Programming with OpenGL

Part 1: Background

Objectives

* Development of the OpenGL API
* OpenGL Architecture

- OpenGL as a state machine
* Functions

- Types

- Formats

* Simple program

Early History of APIs

*|[FIPS (1973) formed two committees to
come up with a standard graphics API
- Graphical Kernel System (GKS)

2D but contained good workstation model

- Core
Both 2D and 3D

- GKS adopted as IS0 and later ANSI standard
(1980s)

* GKS not easily extended to 3D (GKS-3D)

- Far behind hardware development

PHIGS and X

* Programmers Hierarchical Graphics
System (PHIGS)

- Arose from CAD community

- Database model with retained graphics
(structures)

« X Window System
- DEC/MIT effort
- Client-server architecture with graphics

 PEX combined the two
- Not easy to use (all the defects of each)

SGI and GL

* Silicon Graphics (SGI) revolutionized the
graphics workstation by implementing the
pipeline in hardware (1982)

* To access the system, application
programmers used a library called GL

* With GL, it was relatively simple to
program three dimensional interactive
applications

OpenGL

The success of GL lead to OpenGL (1992),
a platform-independent API that was
- Easy to use

- Close enough to the hardware to get excellent
performance

- Focus on rendering

- Omitted windowing and input to avoid window
system dependencies

OpenGL Evolution

* Controlled by an Architectural Review
Board (ARB)

- Members include SGI, Microsoft, Nvidia, HP,
3DLabs, IBM,.......

- Relatively stable (present version 2.0)
Evolution reflects new hardware capabilities
— 3D texture mapping and texture objects
— Vertex programs

- Allows for platform specific features through
extensions

OpenGL Libraries

* OpenGL core library
- OpenGL32 on Windows
- GL on most unix/linux systems (libGL.a)

* OpenGL Utility Library (GLU)

- Provides functionality in OpenGL core but
avoids having to rewrite code

* Links with window system
- GLX for X window systems
- WGL for Windows
- AGL for Macintosh

GLUT

* OpenGL Utility Toolkit (GLUT)

- Provides functionality common to all window
systems
Open a window
Get input from mouse and keyboard
Menus
Event-driven

- Code is portable but GLUT lacks the
functionality of a good toolkit for a specific
platform

No slide bars

Software Organization

application program

l

l l

l

l

OpenGL Motif
widget or similar

GLUT

GLX, AGL
or WGL

X, Win32, Mac O/S

GLU

GL

software and/or hardware

10

OpenGL Architecture

Immediate Mode

CPU

| Polynomial

Y

Y

Evaluator

_ geometry
pipeline
Y
Per Vertex
Operations &
Primitive
Assembly

>

J Pixel

Operations

Y

Per Fragment
Operations

Y

Y

Rasterization

Y

Frame
Buffer

A

Texture
Memory

Y

11

OpenGL Functions

* Primitives
- Points
- Line Segments
- Polygons

e Attributes

* Transformations
- Viewing
- Modeling

 Control (GLUT)
* Input (GLUT)
* Query

12

OpenGL State

* OpenGL is a state machine

* OpenGL functions are of two types

- Primitive generating
Can cause output if primitive is visible
How vertices are processed and appearance of primitive
are controlled by the state
- State changing
Transformation functions
Attribute functions

13

Lack of Object Orientation

*OpenGL is not object oriented so that
there are multiple functions for a given
logical function

-glVertex3f

-glVertex2i

-glVertex3dv

* Underlying storage mode is the same

« Easy to create overloaded functions in
C++ but issue is efficiency

14

OpenGL function format

function name

/ / dimensions
glVertex3f (x,y,z)
belongs to GL library X,y,z are floats

glVertex3fv (p)

p 1s a pointer to an array

15

OpenGL #defines

* Most constants are defined in the include
flesgl.h,glu.hand glut.h

- Note #include <GL/glut.h> should
automatically include the others

- Examples
-glBegin (GL POLYGON)
—glClear (GL _COLOR BUFFER BIT)

*include files also define OpenGL data
types: GLfloat, GLdouble,....

