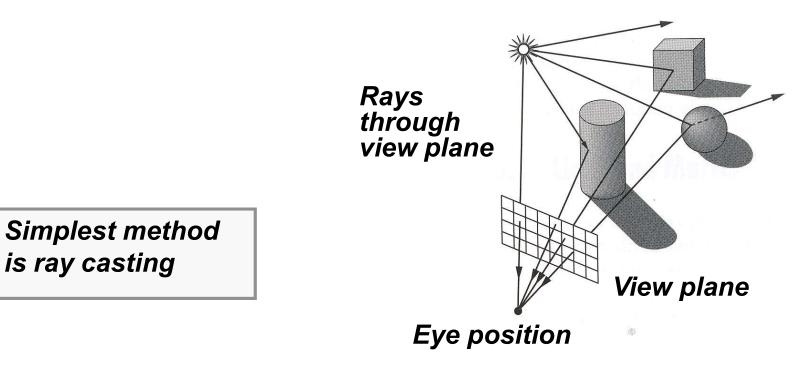


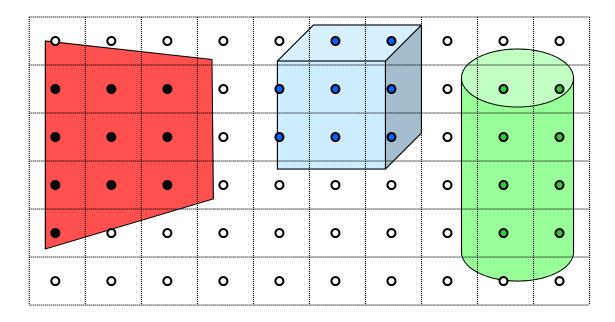
- Ray Casting
- Ray-Surface Intersection Testing
- Barycentric Coordinates

3D Rendering

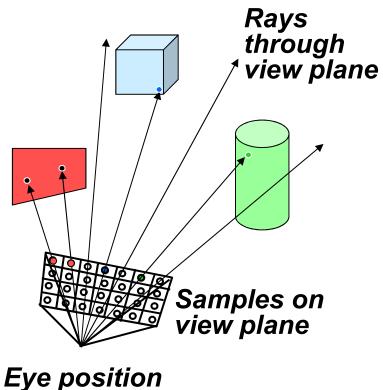
• The color of each pixel on the view plane depends on the radiance emanating from visible surfaces



- For each sample …
 - -Construct ray from eye position through view plane
 - -Find first surface intersected by ray through pixel
 - Compute color sample based on surface radiance



- For each sample …
 - Construct ray from eye position through view plane
 - -Find first surface intersected by ray through pixel
 - Compute color sample based on surface radiance



• A very flexible visibility algorithm loop y

loop x

- shoot ray from eye point through
 pixel (x, y) into scene
- intersect with all surfaces, find
 first one the ray hits
- shade that surface point to compute
 pixel (x, y)' s color

A Simple Ray Caster Program

```
Raycast() // generate a picture
for each pixel x,y
color(pixel) = Trace(ray_through_pixel(x,y))
```

```
Trace(ray) // fire a ray, return RGB radiance
// of light traveling backward along it
object_point = Closest_intersection(ray)
if object_point return Shade(object_point, ray)
else return Background_Color
```

```
Closest_intersection(ray)
for each surface in scene
calc_intersection(ray, surface)
return the closest point of intersection to viewer
(also return other info about that point, e.g., surface normal,
material properties, etc.)
```

```
Shade(point, ray) // return radiance of light leaving
// point in opposite of ray direction
calculate surface normal vector
use Phong illumination formula (or something similar)
to calculate contributions of each light source
```

- This can be easily generalized to give recursive *ray tracing*, that will be discussed later
- calc_intersection (ray, surface) is the
 most important operation
 - compute not only coordinates, but also geometric or appearance attributes at the intersection point

Ray-Surface Intersections

• How to represent a ray?

