 − ‖ ˜res‖2

‖GT‖2
.

(24)

Based on these (ri, ai) pairs, we can plot the OSE curve of
A−1 on an image.

We substitute Ā1−1, L̃−1 and L̃−1rw in the last section
into Eq. 23 for A−1, respectively. For each diffusion matrix,
we plot the average OSE curve over all the images in the
MSRA10K dataset, as shown in Fig. 2(d). From Fig. 2(d),
we observe that the constrained optimal seed efficiency rises
sharply at the beginning and levels off at around the non-
negative seed percentage of 30%, that Ā1−1 exhibits sig-
nificantly higher average constrained optimal seed efficiency
than L̃−1 and L̃−1rw , and that there is an inherent performance
upper bound for each diffusion matrix while Ā1−1 has the
highest one. According to the last observation, it appears
that the performance of diffusion-based saliency detection
is fundamentally determined by the diffusion matrix, again
emphasizing the importance in constructing a good diffusion
matrix.

E. Salient Object Detection

We experimentally compare our method with ten other re-
cently proposed ones including GMR [22], MC [23], GP [38],
DRFI [26], SS [44], ELE [48], HCA [49], DHS [47], DCL [42]

Algorithm 2 Adapted Orthogonal Matching Pursuit

Require: Dictionary(A−1N×N ), Signal(GTN×1) and Stop
criterion(c).

Ensure: Coefficient vector(sN×1) and Residual(res).
Initialization: res = GT, Inds = ∅,

FgInds = arg
i
{GT(i) = 1}.

Iteration:
1: ind = argmax

j
{|
〈
res,A−1(:, j)

〉
| · GT(j)}, j ∈

FgInds;
2: Inds = Inds ∪ ind, FgInds = FgInds \ ind;
3: s(Inds) = argmin

s̃≥0
‖GT−A−1(:, Inds)̃s‖2;

4: ˜res = GT− bin(A−1s);
5: if ‖ ˜res‖2 ≥ c ∧ FgInds 6= ∅ then
6: Go to 1;
7: end if

and DSS [52] on salient object detection. When evaluating
these methods, we either use the results from the original
authors, if available, or run our own implementations. Among
these methods, GMR [22], MC [23], GP [38], SS [44] and
HCA [49] are the diffusion-based methods that lead to out-
standing performance, and DRFI [26] is the approach that
integrates hundreds of saliency features and yields top perfor-
mance on the saliency benchmark study [60]. Deep learning
is used in DHS [47], DCL [42] and DSS [52] and results
in state-of-the-art performance. Deep features together with
diffusion mechanism are used to predict saliency in ELE [48]
and HCA [49], which also achieve comparable results as deep
learning based methods. To compare with these salient object
detection methods fairly, we design several variants of our
supper diffusion framework. Ours(N) is our super diffusion
method without using other saliency features, Ours(F) is our
super diffusion method with saliency features of DRFI [26]
integrated and Ours(F All) is our super diffusion method with
deep features of DHS [47], DCL [42] and DSS [52] further
integrated upon Ours(F) as additional saliency features.

Among these compared methods, DRFI [26], ELE [48],
DHS [47], DCL [42] and DSS [52] are supervised methods
which make different partitionings of training and test sets on
the ECSSD and DUT-OMRON datasets (We omit MSRA10K
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(a) SRC GT GMR MC GP SS HCA Ours(N) Ours(F)

(b) SRC GT Ours(F) DRFI ELE DHS DCL DSS Ours(F All)

Fig. 3. Visual comparison of our methods with (a) unsupervised methods, and (b) supervised methods. In each subfigure, the source (SRC) and groudtruth
(GT) images are shown in the first two columns and the results of various methods in the following.
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TABLE II
PERFORMANCE STATISTICS OF COMPARED UNSUPERVISED ALGORITHMS, OURS(N) AND OURS(F) ON THE FOUR PROTOCOLS AND THE FOUR DATASETS.
FOR EACH DATASET AND PROTOCOL, THE TOP THREE RESULTS ARE HIGHLIGHTED IN RED, BLUE AND GREEN, RESPECTIVELY. THE ↑/↓ SIGN INDICATES

THAT THE VALUE IS POSITIVELY/NEGATIVELY RELATED WITH THE PERFORMANCE.

