
Texture Mapping

2Baoquan Chen 2015

The Quest for Visual Realism

Some slides are from Leonard McMillan and others

3Baoquan Chen 2015

Texture Mapping
3D model Texture mapped model

4Baoquan Chen 2015

Texture Mapping
We need a function that
associates each surface
point with a 2D coordinate
in the texture map

5Baoquan Chen 2015

Texture Mapping
For each point rendered,
look up color in texture
map

6Baoquan Chen 2015

UV Coordinates
• Each vertex P stores 2D (u, v) “texture

coordinates”

– UVs determine the 2D location in the texture for

the vertex

– We will see how to specify them later

• Then we interpolate using barycentrics

7Baoquan Chen 2015

Photo-textures

• Specify a texture coordinate at each vertex (s, t) or (u, v)
• Canonical coordinates where u and v are between 0 and 1
• Simple modifications to triangle rasterizer

8Baoquan Chen 2015

Texture Interpolation
(a0,r0,g0,b0)

(a1,r1,g1,b1)
(a2,r2,g2,b2)

(u0,v0)

(u1,v1)
(u2,v2)

• Linear Interpolation

9Baoquan Chen 2015

Texture Mapping Artifacts I
• Simple linear interpolation of u and v over a triangle in a screen space leads to unexpected results unexpected results

– Distorted when the triangle’s vertices do not have the same depth

10Baoquan Chen 2015

Visualizing the Problem

Notice that uniform steps on the image plane do not correspond to uniform steps along the edge.

11Baoquan Chen 2015

An Approximation Approach
You can reduce the perceived artifacts of non-
perspective correct interpolation by subdividing the
texture-mapped triangles into smaller triangles (why
does this work?). But, fundamentally the screen-space
interpolation of projected parameters is inherently
flawed.

12Baoquan Chen 2015

Linear Interpolation in Screen Space

Compare interpolation in screen space

13Baoquan Chen 2015

Linear Interpolation in 3-Space

to interpolation in 3-space

14Baoquan Chen 2015

Come Back to Screen Interpolation
Still need to scan convert in screen space... so we need a mapping from t
values to s values. We know that the all points on the 3-space edge project
onto our screen-space line. Thus we can set up the follow equality:

and solve for s in terms of t giving:

Unfortunately, at this point in the pipeline (after projection) we no
longer have z1 and z2 lingering around (Why?). However, we do have
w1 = 1/z1 and w2 = 1/z2.

15Baoquan Chen 2015

Interpolating Parameters
We can now use this expression for s to interpolate arbitrary parameters, such as texture
indices (u, v), over our 3-space triangle. This is accomplished substituting our solution for s
given t into the parameter interpolation.

Therefore, if we pre-multiply all parameters that we wish to interpolate in 3-space by
their corresponding w value and add a new plane equation to interpolate the w values
themselves, we can interpolate the numerators and denominator in screen-space. We then
need to perform a divide at each step to get to map the screen-space interpolants to their
corresponding 3-space values.

16Baoquan Chen 2015

Perspective-Correct Interpolation
• This method of interpolation is called

perspective-correct interpolation

–Actually it is simply correct interpolation

correct interpolation

–Not all 3D graphics APIs implement

perspective-correct interpolation

17Baoquan Chen 2015

Texture Mapping Artifacts II

18Baoquan Chen 2015

Texture Mapping Artifacts II

CLICK

19Baoquan Chen 2015

Texture Screen

Texture Resampling

20Baoquan Chen 2015

Texture

Screen

High Quality Texture Mapping

21Baoquan Chen 2015

MIP Mapping
MIP Mapping is one popular technique for antialiasing in texture mapping. MIP is an
acronym for the latin phrase multium in parvo, which means "many in a small place".
The technique was first described by Lance Williams. The basic idea is to construct a
pyramid of images that are prefiltered and resampled at resolutions that are a binary
fractions (1/2, 1/4, 1/8, etc) of the original image's resolution.

While rasterizing we
compute the index of the
image pyramid level that
has resolution closest to that
of our desired screen
resolution; in practice, two
closest levels, rather than
only one, are picked up and
an interpolation between the
two levels is performed).

22Baoquan Chen 2015

Level l

Level l+1
f

1-f

MIPmaps

MIP Mapping

23Baoquan Chen 2015

MIP Mapping
Computing this series of filtered images requires
only a small fraction of additional storage over the
original texture (How small of a fraction?).

24Baoquan Chen 2015

Comparison

Nearest neighbor interpolation MIP-mapping

25Baoquan Chen 2015

Finding the MIP level
What we'd like to find is the step size that a uniform step in screen-space
causes in three-space, or, in other words how a screen-space change relates
to a 3-space change. This sounds like the derivatives, (du/dt, dv/dt). They
can be computed simply using the chain rule:

Notice that the term being squared under the numerator is just the w plane
equation that we are already computing. The remaining terms are constant
for a given rasterization. Thus all we need to do to compute the derivative is
a square the w accumulator and multiply it by a couple of constants.
Now, we know how a step in screen-space relates to a step in 3-space. So
how do we translate this to an index into our MIP table?