-A ray is p+td: p is ray origin, d the direction

- t=0 at origin of ray, t>0 in positive direction of ray

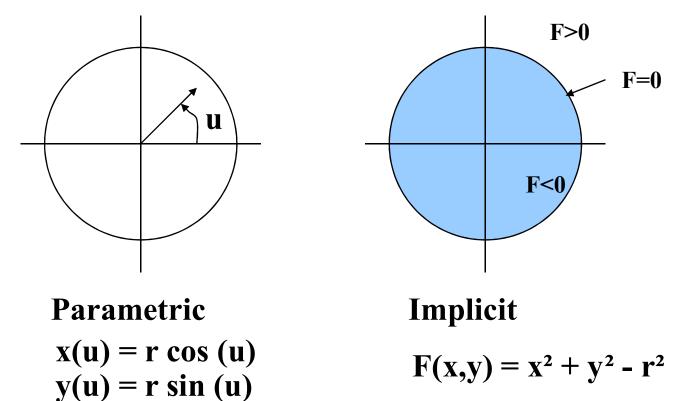
-typically assume ||d||=1

-p and d are typically computed in world space

Ray-Surface Intersections

- Surfaces can be represented by:
 - Implicit functions: f(x) = 0

-Parametric functions: x = g(u, v)



Ray-Surface Intersections

- Compute Intersections:
 - -Substitute ray equation for x
 - -Find roots
 - -Implicit: f(p + td) = 0

»one equation in one unknown - univariate
root finding

-Parametric:
$$p + td - g(u, v) = 0$$

»three equations in three unknowns (t, u, v) multivariate root finding

- For univariate polynomials, use closed form solution otherwise use numerical root finder

The Devil's in the Details

- General case: non-linear root finding problem
- Ray casting is simplified using object-oriented techniques
 - Implement one intersection method for each type of surface primitive
 - Each surface handles its own intersection
- Some surfaces yield closed form solutions
 - -quadrics: spheres, cylinders, cones, ellipsoids, etc...)
 - Polygons
 - -tori, superquadrics, low-order spline surface patches

Ray-Sphere Intersection

- Ray-sphere intersection is an easy case
- A sphere's implicit function is: $x^2+y^2+z^2-r^2=0$ if sphere at origin
- The ray equation is: $x = p_x + td_x$ $y = p_y + td_y$ $z = p_z + td_z$
- Substitution gives: $(p_x + td_x)^2 + (p_y + td_y)^2 + (p_z + td_z)^2 r^2 = 0$
- A quadratic equation in t.
- Solve the standard way: $A = d_x^2 + d_y^2 + d_z^2 = 1 \text{ (unit vector)}$ $B = 2(p_x d_x + p_y d_y + p_z d_z)$ $C = p_x^2 + p_y^2 + p_z^2 r^2$
- Quadratic formula has two roots: $t = (-B \pm sqrt(B^2 4C))/2$
 - -which correspond to the two intersection points
 - negative discriminant means ray misses sphere

Ray-Polygon Intersection

- Assuming we have a planar polygon
 - -first, find intersection point of ray with plane
 - then check if that point is inside the polygon
- Latter step is a point-in-polygon test in 3-D:
 - -inputs: a point x in 3-D and the vertices of a polygon in 3-D
 - output: INSIDE or OUTSIDE
 - -problem can be reduced to point-in-polygon test in 2-D
- Point-in-polygon test in 2-D:
 - easiest for triangles
 - -easy for convex n-gons
 - -harder for concave polygons
 - most common approach: subdivide all polygons into triangles
 - for optimization tips, see article by Haines in the book

Graphics Gems IV Baoquan Chen 2015

Ray-Plane Intersection

- Ray: x=p+*t*d
 - -where p is ray origin, d is ray direction. we'll assume ||d||=1 (this simplifies the algebra later)
 - -x=(x, y, z) is point on ray if t>0
- Plane: (x-q) n=0
 - -where q is reference point on plane, n is plane normal. (some might assume ||n||=1; we won't)
 - -x is point on plane
 - if what you' re given is vertices of a polygon
 - » compute n with cross product of two (non-parallel)
 edges
 - » use one of the vertices for q
 - -rewrite plane equation as $x \cdot n + D = 0$
 - » equivalent to the familiar formula Ax+By+Cz+D=0, where (A, B, C) = n, $D=-q \bullet n$
 - » fewer values to store

Ray-Plane Intersection

- Steps:
 - substitute ray formula into plane eqn, yielding 1 equation in 1 unknown (t).
 - solution: $t = -(p \cdot n + D) / (d \cdot n)$
 - »note: if d•n=0 then ray and plane are
 parallel REJECT
 - »note: if t<0 then intersection with plane
 is behind ray origin REJECT</pre>
 - compute *t*, plug it into ray equation to compute point x on plane