Dataset Protocol GMR MC GP SS HCA Our(N) Ours(F)
MSRA10K F-measure↑ 0.84357 0.844 0.85328 0.86775 0.87183 0.8589 0.89484

MSE↓ 0.072376 0.069237 0.065566 0.057949 0.065261 0.065839 0.048936
Overlap↑ 0.6348 0.64281 0.65582 0.71002 0.71086 0.65321 0.75329

AUC↑ 0.94361 0.95048 0.95909 0.96387 0.9608 0.96675 0.98274
MSRA-B F-measure↑ 0.82389 0.82608 0.82867 0.83402 0.85367 0.84255 0.86699

MSE↓ 0.069554 0.066154 0.066108 0.059501 0.063485 0.064036 0.05264
Overlap↑ 0.63434 0.64612 0.64922 0.69523 0.70141 0.65807 0.71653

AUC↑ 0.94082 0.95043 0.95269 0.95922 0.96175 0.96149 0.97792
ECSSD F-measure↑ 0.74025 0.74216 0.74333 0.75451 0.81434 0.75353 0.80222

MSE↓ 0.10886 0.10233 0.10901 0.098271 0.095293 0.10613 0.08358
Overlap↑ 0.49214 0.50212 0.49355 0.55143 0.60769 0.4937 0.58673

AUC↑ 0.89477 0.91713 0.9088 0.92332 0.94391 0.92334 0.95365
DUT-OMRON F-measure↑ 0.57038 0.56903 0.5635 0.57222 0.59478 0.58126 0.59707

MSE↓ 0.1039 0.089958 0.10262 0.10153 0.12645 0.091031 0.070968
Overlap↑ 0.42166 0.43299 0.42303 0.44397 0.45092 0.44107 0.49561

AUC↑ 0.85499 0.88684 0.8705 0.87806 0.88541 0.88129 0.93619

TABLE III
PERFORMANCE STATISTICS OF SUPERVISED ALGORITHMS, OURS(F) AND OURS(F ALL) ON THE FOUR PROTOCOLS AND THE THREE DATASETS. FOR

EACH DATASET AND PROTOCOL, THE TOP THREE RESULTS ARE HIGHLIGHTED IN RED, BLUE AND GREEN, RESPECTIVELY. THE ↑/↓ SIGN INDICATES THAT
THE VALUE IS POSITIVELY/NEGATIVELY RELATED WITH THE PERFORMANCE.

Dataset Protocol Ours(F) DRFI ELE DHS DCL DSS Ours(F All)
MSRA-B F-measure↑ 0.86699 0.87852 0.85291 0.91998 0.90587 0.92693 0.92318

MSE↓ 0.05264 0.051071 0.069124 0.02529 0.033359 0.032193 0.022262
Overlap↑ 0.71653 0.74278 0.71882 0.86798 0.82869 0.85659 0.87347

AUC↑ 0.97792 0.97758 0.89152 0.9849 0.98327 0.96523 0.99346
ECSSD F-measure↑ 0.80168 0.78558 0.78534 0.90041 0.89637 0.92058 0.921

MSE↓ 0.083019 0.084882 0.11995 0.043085 0.0485 0.048624 0.035771
Overlap↑ 0.58881 0.57828 0.59763 0.80212 0.77935 0.80886 0.82341

AUC↑ 0.9531 0.94521 0.82913 0.97327 0.97097 0.9419 0.98778
DUT-OMRON F-measure↑ 0.59331 0.57992 0.61206 0.88482 0.73605 0.78027 0.87846

MSE↓ 0.071134 0.072474 0.12136 0.017641 0.059478 0.060321 0.018004
Overlap↑ 0.49255 0.48024 0.4667 0.82422 0.59005 0.62946 0.81734

AUC↑ 0.93566 0.93353 0.80145 0.9843 0.93492 0.87841 0.99011

because most of them do not provide results on this dataset).
Therefore, when comparing with them, we test on each whole
dataset for a fair evaluation on a common ground. For all the
other unsupervised methods, including GMR [22], MC [23],
GP [38], SS [44] and HCA [49], we evaluate their performance
on test sets defined by ourselves on the MSRA10K, ECSSD
and DUT-OMRON datasets. Since MSRA-B dataset has an
official training set and test set partitioning, we use its test set
for all the compared methods.

For the compared supervised methods, we plot their PR
curves in Fig.s 5(a), 5(b) and 5(c), while the PR curves of
the compared unsupervised methods are shown in Fig.s 4(a),
4(b), 4(c) and 4(d). We plot the PR curves of our methods,
i.e., Ours(N), Ours(F), and Ours(F All), in Fig. 4 and Fig. 5
as well for the purpose of comparison. Further, we provide
the performance statistics on the four prevalent protocols for
most of the methods on the benchmark datasets in Tab. II
and Tab. III for performance comparison with unsupervised
and supervised methods, respectively. Note that there are
other works related to ours, such as BDS [43], CRPSD [46],
AM [50] and IMC [51]. We can not compare with them as no
code or relevant results are publicly released.

