

• Ray Casting
• Ray-Surface Intersection Testing
• Barycentric Coordinates

3Baoquan Chen 2015

3D Rendering
• The color of each pixel on the view plane

depends on the radiance emanating from

visible surfaces

View plane
Eye position

Simplest method
is ray casting

Rays throughview plane

4Baoquan Chen 2015

Ray Casting
• For each sample …

–Construct ray from eye position through view plane

–Find first surface intersected by ray through pixel

–Compute color sample based on surface radiance

5Baoquan Chen 2015

Ray Casting
• For each sample …

–Construct ray from eye position through view plane

–Find first surface intersected by ray through pixel

–Compute color sample based on surface radiance

Samples on view plane
Eye position

Rays throughview plane

6Baoquan Chen 2015

Ray Casting
• A very flexible visibility algorithm

loop y

loop x

shoot ray from eye point through

pixel (x,y) into scene

intersect with all surfaces, find

first one the ray hits

shade that surface point to compute

pixel (x,y)’s color

7Baoquan Chen 2015

A Simple Ray Caster Program
Raycast() // generate a picturefor each pixel x,ycolor(pixel) = Trace(ray_through_pixel(x,y))
Trace(ray) // fire a ray, return RGB radiance// of light traveling backward along itobject_point = Closest_intersection(ray)if object_point return Shade(object_point, ray)else return Background_Color
Closest_intersection(ray)for each surface in scenecalc_intersection(ray, surface)return the closest point of intersection to viewer (also return other info about that point, e.g., surface normal, material properties, etc.)
Shade(point, ray) // return radiance of light leaving// point in opposite of ray directioncalculate surface normal vectoruse Phong illumination formula (or something similar)to calculate contributions of each light source

8Baoquan Chen 2015

Ray Casting
• This can be easily generalized to give

recursive ray tracing, that will be

discussed later

• calc_intersection (ray, surface) is the

most important operation

– compute not only coordinates, but also

geometric or appearance attributes at

the intersection point

9Baoquan Chen 2015

• How to represent a ray?

–A ray is p+td: p is ray origin, d the

direction

–t=0 at origin of ray, t>0 in positive

direction of ray

–typically assume ||d||=1

–p and d are typically computed in world

space

Ray-Surface Intersections

10Baoquan Chen 2015

Ray-Surface Intersections
• Surfaces can be represented by:

–Implicit functions: f(x) = 0

–Parametric functions: x = g(u,v)

Parametric

u

x(u) = r cos (u)y(u) = r sin (u)
Implicit
F(x,y) = x² + y² - r²

F<0

F>0
F=0

11Baoquan Chen 2015

Ray-Surface Intersections
• Compute Intersections:

–Substitute ray equation for x

–Find roots

–Implicit: f(p + td) = 0

» one equation in one unknown – univariate

root finding

–Parametric:p + td - g(u,v) = 0

» three equations in three unknowns (t,u,v) –

multivariate root finding

–For univariate polynomials, use closed form

solution otherwise use numerical root finder

12Baoquan Chen 2015

The Devil’s in the Details
• General case: non-linear root finding problem

• Ray casting is simplified using object-oriented

techniques

–Implement one intersection method for each type

of surface primitive

–Each surface handles its own intersection

• Some surfaces yield closed form solutions

–quadrics: spheres, cylinders, cones, ellipsoids,

etc…)

–Polygons

–tori, superquadrics, low-order spline surface

patches

13Baoquan Chen 2015

Ray-Sphere Intersection
• Ray-sphere intersection is an easy case

• A sphere’s implicit function is: x
2

+y
2

+z
2

-r
2

=0 if sphere

at origin

• The ray equation is: x = p
x

+td
x

y = p
y

+td
y

z = p
z

+td
z

• Substitution gives:(p
x

+td
x

)
2

+ (p
y

+td
y

)
2

+ (p
z

+td
z

)
2

- r
2

= 0

• A quadratic equation in t.

