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The Quest for Visual Realism

Some slides are from Leonard McMillan and others
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Texture Mapping
3D model Texture mapped model 
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Texture Mapping
We need a function that 
associates each surface 
point with a 2D coordinate 
in the texture map
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Texture Mapping
For each point rendered, 
look up color in texture 
map 
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UV Coordinates 
• Each vertex P stores 2D (u, v) “texture 

coordinates” 

– UVs determine the 2D location in the texture for 

the vertex  

– We will see how to specify them later 

• Then we interpolate using barycentrics 
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Photo-textures

• Specify a texture coordinate at each vertex (s, t) or (u, v) 
• Canonical coordinates where u and v are between 0 and 1 
• Simple modifications to triangle rasterizer
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Texture Interpolation
(a0,r0,g0,b0)

(a1,r1,g1,b1)
(a2,r2,g2,b2)

(u0,v0)

(u1,v1)
(u2,v2)

• Linear Interpolation
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Texture Mapping Artifacts I
• Simple linear interpolation of u and v over a triangle in a screen space leads to unexpected results unexpected results

– Distorted when the triangle’s vertices do not have the same depth
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Visualizing the Problem

Notice that uniform steps on the image plane do not correspond to uniform steps along the edge.
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An Approximation Approach
You can reduce the perceived artifacts of non-
perspective correct interpolation by subdividing the 
texture-mapped triangles into smaller triangles (why 
does this work?). But, fundamentally the screen-space 
interpolation of projected parameters is inherently 
flawed. 
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Linear Interpolation in Screen Space

Compare interpolation in screen space 
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Linear Interpolation in 3-Space

to interpolation in 3-space 
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Come Back to Screen Interpolation
Still need to scan convert in screen space... so we need a mapping from t 
values to s values. We know that the all points on the 3-space edge project 
onto our screen-space line. Thus we can set up the follow equality:

and solve for s in terms of t giving: 

Unfortunately, at this point in the pipeline (after projection) we no 
longer have z1 and z2 lingering around (Why?). However, we do have 
w1 = 1/z1 and w2 = 1/z2. 
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Interpolating Parameters 
We can now use this expression for s to interpolate arbitrary parameters, such as texture 
indices (u, v), over our 3-space triangle. This is accomplished substituting our solution for s 
given t into the parameter interpolation.

Therefore, if we pre-multiply all parameters that we wish to interpolate in 3-space by 
their corresponding w value and add a new plane equation to interpolate the w values 
themselves, we can interpolate the numerators and denominator in screen-space. We then 
need to perform a divide at each step to get to map the screen-space interpolants to their 
corresponding 3-space values. 
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Perspective-Correct Interpolation
• This method of interpolation is called 

perspective-correct interpolation 

–Actually it is simply correct interpolation 

correct interpolation 

–Not all 3D graphics APIs implement 

perspective-correct interpolation
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Texture Mapping Artifacts II
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Texture Mapping Artifacts II

CLICK
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Texture Screen

Texture Resampling
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Texture

Screen

High Quality Texture Mapping
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MIP Mapping 
MIP Mapping is one popular technique for antialiasing in texture mapping. MIP is an 
acronym for the latin phrase multium in parvo, which means "many in a small place". 
The technique was first described by Lance Williams. The basic idea is to construct a 
pyramid of images that are prefiltered and resampled at resolutions that are a binary 
fractions (1/2, 1/4, 1/8, etc) of the original image's resolution.

While rasterizing we 
compute the index of the 
image pyramid level that 
has resolution closest to that 
of our desired screen 
resolution; in practice, two  
closest levels, rather than 
only one, are picked up and 
an interpolation between the 
two levels is performed). 
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Level l

Level l+1
f

1-f

MIPmaps

MIP Mapping 
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MIP Mapping 
Computing this series of filtered images requires 
only a small fraction of additional storage over the 
original texture (How small of a fraction?). 
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Comparison

Nearest neighbor interpolation MIP-mapping
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Finding the MIP level 
What we'd like to find is the step size that a uniform step in screen-space 
causes in three-space, or, in other words how a screen-space change relates 
to a 3-space change. This sounds like the derivatives, ( du/dt, dv/dt ). They 
can be computed simply using the chain rule: 

Notice that the term being squared under the numerator is just the w plane 
equation that we are already computing. The remaining terms are constant 
for a given rasterization. Thus all we need to do to compute the derivative is 
a square the w accumulator and multiply it by a couple of constants. 
Now, we know how a step in screen-space relates to a step in 3-space. So 
how do we translate this to an index into our MIP table? 


