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• Right-handed vs.           left-handed

• Z-axis determined from X and Y by cross product: Z=X×Y

• Cross product follows right-hand rule in a right-handed 
coordinate system, and left-hand rule in left-handed system.

From 2D to 3D: Preliminary
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3D Translation

T = 

1 0 0 t0

0 1 0 t1

0 0 1 t2

0 0 0 1
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3D Scaling

S = 

s0 0 0 0
0 s1 0 0
0 0 s2 0
0 0 0 1
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3D Rotation

Rx = 

1 0 0 0

0 cos –sin 0

0 sin cos 0

0 0 0 1

Ry = 

cos 0 sin 0

0 1 0 0

–sin 0 cos 0

0 0 0 1

Rz = 

cos –sin 0 0

sin cos 0 0

0 0 1 0

0 0 0 1
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Transformation

1. 2D Transformation

2. 3D Transformation

3. Viewing Projection
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Orthographic Projection

• Throw away Z coordinates

• Get points on the XY plane

X

Y
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Perspective

http://www.indiana.edu/~kglowack/athens/

http://www.indiana.edu/~kglowack/athens/
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Perspective Projection
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A Simple Perspective Camera

• Canonical case:
–camera looks along the z-axis

–focal point is the origin

–image plane is parallel to the xy-plane at 
distance d

–(We call d the focal length, mainly for historical 
reasons)

y

x

z
F=[0,0,0]

[0,0,d]

Image plane
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Similar Triangles

• Diagram shows y-coordinate, x-coordinate 
is similar

(0, 0) (0, d)

(y, z)

Y

Z

(y’, z’)
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Similar Triangles

z’ = d

y’/z’ = y/z

y’/d = y/z

y’ = (d/z)*y

(0, 0) (0, d)

(y, z)

Y

Z

(y’, z’)

point [x,y,z] projects to [(d/z)x, (d/z)y, d]



22Baoquan Chen 2015

A Perspective Projection Matrix

•Projection using homogeneous coordinates:

– transform [x, y, z] to [(d/z)x, (d/z)y, d]
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Camera Position and Orientation
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LookFrom And LookAt

Is This Enough?
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LookFrom And LookAt
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Complete Camera Specification

VUp

d

LookFrom

LookAt
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Complete Camera Specification

VUp
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Viewing Volume
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Rendering from any camera position

(0, 0) (0, d)

(y, z)
Y

Z

(y’, z’)

(0, 0) (0, d)

(y, z)

Y

Z

(?, ?)

LookFrom

LookAt

VUp
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Viewing Transformations

X

Z

Y

LookFrom

LookAt

VUp
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Viewing Transformations

Z

LookFrom

LookAt

VUp

Translate LookFrom to origin

X

Y
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Viewing Transformations

Z

LookFrom
LookAt

Rotate LookAt to Z axis (axis-angle rotation)

X

Y

VUp
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Viewing Transformations

Z

LookFrom
LookAt

Rotate about Z to get the projection of Vup parallel to the Y axis

X

Y

VUp
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Screen Coordinates

VUp

d

LookFrom

LookAt
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Viewport Transformations

• A transformation maps the visible (model) world onto 
screen or window coordinates

• In OpenGL a viewport transformation, e.g. glOrtho(), 
defines what part of the world is mapped in standard 
“Normalized Device Coordinates” ((-1,-1) to (1,1))

• The viewpoint transformation maps NDC into actual 
window, pixel coordinates

–by default this fills the window

–otherwise use glViewport

(2,0)

(4.7,2)

(0,0)

(640,480)
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Clipping
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The Viewing Frustum

x

y

z

image plane

near far
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Normalizing the Viewing Frustum

• Transform frustum to a cube before clipping

x

y

z

near far

1

1

1

0

x

y

z

image plane

near
far

• Converts perspective frustum to 
orthographic frustum

• Very similar to our perspective 
transformation – just another matrix
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Model and Transformation Hierarchy
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How to Model a Stick Person

• Make a stick person out of cubes

• Just translate, rotate, and 
scale each one to get the right 
size, shape, position, and 
orientation.