16

A Simple Program

Generate a square on a solid background

ER>simple [i]

17

simple.c

#include <GL/glut.h>

void mydisplay () {
glClear (GL_COLOR BUFFER BIT);
glBegin (GL_POLYGON) ;

glVertex2f(-0.5, -0.5);

glVertex2£f(-0.5, 0.5);
glVertex2£(0.5, 0.5);
glVertex2f£(0.5, -0.5);
glEnd() ;
glFlush() ;
}
int main(int argc, char** argv) {
glutCreateWindow ("simple") ;
glutDisplayFunc (mydisplay) ;
glutMainLoop () ;

18

Event Loop

* Note that the program defines a display
callback function named mydisplay

- Every glut program must have a display
callback

- The display callback is executed whenever
OpenGL decides the display must be refreshed,
for example when the window is opened

- The main function ends with the program
entering an event loop

19

Defaults

simple.c is too simple

Makes heavy use of state variable default
values for

- Viewing

- Colors

- Window parameters

Next version will make the defaults more
explicit

20

Notes on compilation

* See website and ftp for examples

* Unix/linux
- Include files usually in .../include/GL
- Compile with —Iglut —Iglu —Igl loader flags
- May have to add —L flag for X libraries

- Mesa implementation included with most linux
distributions

- Check web for latest versions of Mesa and glut

21

Compilation on Windows

*Visual C++
- Get glut.h, glut32.lib and glut32.dll from web

- Create a console application

- Add opengl32.lib, glut32.lib, glut32.lib to project
settings (under link tab)

 Borland C similar

* Cygwin (linux under Windows)
- Can use gcc and similar makefile to linux
- Use —lopengl32 —Iglu32 —Iglut32 flags

22

Programming with OpenGL

Part 2: Complete Programs

Objectives

* Refine the first program

- Alter the default values

- Introduce a standard program structure
« Simple viewing

- Two-dimensional viewing as a special case of
three-dimensional viewing

* Fundamental OpenGL primitives
* Attributes

24

Program Structure

* Most OpenGL programs have a similar structure
that consists of the following functions
-main():
defines the callback functions

opens one or more windows with the required properties
enters event loop (last executable statement)

—init (): sets the state variables
Viewing
Attributes
- callbacks
Display function
Input and window functions

25

simple.c revisited

*|n this version, we shall see the same
output but we have defined all the
relevant state values through function
calls using the default values

*|n particular, we set
- Colors
- Viewing conditions
- Window properties

26

main.c

A

#include <GL/glut.h> includes gl.h

int main(int argc, char** arqgv)

{
glutInit (&argc,argv) ;
glutInitDisplayMode (GLUT SINGLE |GLUT RGB) ;
glutInitWindowSize (500,500) ;
glutInitWindowPosition(0,0) ; T

glutCreateWindow ("simple"); define window properties
glutDisplayFunc (mydisplay) ;

T display callback

T set OpenGL state
glutMainLoop () ;

) T

init () ;

enter event loop

27

GLUT functions

glutInit allows application to get command line
arguments and initializes system

gluInitDisplayMode requests properties for the
window (the rendering context)

- RGB color

- Single buffering

- Properties logically ORed together
glutWindowSize In pixels
glutWindowPosition from top-left corner of display
glutCreateWindow create window with title “simple”
glutDisplayFunc display callback

glutMainLoop enter infinite event loop

28

init.c

black clear color

void init () / opaque window
(/

glClearColor (0.0, 0.0, 1.0);

glColor3f(1.0, 1.0, 1.0) ; — ﬁll/draw Wlth Whlte

glMatrixMode (GL_ PROJECTION) ;
glLoadIdentity ()
glOrtho(-1.0, 1.0, -1.0, 1.0, -1.0, 1.0);

AN

viewing volume

29

Coordinate Systems

* The units in glVertex are determined by the

application and are called object or problem
coordinates

* The viewing specifications are also in object
coordinates and it is the size of the viewing
volume that determines what will appear in the
image

