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Programming with OpenGL
Part 1: Background
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Objectives
•Development of the OpenGL API
•OpenGL Architecture

- OpenGL as a state machine
•Functions 

- Types
- Formats

•Simple program
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Early History of APIs
• IFIPS (1973) formed two committees to 
come up with a standard graphics API

- Graphical Kernel System (GKS)
• 2D but contained good workstation model

- Core 
• Both 2D and 3D

- GKS adopted as IS0 and later ANSI standard 
(1980s)

•GKS not easily extended to 3D (GKS-3D)
- Far behind hardware development
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PHIGS and X
•Programmers Hierarchical Graphics System (PHIGS)

- Arose from CAD community
- Database model with retained graphics (structures)

•X Window System
- DEC/MIT effort
- Client-server architecture with graphics

•PEX combined the two
- Not easy to use (all the defects of each)
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SGI and GL
•Silicon Graphics (SGI) revolutionized the 
graphics workstation by implementing the 
pipeline in hardware (1982)

•To access the system, application 
programmers used a library called GL

•With GL, it was relatively simple to 
program three dimensional interactive 
applications 
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OpenGL
The success of GL lead to OpenGL (1992), 
a platform-independent API that was 

- Easy to use
- Close enough to the hardware to get excellent 

performance
- Focus on rendering
- Omitted windowing and input to avoid window 

system dependencies 
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OpenGL Evolution
•Controlled by an Architectural Review 
Board (ARB)

- Members include SGI, Microsoft, Nvidia, HP, 
3DLabs, IBM,…….

- Relatively stable (present version 2.0)
• Evolution reflects new hardware capabilities

– 3D texture mapping and texture objects
– Vertex programs

- Allows for platform specific features through 
extensions
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OpenGL Libraries
•OpenGL core library

- OpenGL32 on Windows
- GL on most unix/linux systems (libGL.a)

•OpenGL Utility Library (GLU)
- Provides functionality in OpenGL core but avoids having to rewrite code

•Links with window system
- GLX for X window systems
- WGL for Windows
- AGL for Macintosh
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GLUT
•OpenGL Utility Toolkit (GLUT)

- Provides functionality common to all window 
systems

• Open a window
• Get input from mouse and keyboard
• Menus
• Event-driven

- Code is portable but GLUT lacks the 
functionality of a good toolkit for a specific 
platform

• No slide bars



10

Software Organization

GLUT
GLU

GL
GLX, AGL
or WGL

X, Win32, Mac O/S
software and/or hardware

application program
OpenGL Motif

widget or similar
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OpenGL Architecture
Immediate Mode

Display
List

Polynomial
Evaluator

Per Vertex
Operations &

Primitive
Assembly

Rasterization Per Fragment
Operations

Texture
Memory

CPU

Pixel
Operations

Frame
Buffer

geometry
pipeline
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OpenGL Functions
• Primitives

- Points
- Line Segments
- Polygons

• Attributes
• Transformations

- Viewing
- Modeling

• Control (GLUT)
• Input (GLUT)
• Query
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OpenGL State
•OpenGL is a state machine
•OpenGL functions are of two types

- Primitive generating
• Can cause output if primitive is visible
• How vertices are processed and appearance of primitive 

are controlled by the state
- State changing

• Transformation functions
• Attribute functions
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Lack of Object Orientation
•OpenGL is not object oriented so that 
there are multiple functions for a given 
logical function
-glVertex3f
-glVertex2i
-glVertex3dv

•Underlying storage mode is the same
•Easy to create overloaded functions in 
C++ but issue is efficiency
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OpenGL function format

glVertex3f(x,y,z)

belongs to GL library

function name

x,y,z are floats

glVertex3fv(p)
p is a pointer to an array

dimensions
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OpenGL #defines
•Most constants are defined in the include files gl.h, glu.h and glut.h

- Note #include <GL/glut.h> should 
automatically include the others

- Examples
-glBegin(GL_POLYGON)
-glClear(GL_COLOR_BUFFER_BIT)

• include files also define OpenGL data types: GLfloat, GLdouble,….
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A Simple Program
Generate a square on a solid background
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simple.c
#include <GL/glut.h>
void mydisplay(){

glClear(GL_COLOR_BUFFER_BIT); 
glBegin(GL_POLYGON);        

glVertex2f(-0.5, -0.5);        
glVertex2f(-0.5, 0.5);        
glVertex2f(0.5, 0.5);        
glVertex2f(0.5, -0.5);    

glEnd();
glFlush(); 

}
int main(int argc, char** argv){

glutCreateWindow("simple");     
glutDisplayFunc(mydisplay);    
glutMainLoop();

}
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Event Loop
•Note that the program defines a display callback function named mydisplay

- Every glut program must have a display 
callback

- The display callback is executed whenever 
OpenGL decides the display must be refreshed, 
for example when the window is opened

- The main function ends with the program 
entering an event loop
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Defaults
•simple.c is too simple
•Makes heavy use of state variable default 
values for

- Viewing
- Colors
- Window parameters

•Next version will make the defaults more 
explicit
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Notes on compilation
•See website and ftp for examples
•Unix/linux

- Include files usually in …/include/GL
- Compile with –lglut –lglu –lgl loader flags
- May have to add –L flag for X libraries
- Mesa implementation included with most linux 

distributions
- Check web for latest versions of Mesa and glut
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Compilation on Windows
•Visual C++

- Get glut.h, glut32.lib and glut32.dll from web
- Create a console application
- Add opengl32.lib, glut32.lib, glut32.lib to project 

settings (under link tab)
•Borland C similar
•Cygwin (linux under Windows)