Projecting A Polygon from 3-D to 2-D

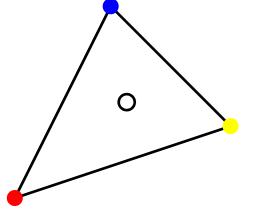
- Point-in-polygon testing is simpler and faster if we do it in 2-D
 - The simplest projections to compute are to the *xy*, *yz*, or *zx* planes
 - If the polygon has plane equation Ax+By+Cz+D=0, then
 - » |A| is proportional to projection of polygon in yz plane
 - » |B| is proportional to projection of polygon in zx plane
 - » |C| is proportional to projection of polygon in xy plane
 - » Example: the plane z=3 has (A, B, C, D)=(0, 0, 1, -3), so |C| is the largest and xy projection is best. We should do point-in-polygon testing using x and y coords.
 - In other words, project into the plane for which the perpendicular component of the normal vector n is largest

Projecting A Polygon from 3-D to 2-D

- Optimization:
 - -We should optimize the inner loop (ray-triangle intersection testing) as much as possible
 - -We can determine which plane to project to, for each triangle, as a preprocess
- Point-in-polygon testing in 2-D is still an expensive operation
- Point-in-rectangle is a special case

Interpolated Shading for Ray Casting

- Suppose we know colors or normals at vertices
 - How do we compute the color/normal of a specified point inside?



- Color depends on distance to each vertex
 - -How to do linear interpolation between 3 points?
 - Answer: *barycentric coordinates*
- Useful for ray-triangle intersection testing too!

Barycentric Coordinates in 1-D

• Linear interpolation between colors C_0 and C_1 by t

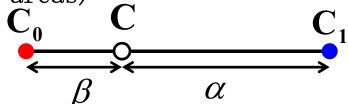
 $\mathbf{C} = (\mathbf{1} - t)\mathbf{C}_0 + t\mathbf{C}_1$

• We can rewrite this as

 $\mathbf{C} = \alpha \mathbf{C}_0 + \beta \mathbf{C}_1$ where $\alpha + \beta = 1$

- **C** is between \mathbf{C}_0 and $\mathbf{C}_1 \Leftrightarrow \alpha, \beta \in [0,1]$
- Geometric intuition:

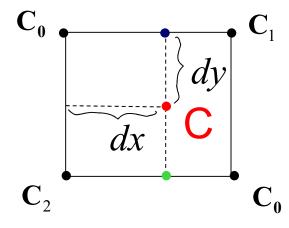
-We are weighting each vertex by ratio of distances (or areas)



• α and β are called *barycentric* coordinates

Barycentric Coordinates in 2-D

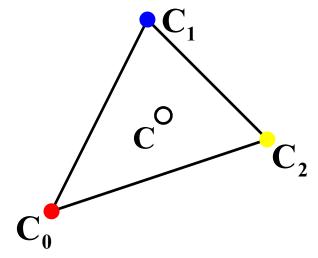
• Bilinear interpolation: 4 points instead of 2



$$\mathbf{C} = (\underbrace{1 - dx}_{0})(1 - dy)\mathbf{C}_{0} + (\underbrace{dx}(1 - dy)\mathbf{C}_{1} + (\underbrace{1 - dx}_{\gamma})dy\mathbf{C}_{2} + \underbrace{dxdy\mathbf{C}_{3}}_{\varphi}$$

Barycentric Coordinates in 2-D

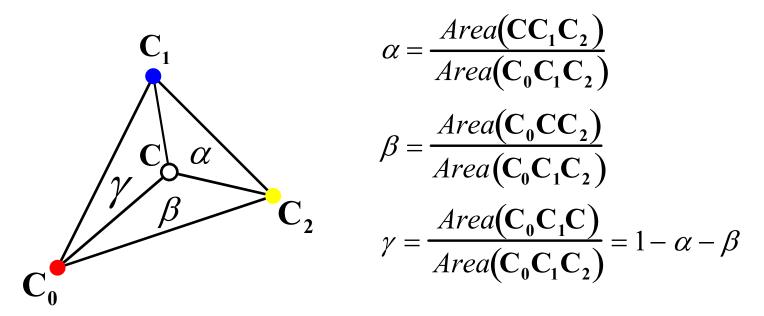
• Now suppose we have 3 points instead of 2



- Define three barycentric coordinates: α , β , γ $\mathbf{C} = \alpha \mathbf{C}_0 + \beta \mathbf{C}_1 + \gamma \mathbf{C}_2$ where $\alpha + \beta + \gamma = 1$ \mathbf{C} is inside $\mathbf{C}_0 \mathbf{C}_1 \mathbf{C}_2 \Leftrightarrow \alpha, \beta, \gamma \in [0,1]$
- How to define α , β , and γ ?