• Solve the standard way: A = d
x

2

+d
y

2

+d
z

2

= 1 (unit vector)

B = 2(p
x

d
x

+p
y

d
y

+p
z

d
z

)

C = p
x

2

+p
y

2

+p
z

2

- r
2

• Quadratic formula has two roots: t=(-B±sqrt(B2-4C))/2
–which correspond to the two intersection points

–negative discriminant means ray misses sphere

At2+Bt+C=0

14Baoquan Chen 2015

Ray-Polygon Intersection
• Assuming we have a planar polygon

–first, find intersection point of ray with plane

–then check if that point is inside the polygon

• Latter step is a point-in-polygon test in 3-D:

–inputs: a point x in 3-D and the vertices of a polygon in

3-D

–output: INSIDE or OUTSIDE

–problem can be reduced to point-in-polygon test in 2-D

• Point-in-polygon test in 2-D:

–easiest for triangles

–easy for convex n-gons

–harder for concave polygons

–most common approach: subdivide all polygons into triangles

–for optimization tips, see article by Haines in the book

Graphics Gems IV

15Baoquan Chen 2015

Ray-Plane Intersection
• Ray: x=p+td

–where p is ray origin, d is ray direction. we’ll

assume ||d||=1 (this simplifies the algebra later)

–x=(x,y,z) is point on ray if t>0

• Plane: (x-q)•n=0

–where q is reference point on plane, n is plane normal.

(some might assume ||n||=1; we won’t)

–x is point on plane

–if what you’re given is vertices of a polygon

» compute n with cross product of two (non-parallel)

edges

» use one of the vertices for q

–rewrite plane equation as x•n+D=0

» equivalent to the familiar formula Ax+By+Cz+D=0,

where (A,B,C)=n, D=-q•n

» fewer values to store

16Baoquan Chen 2015

Ray-Plane Intersection
• Steps:

–substitute ray formula into plane eqn,

yielding 1 equation in 1 unknown (t).

–solution: t = -(p•n+D)/(d•n)

» note: if d•n=0 then ray and plane are

parallel - REJECT

» note: if t<0 then intersection with plane

is behind ray origin - REJECT

–compute t, plug it into ray equation to

compute point x on plane

17Baoquan Chen 2015

Projecting A Polygon from 3-D to 2-D
• Point-in-polygon testing is simpler and faster if we do it

in 2-D

–The simplest projections to compute are to the xy, yz, or

zx planes

–If the polygon has plane equation Ax+By+Cz+D=0, then

» |A| is proportional to projection of polygon in yz

plane

» |B| is proportional to projection of polygon in zx

plane

» |C| is proportional to projection of polygon in xy

plane

» Example: the plane z=3 has (A,B,C,D)=(0,0,1,-3), so

|C| is the largest and xy projection is best. We

should do point-in-polygon testing using x and y

coords.

–In other words, project into the plane for which the

perpendicular component of the normal vector n is largest

18Baoquan Chen 2015

Projecting A Polygon from 3-D to 2-D
• Optimization:

–We should optimize the inner loop (ray-triangle

intersection testing) as much as possible

–We can determine which plane to project to, for

each triangle, as a preprocess

• Point-in-polygon testing in 2-D is still an

expensive operation

• Point-in-rectangle is a special case

19Baoquan Chen 2015

Interpolated Shading for Ray Casting
• Suppose we know colors or normals at vertices

–How do we compute the color/normal of a specified point

inside?

• Color depends on distance to each vertex

–How to do linear interpolation between 3 points?

–Answer: barycentric coordinates

• Useful for ray-triangle intersection testing too!

20Baoquan Chen 2015

Barycentric Coordinates in 1-D
• Linear interpolation between colors C

0

and C
1

by t

C (1 t)C0 tC1

C is between C0 and C1 , [0,1]

0C C1C

• Geometric intuition:

–We are weighting each vertex by ratio of distances (or

areas)

C C0 C1 where 1
• We can rewrite this as

• and are called barycentric coordinates

21Baoquan Chen 2015

dx
dy
C

0C

3210)1()1(()1)(1(CCCCC dxdydydxdydxdydx

1C

2C 0C

• Bilinear interpolation: 4 points instead of 2

Barycentric Coordinates in 2-D

22Baoquan Chen 2015

Barycentric Coordinates in 2-D
• Now suppose we have 3 points instead of 2

C is inside C0C1C2 , , [0,1]
C C0 C1 C2 where 1

• Define three barycentric coordinates: , , 0C

1C

2C

• How to define , , and ?