• Looks great, until you try to 
make it move.
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The Right Control Knobs

• As soon as you want to change 
something, the model likely falls 
apart

• Reason: the thing you’re modeling is 
constrained but your model doesn’t 
know it

• Wanted: 
–some sort of representation of structure 

–Control knob

• This kind of control knob is 
convenient for static models, and 
vital for animation!

• Key:  structure the transformations in 
the right way:  using a hierarchy
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Making an Articulated Model

• A minimal 2-D jointed object:
–Two pieces, A (“forearm”) and B (“upper arm”)

–Attach point q on B to point r on A (“elbow”)

–Desired control knobs:
» u: shoulder angle (A and B rotate together about p)

» v: elbow angle (A rotates about r, which stays        
attached to p)

Ar B qp
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Making an Arm, step 1

• Start with A and B in their untransformed 
configurations  (B is hiding behind A)

• First apply a series of transformations to 
A, leaving B where it is…

Ar
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Making an Arm, step 2

• Translate by -r, bringing r to the origin

• You can now see B peeking out from behind A

B qp
Ar

Ar
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Making an Arm, step 3

• Next,  we rotate A by v (the “elbow” 
angle)

B qpB qp
Ar
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Making an Arm, step 4

• Translate A by q, bringing r and q together to 
form the elbow joint

• We can regard q as the origin of the elbow 
coordinate system, and regard A as being in this 
coordinate system.

B qpB qp
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Making an Arm, step 5

• From now on, each transformation applies to both A
and B (This is important!)

• First, translate by -p, bringing p to the origin

• A and B both move together, so the elbow doesn’t 
separate!

B qp
B qp
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Making an Arm, step 6

• Then, we rotate by u, the “shoulder” 
angle 

• Again, A and B rotate together

B qp



54Baoquan Chen 2015

Making an Arm, step 7

• Finally, translate by T, bringing the arm where we 
want it

• p is at origin of shoulder coordinate system
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Transformation Hierarchies

• This is the build-an-arm sequence, 
represented as a tree

• Interpretation:

–Leaves are geometric primitives

–Internal nodes are transformations

–Transformations apply to 
everything under them—start at the 
bottom and work your way up

• You can build a wide range of 
models this way

Trans -r

Rot v

Trans q

A

Trans -p

Rot u

Trans T

B

Transform

Control knob

Primitive



56Baoquan Chen 2015

Transformation Hierarchies

Another point of view:

• The shoulder coordinate 
transformation moves 
everything below it with 
respect to the shoulder:
–B

–A and its transformation 

• The elbow coordinate 
transformation moves A with 
respect to the elbow – A’

Trans -r

Rot v

Trans q

A

Trans -p

Rot u

Trans T

B

Shoulder coordinate transform 

Elbow coordinate transform

Primitive

A’
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A Schematic Humanoid

• Each node represents

–rotation(s)

–geometric primitive(s)

–struct. 
transformations

• The root can be 
anywhere.  We chose the 
hip (can re-root)

• Control for each joint 
angle, plus global 
position and 
orientation

• A realistic human would 
be much more complex

hip

torso

headl. arm2

l. arm1 r. arm1

r. arm2

l. leg1

l. leg2

r. leg1

r. leg 2shoulder

neck
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Directed Acyclic Graph

• This is a graph, so you 
can re-root it.

• It’s directed, rendering 
traversal only follows 
links one way.

• It’s acyclic, to avoid 
infinite loops in 
rendering.

• Not necessarily a tree.
– e.g. l.arm2 and r.arm2 
primitives might be two 
instantiations (one 
mirrored) of the same 
geometry

hip

torso

headl. arm2

l. arm1 r. arm1

r. arm2

l. leg1

l. leg2

r. leg1

r. leg 2shoulder

neck
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What Hierarchies Can and Can’t Do

• Advantages:
–Reasonable control knobs

–Maintains structural constraints

• Disadvantages:
–Doesn’t always give the “right” control knobs 

» e.g. hand or foot position - re-rooting may help

–Can’t do closed kinematic chains (keep hand on 
hip)

–Other constraints:  do not walk through walls

• A more general approach:
–inverse kinematics - more complex, but better knobs

• Hierarchies are a vital tool for modeling 
and animation
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Implementing Hierarchies

• Building block: a matrix stack that you can 
push/pop

• Recursive algorithm that descends your model 
tree, doing transformations, pushing, 
popping, and drawing

• Tailored to OpenGL’s state machine 
architecture (or vice versa)

• Nuts-and-bolts issues:
–What kind of nodes should I put in my 
hierarchy?