* Internally, OpenGL will convert to camera (eye)
coordinates and later to screen coordinates

* OpenGL also uses some internal representations
that usually are not visible to the application

30

OpenGL Camera

* OpenGL places a camera at the origin in
object space pointing in the negative z
direction

* The default viewing volume
IS a box centered at the

origin with a side of ™\
length 2 /}/ ;

31

(right, top, far,

Orthographic Viewing

In the default orthographic view, points are
projected forward along the z axis onto the
plane z=0

‘ y
A
z=(
________________ | | ~Viewing rectangle
i +
| Z ! o i
i i (x,y, 0)
8 / s
iz :

(x, y,2)

32

Transformations and Viewing

* In OpenGL, projection is carried out by a
projection matrix (transformation)

* There is only one set of transformation functions

so we must set the matrix mode first
glMatrixMode (GL_PROJECTION)

* Transformation functions are incremental so we
start with an identity matrix and alter it with a
projection matrix that gives the view volume

glLoadIdentity () ;
glOrtho(-1.0, 1.0, -1.0, 1.0, -1.0, 1.0);

33

Two- and three-
dimensional viewing

*In glOrtho (left, right, bottom, top,
near, far) the near and far distances are

measured from the camera

* Two-dimensional vertex commands place all vertices
In the plane z=0

* [f the application is in two dimensions, we can use the
function

gluOrtho2D (left, right,bottom, top)

* In two dimensions, the view or clipping volume
becomes a clipping window

34

mydisplay.c

void mydisplay ()
{
glClear (GL COLOR BUFFER BIT);
glBegin (GL POLYGON) ;
glVertex2f(-0.5, -0.5);
glVertex2f(-0.5, 0.5);
glVertex2£(0.5, 0.5);
glVertex2£(0.5, -0.5);
glEnd() ;
glFlush() ;

}

35

OpenGL Primitives

GL_PO£&TS ‘///2\\ §§%§

GL_LINES GL_LINE STRIP

GL_POLYGON

A GL_LINE LOOP

GL _TRIANGLES -

GL_TRIANGLE STRIP GL_TRIANGLE FAN

GL_QUAD STRIP

36

Polygon Issues

* OpenGL will only display polygons correctly that are
- Simple: edges cannot cross

- Convex: All points on line segment between two points in a
polygon are also in the polygon

- Flat: all vertices are in the same plane

« User program can check if above true

- OpenGL will produce output if these conditions are violated
but it may not be what is desired

* Triangles satisfy all conditions *

nonconvex polygon

nonsimple polygon
37

Attributes

* Attributes are part of the OpenGL state
and determine the appearance of objects

- Color (points, lines, polygons)

- Size and width (points, lines)

- Stipple pattern (lines, polygons)

- Polygon mode
Display as filled: solid color or stipple pattern
Display edges
Display vertices

38

RGB color

* Each color component is stored separately in
the frame buffer
» Usually 8 bits per component in buffer

* Note in glColor3f£ the color values range from
0.0 (none) to 1.0 (all), whereas in glColor3ub

the values range from 0O to 255

39

Indexed Color

* Colors are indices into tables of RGB values

* Requires less memory
- Indices usually 8 bits

- not as important now
Memory inexpensive
Need more colors for shading

Color

lookup taple
]

ﬁ_ Color

Frame buffer lookup taple

Red

Blue

40

Color and State

* The color as set by glColor becomes part of the
state and will be used until changed

- Colors and other attributes are not part of the
object but are assigned when the object is
rendered

* We can create conceptual vertex colors by code
such as

glColor
glVertex
glColor
glVertex

41

Smooth Color

 Default is smooth shading

- OpenGL interpolates vertex colors across
visible polygons

* Alternative is flat shading
- Color of first vertex
determines fill color

*glShadeModel
(GL_SMOOTH)
or GL_FLAT

El colorcube

42

Viewports

* Do not have use the entire window for the
image: glViewport(x,y,w,h)

*Values in pixels (screen coordinates)

O

Clipping window

(r

.Y

\\

- Viewport

- Graphics window

43

