
1Baoquan Chen 2015

• Right-handed vs. left-handed

• Z-axis determined from X and Y by cross product: Z=X×Y

• Cross product follows right-hand rule in a right-handed
coordinate system, and left-hand rule in left-handed system.

From 2D to 3D: Preliminary

(out of page) X

Y

Z
X

Y

Z

(into page)

Z  X Y 

X2Y3  X3Y2

X3Y1  X1Y3

X1Y2  X2Y1



















2Baoquan Chen 2015

3D Translation

T =

1 0 0 t0

0 1 0 t1

0 0 1 t2

0 0 0 1

3Baoquan Chen 2015

3D Scaling

S =

s0 0 0 0
0 s1 0 0
0 0 s2 0
0 0 0 1

4Baoquan Chen 2015

3D Rotation

Rx =

1 0 0 0

0 cos –sin 0

0 sin cos 0

0 0 0 1

Ry =

cos 0 sin 0

0 1 0 0

–sin 0 cos 0

0 0 0 1

Rz =

cos –sin 0 0

sin cos 0 0

0 0 1 0

0 0 0 1

15Baoquan Chen 2015

Transformation

1. 2D Transformation

2. 3D Transformation

3. Viewing Projection

16Baoquan Chen 2015

Orthographic Projection

• Throw away Z coordinates

• Get points on the XY plane

X

Y

17Baoquan Chen 2015

Perspective

http://www.indiana.edu/~kglowack/athens/

http://www.indiana.edu/~kglowack/athens/

18Baoquan Chen 2015

Perspective Projection

19Baoquan Chen 2015

A Simple Perspective Camera

• Canonical case:
–camera looks along the z-axis

–focal point is the origin

–image plane is parallel to the xy-plane at
distance d

–(We call d the focal length, mainly for historical
reasons)

y

x

z
F=[0,0,0]

[0,0,d]

Image plane

20Baoquan Chen 2015

Similar Triangles

• Diagram shows y-coordinate, x-coordinate
is similar

(0, 0) (0, d)

(y, z)

Y

Z

(y’, z’)

21Baoquan Chen 2015

Similar Triangles

z’ = d

y’/z’ = y/z

y’/d = y/z

y’ = (d/z)*y

(0, 0) (0, d)

(y, z)

Y

Z

(y’, z’)

point [x,y,z] projects to [(d/z)x, (d/z)y, d]

22Baoquan Chen 2015

A Perspective Projection Matrix

•Projection using homogeneous coordinates:

– transform [x, y, z] to [(d/z)x, (d/z)y, d]













































































z

dz

dy

dx

z

y

x

d

d

d

w

wz

wy

wx

10100

000

000

000

'

'

'









































d

y
z

d

x
z

d

z

y

x

'

'

'
w

1

25Baoquan Chen 2015

Camera Position and Orientation

26Baoquan Chen 2015

LookFrom And LookAt

Is This Enough?

27Baoquan Chen 2015

LookFrom And LookAt

28Baoquan Chen 2015

Complete Camera Specification

VUp

d

LookFrom

LookAt

29Baoquan Chen 2015

Complete Camera Specification

VUp

30Baoquan Chen 2015

Viewing Volume

31Baoquan Chen 2015

Rendering from any camera position

(0, 0) (0, d)

(y, z)
Y

Z

(y’, z’)

(0, 0) (0, d)

(y, z)

Y

Z

(?, ?)

LookFrom

LookAt

VUp

34Baoquan Chen 2015

Viewing Transformations

X

Z

Y

LookFrom

LookAt

VUp

35Baoquan Chen 2015

Viewing Transformations

Z

LookFrom

LookAt

VUp

Translate LookFrom to origin

X

Y

36Baoquan Chen 2015

Viewing Transformations

Z

LookFrom
LookAt

Rotate LookAt to Z axis (axis-angle rotation)

X

Y

VUp

37Baoquan Chen 2015

Viewing Transformations

Z

LookFrom
LookAt

Rotate about Z to get the projection of Vup parallel to the Y axis

X

Y

VUp

39Baoquan Chen 2015

Screen Coordinates

VUp

d

LookFrom

LookAt

40Baoquan Chen 2015

Viewport Transformations

• A transformation maps the visible (model) world onto
screen or window coordinates

• In OpenGL a viewport transformation, e.g. glOrtho(),
defines what part of the world is mapped in standard
“Normalized Device Coordinates” ((-1,-1) to (1,1))

• The viewpoint transformation maps NDC into actual
window, pixel coordinates

–by default this fills the window

–otherwise use glViewport

(2,0)