–What kind of interface should I use to 
construct and edit hierarchical models?

• Extensions:
–expressions, languages.
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The Matrix Stack

• Idea of Matrix Stack:
–LIFO stack of matrices with push and pop operations

–current transformation matrix (product of all transformations 
on stack)

–transformations modify matrix at the top of the stack

• Recursive algorithm:
–load the identity matrix

–for each internal node:

» push a new matrix onto the stack

» concatenate transformations onto current transformation matrix

» recursively descend tree

» pop matrix off of stack

–for each leaf node:

» draw the geometric primitive using the current transformation 
matrix
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Relevant OpenGL routines

glPushMatrix(), glPopMatrix()

push and pop the stack. push leaves a copy of the current 

matrix on top of the stack
glLoadIdentity(), glLoadMatrixd(M)

load the Identity matrix, or an arbitrary matrix, onto top 
of the stack
glMultMatrixd(M)

multiply the matrix C on top of stack by M.  C = CM

glOrtho (x0,y0,x1,y1,z0,z1)

set up parallel projection matrix

glRotatef(theta,x,y,z), glRotated(…)

axis/angle rotate. “f” and “d” take floats and doubles, 
respectively  

glTranslatef(x,y,z), glScalef(x,y,z)

translate, rotate. (also exist in “d” versions.)
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Two-link arm, revisited, in OpenGL

Trace of Opengl calls

glLoadIdentity();

glOrtho(…);

glPushMatrix();

glTranslatef(Tx,Ty,0);

glRotatef(u,0,0,1);

glTranslatef(-px,-py,0);

glPushMatrix();

glTranslatef(qx,qy,0);

glRotatef(v,0,0,1);

glTranslatef(-rx,-ry,0);

Draw(A);

glPopMatrix();

Draw(B);

glPopMatrix();

Trans -r

Rot v

Trans q

A

Trans -p

Rot u

Trans T

B
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The following not covered in this course
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Vector Transformation

• For affine transformation, simply 
transform (x,y,z,0). 

• For perspective transformation, more 
complicated

• For normal transformation, special case
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Transforming Normals

• It’s tempting to think of normal vectors as 
being like porcupine quills, so they would 
transform like points

• But it’s not so --- consider the 2D example 
affine transformation below.

• We need a different rule to transform 
normals.
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Normals Do Not Transform Like Points

• If M is a 4x4 transformation matrix, then

–To transform points, use p’=Mp, where p=[x  y  z  
1]T

–So to transform normals, n’=Mn, where n=[a b  c  1]T

right?

–Wrong!  This formula doesn’t work for general M.
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Normals Transform Like Planes

  

A plane ax  by  cz  d  0 can be written

n p  n
T
p  0,    where  n   a b c d 

T
,   p   x y z 1 

T

(a,b,c) is the plane normal,  d is the offset.

If p is transformed, how should n transform?

To find the answer, do some magic :

   0  n
T
Ip   equation for point on plane in original space

       nT(M1M)p

       (nTM1 )(Mp)

       n T p    equation for point on plane in transformed space

p  Mp   to transform point

n  (n
T
M

1
)

T
M

1T
n   to transform plane
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Transforming Normals - Cases

• For general transformations M that 
include perspective, use full formula (M 
inverse transpose), use the right d

–d matters, because parallel planes do 
not transform to parallel planes in 
this case

• For affine transformations, d is 
irrelevant, can use d=0.

• For rotations, M inverse transpose = M, 
can transform normals and points with 
same formula.
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Quaternions

• The rotations are the unit quaternions.