Barycentric Coordinates for a Triangle

• Define barycentric coordinates to be ratios of triangle areas



• in 3-D C = B

- Area(ABC) = parallelogram area / 2 = $||(B-A) \times (C-A)||/2$ - faster: project to *xy*, *yz*, or *zx*, use 2D formula

• in 2-D

- Area(xy-projection(ABC)) = [(b_x-a_x) (c_y-a_y)-(c_x-a_x) (b_y-a_y)]/2
project A, B, C to xy plane, take z component of cross product
- positive if ABC is CCW (counterclockwise)

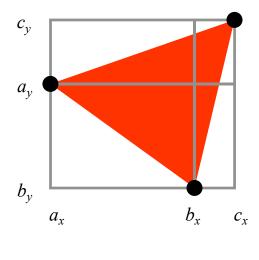
Computing Area of a Triangle - Algebra

That short formula,

$$Area(ABC) = [(b_x - a_x) (c_y - a_y) - (c_x - a_x) (b_y - a_y)]/2$$

Where did it come from?

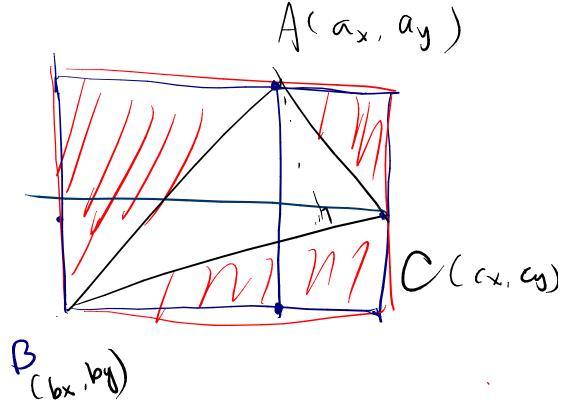
$$Area(ABC) = \frac{1}{2} \begin{vmatrix} a_{x} & b_{x} & c_{x} \\ a_{y} & b_{y} & c_{y} \\ 1 & 1 & 1 \end{vmatrix}$$
$$= \left(\begin{vmatrix} b_{x} & c_{x} \\ b_{y} & c_{y} \end{vmatrix} - \begin{vmatrix} a_{x} & c_{x} \\ a_{y} & c_{y} \end{vmatrix} + \begin{vmatrix} a_{x} & b_{x} \\ a_{y} & b_{y} \end{vmatrix} \right) \stackrel{!}{\xrightarrow{!}} 2$$
$$= (b_{x}c_{y} - c_{x}b_{y} + c_{x}a_{y} - a_{x}c_{y} + c_{x}a_{y} - a_{x}c_{y})/2$$