(4.7,2)

(0,0)

(640,480)

41Baoquan Chen 2015

Clipping

42Baoquan Chen 2015

The Viewing Frustum

x

y

z

image plane

near far

43Baoquan Chen 2015

Normalizing the Viewing Frustum

• Transform frustum to a cube before clipping

x

y

z

near far

1

1

1

0

x

y

z

image plane

near
far

• Converts perspective frustum to
orthographic frustum

• Very similar to our perspective
transformation – just another matrix

44Baoquan Chen 2015

Model and Transformation Hierarchy

45Baoquan Chen 2015

How to Model a Stick Person

• Make a stick person out of cubes

• Just translate, rotate, and
scale each one to get the right
size, shape, position, and
orientation.

• Looks great, until you try to
make it move.

46Baoquan Chen 2015

The Right Control Knobs

• As soon as you want to change
something, the model likely falls
apart

• Reason: the thing you’re modeling is
constrained but your model doesn’t
know it

• Wanted:
–some sort of representation of structure

–Control knob

• This kind of control knob is
convenient for static models, and
vital for animation!

• Key: structure the transformations in
the right way: using a hierarchy

47Baoquan Chen 2015

Making an Articulated Model

• A minimal 2-D jointed object:
–Two pieces, A (“forearm”) and B (“upper arm”)

–Attach point q on B to point r on A (“elbow”)

–Desired control knobs:
» u: shoulder angle (A and B rotate together about p)

» v: elbow angle (A rotates about r, which stays
attached to p)

Ar B qp

48Baoquan Chen 2015

Making an Arm, step 1

• Start with A and B in their untransformed
configurations (B is hiding behind A)

• First apply a series of transformations to
A, leaving B where it is…

Ar

49Baoquan Chen 2015

Making an Arm, step 2

• Translate by -r, bringing r to the origin

• You can now see B peeking out from behind A

B qp
Ar

Ar

50Baoquan Chen 2015

Making an Arm, step 3

• Next, we rotate A by v (the “elbow”
angle)

B qpB qp
Ar

51Baoquan Chen 2015

Making an Arm, step 4

• Translate A by q, bringing r and q together to
form the elbow joint

• We can regard q as the origin of the elbow
coordinate system, and regard A as being in this
coordinate system.

B qpB qp

52Baoquan Chen 2015

Making an Arm, step 5

• From now on, each transformation applies to both A
and B (This is important!)

• First, translate by -p, bringing p to the origin

• A and B both move together, so the elbow doesn’t
separate!

B qp
B qp

53Baoquan Chen 2015

Making an Arm, step 6

• Then, we rotate by u, the “shoulder”
angle

• Again, A and B rotate together

B qp

54Baoquan Chen 2015

Making an Arm, step 7

• Finally, translate by T, bringing the arm where we
want it

• p is at origin of shoulder coordinate system

55Baoquan Chen 2015

Transformation Hierarchies

• This is the build-an-arm sequence,
represented as a tree

• Interpretation:

–Leaves are geometric primitives

–Internal nodes are transformations

–Transformations apply to
everything under them—start at the
bottom and work your way up

• You can build a wide range of
models this way

Trans -r

Rot v

Trans q

A

Trans -p

Rot u

Trans T

B

Transform

Control knob

Primitive

56Baoquan Chen 2015

Transformation Hierarchies

Another point of view:

• The shoulder coordinate
transformation moves
everything below it with
respect to the shoulder:
–B

–A and its transformation

• The elbow coordinate
transformation moves A with
respect to the elbow – A’

Trans -r

Rot v

Trans q

A

Trans -p

Rot u

Trans T

B

Shoulder coordinate transform

Elbow coordinate transform

Primitive

A’

57Baoquan Chen 2015

A Schematic Humanoid

• Each node represents

–rotation(s)

–geometric primitive(s)

–struct.
transformations

• The root can be
anywhere. We chose the
hip (can re-root)

• Control for each joint
angle, plus global
position and
orientation

• A realistic human would
be much more complex

hip

torso

headl. arm2

l. arm1 r. arm1

r. arm2

l. leg1

l. leg2

r. leg1

r. leg 2shoulder

neck

58Baoquan Chen 2015

Directed Acyclic Graph

• This is a graph, so you
can re-root it.

• It’s directed, rendering
traversal only follows
links one way.

• It’s acyclic, to avoid
infinite loops in
rendering.