From Fig. 4, Fig. 5, Tab. II and Tab. III, we clearly observe
that: 1) Ours(N) outperforms the common diffusion-based
methods, 2) after integrating the saliency feature of DRFI [26],
Ours(F) yields the top performance compared with most
non-deep-learning based methods and even outperforms the
diffusion-based method HCA [49] which uses deep features,
and 3) after further integrating deep features of DHS [47],
DCL [42] and DSS [52] as saliency features, Ours(F All)
yields the top performance, even when compared with the
deep learning based methods (i.e., DHS, DCL and DSS). All
these observations confirm that the proposed super diffusion
framework is capable of systematically integrating various
diffusion maps or saliency features and optimizing for the best
performance.

For visual comparison, we show in Fig. 3 the salient object
detection results by the benchmark methods and our methods.
We compare our methods with unsupervised benchmarks in
Fig. 3(a) and supervised benchmarks in Fig. 3(b), respectively.
From Fig. 3(a), we observe clearly that Ours(N) produces
much closer results to the ground truth than the common
diffusion based methods, and Ours(F) promotes the perfor-
mance further with more saliency features integrated. From
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Fig. 4. PR curves for compared unsupervised algorithms, Ours(N) and Ours(F) on (a) the MSRA10K dataset, (b) the MSRA-B dataset, (c) the ECSSD dataset
and (d) the DUT-OMRON dataset.
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Fig. 5. PR curves for compared supervised algorithms, Ours(F) and Ours(F All) on (a) the MSRA-B dataset, (b) the ECSSD dataset and (c) the DUT-OMRON
dataset.
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Fig. 6. (a) PR curves of several separate saliency vectors ŷi,j and the integrated saliency vector ŷI on the MSRA-B test dataset, (b) PR curves for building
steps of our scheme on the MSRA-B test dataset, (c) PR curves for integrated saliency vector ŷI under different graph construction configurations on the
MSRA-B test dataset.

Fig. 3(b), we observe that, with deep features further intro-
duced as saliency features, Ours(F All) achieves comparable
performance with DHS and better performance than all the
rest. Note that the images used in Fig. 3(b) are among the most
challenging ones from the datasets. On these images, we see
that none of the methods works perfectly while Ours(F All)
ranks among the top.

F. Effects of Building Steps

In this section, we demonstrate the incremental effects of
building steps in the proposed global and local optimiza-
tion operations (c.f . Sec. IV-A, Sec. IV-B, Sec. IV-C and
Sec. IV-E), as detailed below.

In order to demonstrate the effectiveness of the optimal inte-
gration of saliency vectors, we plot in Fig. 6(a) the PR curves

of separate saliency vectors, ŷi,j , and the integrated saliency
vector, ŷ, as appear in Eq. 13. Because the combinations of
different diffusion matrices and seeds produce a large number
of saliency vectors, we only plot the PR curves for several
selected saliency vectors with a wide range of weights. The
experiment is carried out on the MSRA-B test dataset. From
the PR curves in Fig. 6(a), we observe large differences among
the separate saliency vectors’ performance, which confirms the
sensitiveness issue of diffusion matrices and seeds. Further,
we observe that the PR curve of the integrated saliency vector
goes above all the others, demonstrating the effectiveness of
the proposed learning-based optimal integration.

Further, we give an ablation study of all the building steps
of the proposed super diffusion scheme in Fig. 6(b). For each
test image, we may obtain nine PR curves, S0 to S8. We
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start from its S0 and progressively obtain S1 to S8 when
the constant eigenvector is discarded, the eigenvectors after
the eigengap are filtered out, the discriminability weighting is
conducted, diffusion maps derived from multiple color spaces
are integrated, diffusion maps derived from multiple scales
are integrated, multiple diffusion seeds are integrated, saliency
features are imported as diffusion maps and deep features of
DHS [47], DCL [42] and DSS [52] are integrated, respectively.
Experimenting on the whole MSRA-B test dataset [15], [33],
we obtain the average PR curves for S0 to S8, as plotted
in Fig. 6(b). From Fig. 6(b), we observe that all the local
and global optimization operations consistently improve the
performance, and the introduction of deep features leads to
the top performance.

Finally, in Fig. 6(c), we provide the performance compari-
son of the integrated saliency vector ŷI under different graph
construction configurations. For each curve, its legend tells the
number of superpixels and the maximum topological distance
of node connections. For example, (2000, 7) means a graph of
2000 nodes, each being connected to its neighbors up to 7 hops
away. From Fig. 6(c), we observe that the accuracy improves
with the increase of node number and connection distance.
However, the accuracy increase is diminishing. Considering
the rapid growth of computing complexity with the increase
of node number and connection distance, we use (2000, 7)
and do not go beyond for all the previous experiments in this
work.