C

23Baoquan Chen 2015

Barycentric Coordinates for a Triangle
• Define barycentric coordinates to be ratios of

triangle areas

1C

0C
2C

 Area CC1C2
Area C0C1C2

 Area C0CC2
Area C0C1C2

 Area C0C1C
Area C0C1C2 1

C

24Baoquan Chen 2015

• in 3-D

–Area(ABC) = parallelogram area / 2 = ||(B-A) x (C-A)||/2

–faster: project to xy, yz, or zx, use 2D formula

• in 2-D

–Area(xy-projection(ABC)) = [(b
x

-a
x

)(c
y

-a
y

)-(c
x

-a
x

)(b
y

-a
y

)]/2

project A,B,C to xy plane, take z component of cross product

–positive if ABC is CCW (counterclockwise)

Computing Area of a Triangle

A B

C

25Baoquan Chen 2015

Computing Area of a Triangle - Algebra
That short formula,

Area(ABC) = [(b
x

-a
x

)(c
y

-a
y

) – (c
x

-a
x

)(b
y

-a
y

)]/2

Where did it come from?

Area(ABC) 12
ax bx cxay by cy1 1 1

 bx cxby cy
ax cxay cy

ax bxay by

÷÷/ 2

 (bxcy cxby cxay axcy cxay axcy)/ 2 ax bx cx

cy

ay

by

The short & long formulas above agree.
Short formula better because fewer multiplies. Speed is important!
Can we explain the formulas geometrically?

26Baoquan Chen 2015

One Explanation
Area(ABC) = area of the rectangle minus

area of the red shaded triangles

27Baoquan Chen 2015

Another Explanation
Area(ABC) =[(b

x

-a
x

)(c
y

-a
y

) – (c
x

-a
x

)(b
y

-a
y

)]/2

is a sum of rectangle areas, divided by 2.

cy
/2 =

ax bx cxby

ay

it works!

=!=!
since triangle area = base*height/2

+ /2 = /2 =?
(bx-ax)(cy-ay) (cx-ax)(ay-by)

ax bx cx

cy

by

ay

28Baoquan Chen 2015

Uses for Barycentric Coordinates
• Point-in-triangle testing!

–point is in triangle iff , ,
the same sign

–note similarity to standard

point-in-polygon methods that

use tests of form a
i

x+b
i

y+c
i

<0

for each edge i

• Can use barycentric coordinates to interpolate any quantity

–color interpolation – Gouraud shading

–normal interpolation – realizing Phong Shading

–(s,t) texture coordinate interpolation – texture mapping

0N

1N

2N

29Baoquan Chen 2015

Instancing

a

s=Mq

t=Mr

b
ray a+tb

w=Mp

btMaM 11 ray
aM 1

bM 1

q

r

points p on circle

points w on ellipse
s

t

30Baoquan Chen 2015

• The basic idea of instancing is that an object is distorted by a transformation matrix before the object is displayed. For example, in 2D an arbitrary ellipse is an instance of a circle because we can store a unit circle and the composite transformation matrix that transforms the circle to the ellipse. Thus the explicit construction of the ellipse is left as a future procedure operation at render time.
• With the concept of instancing, in ray tracing we can choose what space to do ray-object intersection in. If we have a ray a+tb (a: eye point; b: ray vector; t: parameter) we want to intersect with the transformed object, we can instead intersect an inverse-transformed ray with the untransformed object. That means, computing a ray and an ellipse intersection can be converted to a problem of computing ray-circle intersection instead.
• Pay attention to normal transformation for correct shading: if the normal at the intersection point of the base object is n, compute its correct normal in the transformed space.

Instancing