• Not necessarily a tree.
– e.g. l.arm2 and r.arm2
primitives might be two
instantiations (one
mirrored) of the same
geometry

hip

torso

headl. arm2

l. arm1 r. arm1

r. arm2

l. leg1

l. leg2

r. leg1

r. leg 2shoulder

neck

59Baoquan Chen 2015

What Hierarchies Can and Can’t Do

• Advantages:
–Reasonable control knobs

–Maintains structural constraints

• Disadvantages:
–Doesn’t always give the “right” control knobs

» e.g. hand or foot position - re-rooting may help

–Can’t do closed kinematic chains (keep hand on
hip)

–Other constraints: do not walk through walls

• A more general approach:
–inverse kinematics - more complex, but better knobs

• Hierarchies are a vital tool for modeling
and animation

60Baoquan Chen 2015

Implementing Hierarchies

• Building block: a matrix stack that you can
push/pop

• Recursive algorithm that descends your model
tree, doing transformations, pushing,
popping, and drawing

• Tailored to OpenGL’s state machine
architecture (or vice versa)

• Nuts-and-bolts issues:
–What kind of nodes should I put in my
hierarchy?

–What kind of interface should I use to
construct and edit hierarchical models?

• Extensions:
–expressions, languages.

61Baoquan Chen 2015

The Matrix Stack

• Idea of Matrix Stack:
–LIFO stack of matrices with push and pop operations

–current transformation matrix (product of all transformations
on stack)

–transformations modify matrix at the top of the stack

• Recursive algorithm:
–load the identity matrix

–for each internal node:

» push a new matrix onto the stack

» concatenate transformations onto current transformation matrix

» recursively descend tree

» pop matrix off of stack

–for each leaf node:

» draw the geometric primitive using the current transformation
matrix

62Baoquan Chen 2015

Relevant OpenGL routines

glPushMatrix(), glPopMatrix()

push and pop the stack. push leaves a copy of the current

matrix on top of the stack
glLoadIdentity(), glLoadMatrixd(M)

load the Identity matrix, or an arbitrary matrix, onto top
of the stack
glMultMatrixd(M)

multiply the matrix C on top of stack by M. C = CM

glOrtho (x0,y0,x1,y1,z0,z1)

set up parallel projection matrix

glRotatef(theta,x,y,z), glRotated(…)

axis/angle rotate. “f” and “d” take floats and doubles,
respectively

glTranslatef(x,y,z), glScalef(x,y,z)

translate, rotate. (also exist in “d” versions.)

63Baoquan Chen 2015

Two-link arm, revisited, in OpenGL

Trace of Opengl calls

glLoadIdentity();

glOrtho(…);

glPushMatrix();

glTranslatef(Tx,Ty,0);

glRotatef(u,0,0,1);

glTranslatef(-px,-py,0);

glPushMatrix();

glTranslatef(qx,qy,0);

glRotatef(v,0,0,1);

glTranslatef(-rx,-ry,0);

Draw(A);

glPopMatrix();

Draw(B);

glPopMatrix();

Trans -r

Rot v

Trans q

A

Trans -p

Rot u

Trans T

B

64Baoquan Chen 2015

The following not covered in this course

65Baoquan Chen 2015

Vector Transformation

• For affine transformation, simply
transform (x,y,z,0).

• For perspective transformation, more
complicated

• For normal transformation, special case

66Baoquan Chen 2015

Transforming Normals

• It’s tempting to think of normal vectors as
being like porcupine quills, so they would
transform like points

• But it’s not so --- consider the 2D example
affine transformation below.

• We need a different rule to transform
normals.

67Baoquan Chen 2015

Normals Do Not Transform Like Points

• If M is a 4x4 transformation matrix, then

–To transform points, use p’=Mp, where p=[x y z
1]T

–So to transform normals, n’=Mn, where n=[a b c 1]T

right?

–Wrong! This formula doesn’t work for general M.

68Baoquan Chen 2015

Normals Transform Like Planes

A plane ax  by  cz  d  0 can be written

n p  n
T
p  0, where n  a b c d 

T
, p  x y z 1 

T

(a,b,c) is the plane normal, d is the offset.

If p is transformed, how should n transform?

To find the answer, do some magic :

 0  n
T
Ip equation for point on plane in original space

  nT(M1M)p

  (nTM1)(Mp)

  n T p equation for point on plane in transformed space

p  Mp to transform point

n  (n
T
M

1
)

T
M

1T
n to transform plane

69Baoquan Chen 2015

Transforming Normals - Cases

• For general transformations M that
include perspective, use full formula (M
inverse transpose), use the right d

–d matters, because parallel planes do
not transform to parallel planes in
this case

• For affine transformations, d is
irrelevant, can use d=0.