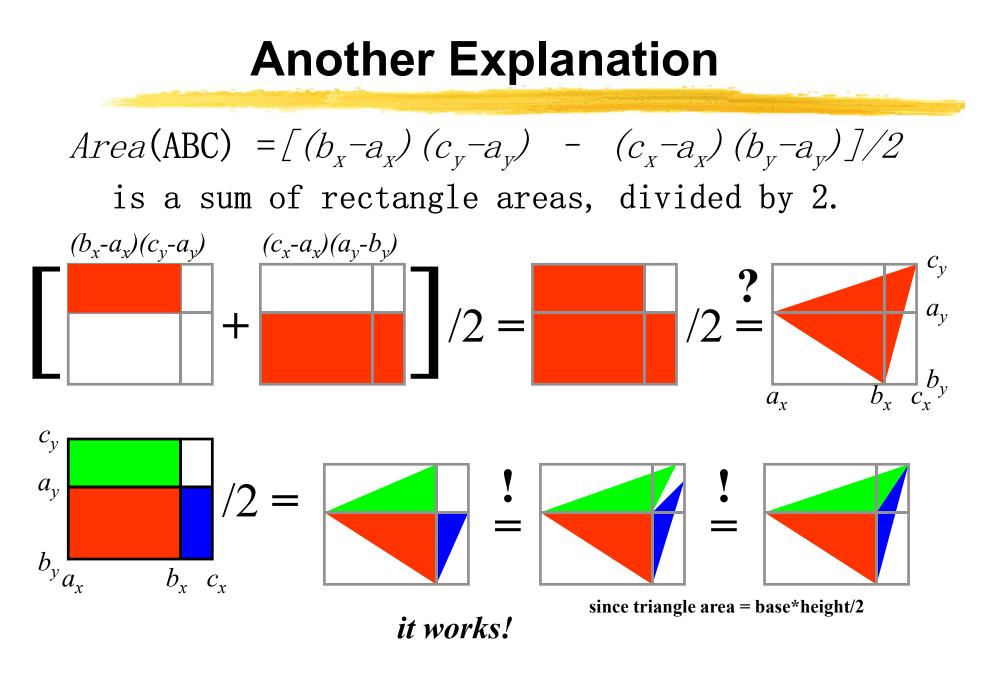


The short & long formulas above agree. Short formula better because fewer multiplies. Speed is important! Can we explain the formulas geometrically?

One Explanation

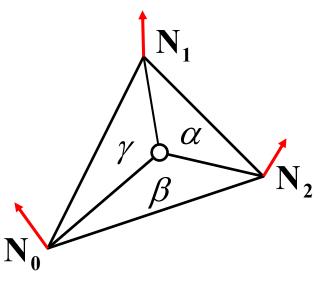
Area(ABC) = area of the rectangle minus
 area of the red shaded triangles





Uses for Barycentric Coordinates

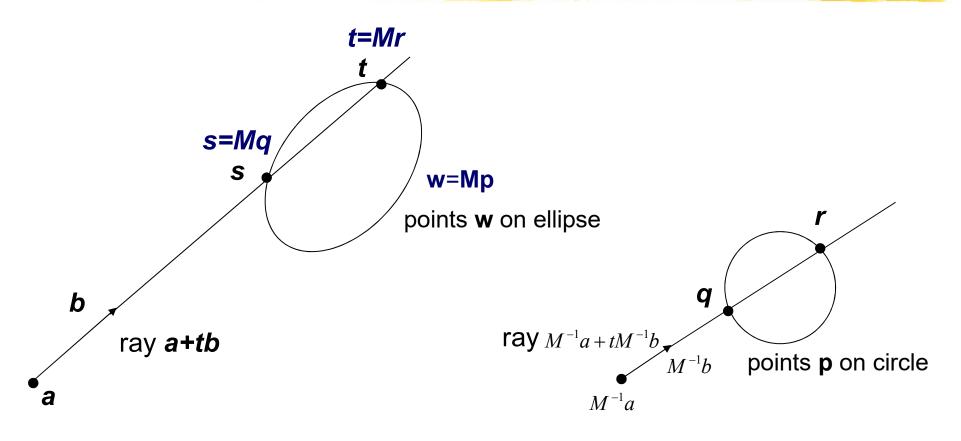
- Point-in-triangle testing!
 - -point is in triangle iff $\alpha,\ \beta,\ \gamma$ the same sign
 - -note similarity to standard point-in-polygon methods that use tests of form $a_ix + b_iy + c_i < 0$ for each edge i



- Can use barycentric coordinates to interpolate any quantity

 color interpolation Gouraud shading
 - -normal interpolation realizing Phong Shading
 - (s,t) texture coordinate interpolation texture mapping

Instancing



Instancing

- The basic idea of instancing is that an object is distorted by a transformation matrix before the object is displayed. For example, in 2D an arbitrary ellipse is an instance of a circle because we can store a unit circle and the composite transformation matrix that transforms the circle to the ellipse. Thus the explicit construction of the ellipse is left as a future procedure operation at render time.
- With the concept of instancing, in ray tracing we can choose what space to do ray-object intersection in. If we have a ray a+tb (a: eye point; b: ray vector; t: parameter) we want to intersect with the transformed object, we can instead intersect an inverse-transformed ray with the untransformed object. That means, computing a ray and an ellipse intersection can be converted to a problem of computing ray-circle intersection instead.
- Pay attention to normal transformation for correct shading: if the normal at the intersection point of the base object is n, compute its correct normal in the transformed space.