VI. CONCLUSIONS

In this work, we have proposed a super diffusion frame-
work that systematically integrates various diffusion matri-
ces, saliency features and seed vectors into a generalized
diffusion system for salient object detection. To the best of
our knowledge, this is the first framework of this kind ever
published. The whole framework is theoretically based on our
novel re-interpretation of the working mechanism of diffusion-
based salient object detection, i.e., diffusion maps are core
functional elements and the diffusion process is closely related
to spectral clustering in general. It takes a learning-based ap-
proach and provides a closed-form best solution to the global
weighting for the integration. At the local level, it refines
each diffusion matrix by getting rid of less discriminating
eigenvectors, normalizes each specific saliency vector, and
even incorporates discriminative saliency features as diffusion
maps. As a result, the proposed framework produces a highly
robust salient object detection scheme, yielding the state-of-
the-art performance.

The proposed super diffusion framework is open and exten-
sible. Besides those employed in this work, it may integrate
any other diffusion matrices, saliency features, deep features
and/or seed vectors as well into the system specifically trained
for any application with specific criterion in saliency object
detection.

It should be noted that, though outstanding performance
has been reported by existing salient object detection methods
(including the proposed one), they mostly experiment on
benchmark datasets of narrowly focused images. As real-world

images are often produced with wider fields of view, it is
important to have salient object detection methods work on
those images. This is worth our investigation in the future.

APPENDIX A
In this appendix, we give the proof of Eq. 5 and clarify

the working mechanism of the second kind of seed vectors
proposed in Sec. IV-C.

A. Proof of Eq. 5

The approach in the reference [23] duplicates the superpix-
els around the image borders as virtual background absorbing
nodes, and sets the inner nodes as transient nodes, thus
constructing an Absorbing Markov Chain. It computes the
absorbed time for each node as its saliency value. In Eq.s 1
and 8 of the paper [23], it formulates the transition matrix as

P = D−1W =

(
Q R
0 I

)
, (25)

where the first m nodes are transient nodes and the last N −
m nodes are absorbing nodes, Q ∈ [0, 1]m×m contains the
transition probabilities between any pair of transient nodes,
while R ∈ [0, 1]m×(N−m) contains the probabilities of moving
from any transient node to any absorbing node. 0 is the (N −
m)×m zero matrix and I is the (N −m)× (N −m) identity
matrix. According to Eq. 2 of the paper [23], the absorbed
time for m transient nodes is

y∗ = (I−Q)−1c, (26)

where c is a m dimensional column vector all of whose
elements are 1.

In our derivation, we extend Eq. 26 to

y∗ = (I−Q)−1c = (Q0 + Q1 + Q2 + . . .)c, (27)

and compute the n-th power of P as

Pn =

(
Qn (Q0 + Q1 + . . .+ Qn−1)R
0 I

)
. (28)

As the absorbed time for absorbing nodes is 0, we define

the absorbed time for all the nodes as y =

(
y∗

0

)
. From

Eq.s 27, 28 and 25, we have

y = (P0 + P1 + P2 + . . .)x = (1−P)−1x

= (D−1(D−W))−1x = L−1rwx,
(29)

where x =

(
c
0

)
. This completes the proof of Eq. 5.

Further, based on our re-interpolation of the diffusion (ref.
Sec. III),

yi =

N∑
j=1

xj

〈
ΨLrwi

,ΨLrwj

〉
=

m∑
j=1

〈
ΨLrwi

,ΨLrwj

〉
,

(30)

meaning that the absorbed time of each node is equal to the
sum of the inner products of its diffusion map with those of
all the m non-border nodes on the Absorbing Markov Chain.
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B. The Second Kind of Seed Vectors

In effect, after connecting all the nodes at the four borders
of the image, we have constructed a graph similar to the
Absorbing Markov Chain. For every node at the border, it
connects with all bn border nodes (including itself) and only
bm non-border nodes (bm� bn), meaning that once a random
walk reaches a border node, it will less likely escape from the
border node set. Therefore, we may assume that all the non-
border nodes are transient nodes and all the border nodes are
background absorbing nodes.

Accordingly, we compute the absorbed time of all nodes in
an image to form a seed vector of the second kind, That is,
following Eq. 30, we have seed si

sij =

d∑
k=1

〈
Ψ̄i

j , Ψ̄
i
k

〉
, (31)

or, equivalently,
si = Āi−1z, (32)

where zk = 1 if vk is a non-border node and zk = 0 otherwise.
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