• For rotations, M inverse transpose = M,
can transform normals and points with
same formula.

70Baoquan Chen 2015

Quaternions

• The rotations are the unit quaternions.

• Quaternions, a generalization of complex numbers,
can represent 3-D rotations
– where and

• Example: rotation by  about the unit vector [b c
d] :
–

• Successive rotations corresponds to multiplying
quaternions based on distributive law and rules:
–

• A unit quaternion represents a point on the unit
sphere in 4D.
–Interpolation: shortest path between two points on the
sphere (a great arc)

kji dcba  Rdcba ,,, 12222  dcba
T

kji
2222

sinsinsincos


dcb 

.,,1 ikjkikj,ijkjikijkji 222 

71Baoquan Chen 2015

Quaternions

• Advantages:
–no trigonometry required

–multiplying quaternions gives another rotation
(quaternion)

–rotation matrices can be calculated from them

–direct rotation (with no matrix)

–no favored direction or axis

• Disadvantages:
–

but,

–
but,

)()(  vv RR 

))(())((  vv RQuaternionRQuaternion 

)360()0(





vv RR 
)0001())360(())0((kji  





vv RQuaternionRQuaternion

72Baoquan Chen 2015

Line Clipping

• Modify endpoints of lines to lie in rectangle

• How to define “interior” of rectangle?

• Convenient def.: intersection of 4 half-planes
–Nice way to decompose the problem

–Generalizes easily to 3D (intersection of 6 half-planes)

y < ymax y > ymin

x > xmin x < xmax

= interior

xmin xmax

ymin

ymax

73Baoquan Chen 2015

Line Clipping

• Modify end points of lines to lie in
rectangle

• Method:
–Is end-point inside the clip region? (half-plane tests)

–If outside, calculate intersection between the line and
the clipping rectangle and make this the new end point

• Both endpoints inside:
trivial accept

• One inside: find
intersection and clip

• Both outside: either clip or
reject (tricky case)

74Baoquan Chen 2015

Cohen-Sutherland Algorithm

• Uses outcodes to encode the half-plane tests results

1000

0000

0100

1001

0001

0101 0110

0010

1010
bit 1: y>ymax
bit 2: y<ymin
bit 3: x>xmax
bit 4: x<xmin

ymax

ymin

xmaxxmin

• Rules:

–Trivial accept: outcode(end1) and outcode(end2) both zero
–Trivial reject: outcode(end1) & (bitwise and) outcode(end2)
nonzero

–Else subdivide

75Baoquan Chen 2015

Cohen-Sutherland Algorithm: Subdivision

• If neither trivial accept nor reject:
–Pick an outside endpoint (with nonzero outcode)

–Pick an edge that is crossed (nonzero bit of
outcode)

–Find line's intersection with that edge

–Replace outside endpoint with intersection point

–Repeat until trivial accept or reject

• Other clipping algorithms
–Cyrus-Beck/Liang-Barksy or Nicholl-Lee-Nicholl

76Baoquan Chen 2015

Polygon Clipping

Convert a polygon into one or more polygons that
form the intersection of the original with the
clip window

77Baoquan Chen 2015

Sutherland-Hodgman
Polygon Clipping Algorithm

• Subproblem:
–clip a polygon (vertex list) against a single clip
plane

–output the vertex list(s) for the resulting clipped
polygon(s)

• Clip against all four planes
–generalizes to 3D (6 planes)

–generalizes to any convex clip polygon/polyhedron

78Baoquan Chen 2015

> in-to-in: output vertex

> out-to-out: no output

> in-to-out: output intersection

> out-to-in: output intersection and vertex

Sutherland-Hodgman
Polygon Clipping Algorithm (Cont.)

• To clip vertex list against one half-plane:
–if first vertex is inside - output it

–loop through list testing inside/outside
transition - output depends on transition:

> in-to-in: output vertex

> out-to-in: output intersection and vertex

> out-to-out: no output

> in-to-out: output intersection

79Baoquan Chen 2015

Summary

• Started with orthographic projection: just throw
out the Z coordinate

• Perspective projection from origin along Z axis:
use projection matrix

• Moving the camera: transform the entire world so
that we can do projection from the origin along
the Z axis

• Screen coordinates: translate and scale entire
world so that projection yields pixel coordinates

• Clipping: transform world so that viewing frustum
becomes a unit cube. Clip lines against half-
planes.

