
1

Programming with OpenGL
Part 1: Background

2

Objectives
•Development of the OpenGL API
•OpenGL Architecture

- OpenGL as a state machine
•Functions

- Types
- Formats

•Simple program

3

Early History of APIs
• IFIPS (1973) formed two committees to
come up with a standard graphics API

- Graphical Kernel System (GKS)
• 2D but contained good workstation model

- Core
• Both 2D and 3D

- GKS adopted as IS0 and later ANSI standard
(1980s)

•GKS not easily extended to 3D (GKS-3D)
- Far behind hardware development

4

PHIGS and X
•Programmers Hierarchical Graphics System (PHIGS)

- Arose from CAD community
- Database model with retained graphics (structures)

•X Window System
- DEC/MIT effort
- Client-server architecture with graphics

•PEX combined the two
- Not easy to use (all the defects of each)

5

SGI and GL
•Silicon Graphics (SGI) revolutionized the
graphics workstation by implementing the
pipeline in hardware (1982)

•To access the system, application
programmers used a library called GL

•With GL, it was relatively simple to
program three dimensional interactive
applications

6

OpenGL
The success of GL lead to OpenGL (1992),
a platform-independent API that was

- Easy to use
- Close enough to the hardware to get excellent

performance
- Focus on rendering
- Omitted windowing and input to avoid window

system dependencies

7

OpenGL Evolution
•Controlled by an Architectural Review
Board (ARB)

- Members include SGI, Microsoft, Nvidia, HP,
3DLabs, IBM,…….

- Relatively stable (present version 2.0)
• Evolution reflects new hardware capabilities

– 3D texture mapping and texture objects
– Vertex programs

- Allows for platform specific features through
extensions

8

OpenGL Libraries
•OpenGL core library

- OpenGL32 on Windows
- GL on most unix/linux systems (libGL.a)

•OpenGL Utility Library (GLU)
- Provides functionality in OpenGL core but avoids having to rewrite code

•Links with window system
- GLX for X window systems
- WGL for Windows
- AGL for Macintosh

9

GLUT
•OpenGL Utility Toolkit (GLUT)

- Provides functionality common to all window
systems

• Open a window
• Get input from mouse and keyboard
• Menus
• Event-driven

- Code is portable but GLUT lacks the
functionality of a good toolkit for a specific
platform

• No slide bars

10

Software Organization

GLUT
GLU

GL
GLX, AGL
or WGL

X, Win32, Mac O/S
software and/or hardware

application program
OpenGL Motif

widget or similar

11

OpenGL Architecture
Immediate Mode

Display
List

Polynomial
Evaluator

Per Vertex
Operations &

Primitive
Assembly

Rasterization Per Fragment
Operations

Texture
Memory

CPU

Pixel
Operations

Frame
Buffer

geometry
pipeline

12

OpenGL Functions
• Primitives

- Points
- Line Segments
- Polygons

• Attributes
• Transformations

- Viewing
- Modeling

• Control (GLUT)
• Input (GLUT)
• Query

13

OpenGL State
•OpenGL is a state machine
•OpenGL functions are of two types

- Primitive generating
• Can cause output if primitive is visible
• How vertices are processed and appearance of primitive

are controlled by the state
- State changing

• Transformation functions
• Attribute functions

14

Lack of Object Orientation
•OpenGL is not object oriented so that
there are multiple functions for a given
logical function
-glVertex3f
-glVertex2i
-glVertex3dv

•Underlying storage mode is the same
•Easy to create overloaded functions in
C++ but issue is efficiency

15

OpenGL function format

glVertex3f(x,y,z)

belongs to GL library

function name

x,y,z are floats

glVertex3fv(p)
p is a pointer to an array

dimensions

16

OpenGL #defines
•Most constants are defined in the include files gl.h, glu.h and glut.h

- Note #include <GL/glut.h> should
automatically include the others

- Examples
-glBegin(GL_POLYGON)
-glClear(GL_COLOR_BUFFER_BIT)

• include files also define OpenGL data types: GLfloat, GLdouble,….

17

A Simple Program
Generate a square on a solid background

18

simple.c
#include <GL/glut.h>
void mydisplay(){

glClear(GL_COLOR_BUFFER_BIT);
glBegin(GL_POLYGON);

glVertex2f(-0.5, -0.5);
glVertex2f(-0.5, 0.5);
glVertex2f(0.5, 0.5);
glVertex2f(0.5, -0.5);

glEnd();
glFlush();

}
int main(int argc, char** argv){

glutCreateWindow("simple");
glutDisplayFunc(mydisplay);
glutMainLoop();

}

19

Event Loop
•Note that the program defines a display callback function named mydisplay

- Every glut program must have a display
callback

- The display callback is executed whenever
OpenGL decides the display must be refreshed,
for example when the window is opened

- The main function ends with the program
entering an event loop

20

Defaults
•simple.c is too simple
•Makes heavy use of state variable default
values for

- Viewing
- Colors
- Window parameters

•Next version will make the defaults more
explicit

21

Notes on compilation
•See website and ftp for examples
•Unix/linux

- Include files usually in …/include/GL
- Compile with –lglut –lglu –lgl loader flags
- May have to add –L flag for X libraries
- Mesa implementation included with most linux

distributions
- Check web for latest versions of Mesa and glut

22

Compilation on Windows
•Visual C++

- Get glut.h, glut32.lib and glut32.dll from web
- Create a console application
- Add opengl32.lib, glut32.lib, glut32.lib to project

settings (under link tab)
•Borland C similar
•Cygwin (linux under Windows)

- Can use gcc and similar makefile to linux
- Use –lopengl32 –lglu32 –lglut32 flags