• Quaternions, a generalization of complex numbers, 
can represent 3-D rotations
– where           and 

• Example: rotation by  about the unit vector [b  c  
d]  :
–

• Successive rotations corresponds to multiplying 
quaternions based on distributive law and rules:
–

• A unit quaternion represents a point on the unit 
sphere  in 4D.
–Interpolation: shortest path between two points on the 
sphere (a great arc)

kji dcba  Rdcba ,,, 12222  dcba
T

kji
2222

sinsinsincos


dcb 

.,,1 ikjkikj,ijkjikijkji 222 
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Quaternions

• Advantages:
–no trigonometry required

–multiplying quaternions gives another rotation 
(quaternion)

–rotation matrices can be calculated from them

–direct rotation (with no matrix)

–no favored direction or axis

• Disadvantages:
–

but, 

–
but,

)()(   vv RR 

))(())((   vv RQuaternionRQuaternion 

)360()0( 





vv RR 
)0001())360(())0(( kji  





vv RQuaternionRQuaternion
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Line Clipping

• Modify endpoints of lines to lie in rectangle

• How to define “interior” of rectangle?

• Convenient def.:  intersection of 4 half-planes
–Nice way to decompose the problem

–Generalizes easily to 3D (intersection of 6 half-planes)

y < ymax y > ymin

x > xmin x < xmax

= interior

xmin xmax

ymin

ymax
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Line Clipping

• Modify end points of lines to lie in 
rectangle

• Method:
–Is end-point inside the clip region? (half-plane tests)

–If outside, calculate intersection between the line and 
the clipping rectangle and make this the new end point

• Both endpoints inside:  
trivial accept

• One inside: find 
intersection and clip

• Both outside: either clip or 
reject (tricky case)



74Baoquan Chen 2015

Cohen-Sutherland Algorithm

• Uses outcodes to encode the half-plane tests results

1000

0000

0100

1001

0001

0101 0110

0010

1010
bit 1: y>ymax 
bit 2: y<ymin 
bit 3: x>xmax 
bit 4: x<xmin

ymax

ymin

xmaxxmin

• Rules:

–Trivial accept:  outcode(end1) and outcode(end2) both zero
–Trivial reject:  outcode(end1) & (bitwise and) outcode(end2) 
nonzero 

–Else subdivide
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Cohen-Sutherland Algorithm: Subdivision

• If neither trivial accept nor reject:
–Pick an outside endpoint (with nonzero outcode)

–Pick an edge that is crossed (nonzero bit of 
outcode)

–Find line's intersection with that edge

–Replace outside endpoint with intersection point

–Repeat until trivial accept or reject

• Other clipping algorithms
–Cyrus-Beck/Liang-Barksy or Nicholl-Lee-Nicholl 
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Polygon Clipping

Convert a polygon into one or more polygons that 
form the intersection of the original with the 
clip window
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Sutherland-Hodgman
Polygon Clipping Algorithm

• Subproblem:
–clip a polygon (vertex list) against a single clip 
plane

–output the vertex list(s) for the resulting clipped 
polygon(s)

• Clip against all four planes 
–generalizes to 3D (6 planes)

–generalizes to any convex clip polygon/polyhedron
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> in-to-in: output vertex

> out-to-out: no output

> in-to-out: output intersection

> out-to-in: output intersection and vertex

Sutherland-Hodgman
Polygon Clipping Algorithm (Cont.)

• To clip vertex list against one half-plane:
–if first vertex is inside - output it

–loop through list testing inside/outside 
transition - output depends on transition:

> in-to-in: output vertex

> out-to-in: output intersection and vertex

> out-to-out: no output

> in-to-out: output intersection
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Summary

• Started with orthographic projection: just throw 
out the Z coordinate

• Perspective projection from origin along Z axis: 
use projection matrix

• Moving the camera: transform the entire world so 
that we can do projection from the origin along 
the Z axis

• Screen coordinates: translate and scale entire 
world so that projection yields pixel coordinates

• Clipping: transform world so that viewing frustum 
becomes a unit cube.  Clip lines against half-
planes.