23

Programming with OpenGL
Part 2: Complete Programs

24

Objectives
•Refine the first program

- Alter the default values
- Introduce a standard program structure

•Simple viewing
- Two-dimensional viewing as a special case of

three-dimensional viewing
•Fundamental OpenGL primitives
•Attributes

25

Program Structure
• Most OpenGL programs have a similar structure

that consists of the following functions
-main():

• defines the callback functions
• opens one or more windows with the required properties
• enters event loop (last executable statement)

-init(): sets the state variables
• Viewing
• Attributes

- callbacks
• Display function
• Input and window functions

26

simple.c revisited
• In this version, we shall see the same
output but we have defined all the
relevant state values through function
calls using the default values

• In particular, we set
- Colors
- Viewing conditions
- Window properties

27

main.c
#include <GL/glut.h>
int main(int argc, char** argv)
{
glutInit(&argc,argv);
glutInitDisplayMode(GLUT_SINGLE|GLUT_RGB);
glutInitWindowSize(500,500);
glutInitWindowPosition(0,0);
glutCreateWindow("simple");
glutDisplayFunc(mydisplay);
init();
glutMainLoop();

}

includes gl.h

define window properties

set OpenGL state
enter event loop

display callback

28

GLUT functions
•glutInit allows application to get command line arguments and initializes system
•gluInitDisplayMode requests properties for the window (the rendering context)

- RGB color
- Single buffering
- Properties logically ORed together

•glutWindowSize in pixels
•glutWindowPosition from top-left corner of display
•glutCreateWindow create window with title “simple”
•glutDisplayFunc display callback
•glutMainLoop enter infinite event loop

29

init.c

void init()
{
glClearColor (0.0, 0.0, 0.0, 1.0);
glColor3f(1.0, 1.0, 1.0);
glMatrixMode (GL_PROJECTION);
glLoadIdentity ();
glOrtho(-1.0, 1.0, -1.0, 1.0, -1.0, 1.0);

}

black clear color
opaque window

fill/draw with white

viewing volume

30

Coordinate Systems
• The units in glVertex are determined by the application and are called object or problem coordinates
• The viewing specifications are also in object coordinates and it is the size of the viewing volume that determines what will appear in the image
• Internally, OpenGL will convert to camera (eye) coordinates and later to screen coordinates
• OpenGL also uses some internal representations that usually are not visible to the application

31

OpenGL Camera
•OpenGL places a camera at the origin in
object space pointing in the negative z
direction

•The default viewing volume
is a box centered at the
origin with a side of
length 2

32

Orthographic Viewing

z=0

z=0

In the default orthographic view, points are
projected forward along the z axis onto the
plane z=0

33

Transformations and Viewing
• In OpenGL, projection is carried out by a

projection matrix (transformation)
• There is only one set of transformation functions

so we must set the matrix mode first
glMatrixMode (GL_PROJECTION)

• Transformation functions are incremental so we
start with an identity matrix and alter it with a
projection matrix that gives the view volume
glLoadIdentity();
glOrtho(-1.0, 1.0, -1.0, 1.0, -1.0, 1.0);

34

Two- and three-
dimensional viewing

• In glOrtho(left, right, bottom, top,
near, far) the near and far distances are
measured from the camera

• Two-dimensional vertex commands place all vertices
in the plane z=0

• If the application is in two dimensions, we can use the
function
gluOrtho2D(left, right,bottom,top)

• In two dimensions, the view or clipping volume becomes a clipping window

35

mydisplay.c
void mydisplay()
{
glClear(GL_COLOR_BUFFER_BIT);
glBegin(GL_POLYGON);

glVertex2f(-0.5, -0.5);
glVertex2f(-0.5, 0.5);
glVertex2f(0.5, 0.5);
glVertex2f(0.5, -0.5);

glEnd();
glFlush();

}

36

OpenGL Primitives

GL_QUAD_STRIP

GL_POLYGON

GL_TRIANGLE_STRIP GL_TRIANGLE_FAN

GL_POINTS
GL_LINES

GL_LINE_LOOP

GL_LINE_STRIP

GL_TRIANGLES

37

Polygon Issues
• OpenGL will only display polygons correctly that are

- Simple: edges cannot cross
- Convex: All points on line segment between two points in a

polygon are also in the polygon
- Flat: all vertices are in the same plane

• User program can check if above true
- OpenGL will produce output if these conditions are violated

but it may not be what is desired
• Triangles satisfy all conditions

nonsimple polygon nonconvex polygon

38

Attributes
•Attributes are part of the OpenGL state
and determine the appearance of objects

- Color (points, lines, polygons)
- Size and width (points, lines)
- Stipple pattern (lines, polygons)
- Polygon mode

• Display as filled: solid color or stipple pattern
• Display edges
• Display vertices

39

RGB color
• Each color component is stored separately in

the frame buffer
• Usually 8 bits per component in buffer
• Note in glColor3f the color values range from

0.0 (none) to 1.0 (all), whereas in glColor3ub
the values range from 0 to 255

40

Indexed Color
•Colors are indices into tables of RGB values
•Requires less memory

- indices usually 8 bits
- not as important now

• Memory inexpensive
• Need more colors for shading

41

Color and State
• The color as set by glColor becomes part of the state and will be used until changed

- Colors and other attributes are not part of the object but are assigned when the object is rendered
• We can create conceptual vertex colors by code such as

glColor
glVertex
glColor
glVertex

42

Smooth Color
• Default is smooth shading

- OpenGL interpolates vertex colors across
visible polygons

• Alternative is flat shading
- Color of first vertex
determines fill color

•glShadeModel
(GL_SMOOTH)
or GL_FLAT

43

Viewports
•Do not have use the entire window for the image: glViewport(x,y,w,h)
•Values in pixels (screen coordinates)