- Can use gcc and similar makefile to linux
- Use –lopengl32 –lglu32 –lglut32 flags
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Programming with OpenGL
Part 2: Complete Programs
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Objectives
•Refine the first program

- Alter the default values
- Introduce a standard program structure

•Simple viewing
- Two-dimensional viewing as a special case of 

three-dimensional viewing
•Fundamental OpenGL primitives
•Attributes



25

Program Structure
• Most OpenGL programs have a similar structure 

that consists of the following functions
-main(): 

• defines the callback functions 
• opens one or more windows with the required properties
• enters event loop (last executable statement)

-init(): sets the state variables
• Viewing
• Attributes

- callbacks
• Display function
• Input and window functions
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simple.c revisited
• In this version, we shall see the same 
output but we have defined all the 
relevant state values through function 
calls using the default values

• In particular, we set
- Colors
- Viewing conditions
- Window properties
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main.c
#include <GL/glut.h>
int main(int argc, char** argv)
{
glutInit(&argc,argv); 
glutInitDisplayMode(GLUT_SINGLE|GLUT_RGB);      
glutInitWindowSize(500,500);    
glutInitWindowPosition(0,0); 
glutCreateWindow("simple");     
glutDisplayFunc(mydisplay);  
init(); 
glutMainLoop();

}

includes gl.h

define window properties

set OpenGL state
enter event loop

display callback
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GLUT functions
•glutInit allows application to get command line arguments and initializes system
•gluInitDisplayMode requests properties for the window (the rendering context)

- RGB color
- Single buffering
- Properties logically ORed together

•glutWindowSize in pixels
•glutWindowPosition from top-left corner of display
•glutCreateWindow create window with title “simple”
•glutDisplayFunc display callback
•glutMainLoop enter infinite event loop
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init.c

void init()
{
glClearColor (0.0, 0.0, 0.0, 1.0);
glColor3f(1.0, 1.0, 1.0); 
glMatrixMode (GL_PROJECTION);    
glLoadIdentity ();    
glOrtho(-1.0, 1.0, -1.0, 1.0, -1.0, 1.0);  

}

black clear color
opaque window

fill/draw with white

viewing volume
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Coordinate Systems
• The units in glVertex are determined by the application and are called object or problem coordinates
• The viewing specifications are also in object coordinates and it is the size of the viewing volume that determines what will appear in the image
• Internally, OpenGL will convert to camera (eye) coordinates and later to  screen coordinates 
• OpenGL also uses some internal representations that usually are not visible to the application
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OpenGL Camera
•OpenGL places a camera at the origin in 
object space pointing in the negative z
direction

•The default viewing volume
is a box centered at the
origin with a side of 
length 2
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Orthographic Viewing

z=0

z=0

In the default orthographic view, points are 
projected forward along the z axis onto the
plane z=0
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Transformations and Viewing
• In OpenGL, projection is carried out by a 

projection matrix (transformation)
• There is only one set of transformation functions 

so we must set the matrix mode first 
glMatrixMode (GL_PROJECTION)

• Transformation functions are incremental so we 
start with an identity matrix and alter it with a 
projection matrix that gives the view volume
glLoadIdentity();    
glOrtho(-1.0, 1.0, -1.0, 1.0, -1.0, 1.0);  
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Two- and three-
dimensional viewing

• In glOrtho(left, right, bottom, top, 
near, far) the near and far distances are 
measured from the camera

• Two-dimensional vertex commands place all vertices 
in the plane z=0

• If the application is in two dimensions, we can use the 
function
gluOrtho2D(left, right,bottom,top)

• In two dimensions, the view or clipping volume becomes a clipping window
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mydisplay.c
void mydisplay()
{
glClear(GL_COLOR_BUFFER_BIT); 
glBegin(GL_POLYGON);        

glVertex2f(-0.5, -0.5);        
glVertex2f(-0.5, 0.5);        
glVertex2f(0.5, 0.5);        
glVertex2f(0.5, -0.5);    

glEnd();
glFlush(); 

}
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OpenGL Primitives

GL_QUAD_STRIP

GL_POLYGON

GL_TRIANGLE_STRIP GL_TRIANGLE_FAN

GL_POINTS
GL_LINES

GL_LINE_LOOP

GL_LINE_STRIP

GL_TRIANGLES
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Polygon Issues
• OpenGL will only display polygons correctly that are

- Simple: edges cannot cross
- Convex: All points on line segment between two points in a 

polygon are also in the polygon
- Flat: all vertices are in the same plane

• User program can check if above true
- OpenGL will produce output if these conditions are violated 

but it may not be what is desired
• Triangles satisfy all conditions

nonsimple polygon nonconvex polygon
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Attributes
•Attributes are part of the OpenGL state 
and determine the appearance of objects

- Color (points, lines, polygons)
- Size and width (points, lines)
- Stipple pattern (lines, polygons)
- Polygon mode

• Display as filled: solid color or stipple pattern
• Display edges
• Display vertices
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RGB color
• Each color component is stored separately in 

the frame buffer
• Usually 8 bits per component in buffer
• Note in glColor3f the color values range from 

0.0 (none) to 1.0 (all), whereas in glColor3ub
the values range from 0 to 255
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Indexed Color
•Colors are indices into tables of RGB values
•Requires less memory

- indices usually 8 bits
- not as important now

• Memory inexpensive
• Need more colors for shading
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Color and State
• The color as set by glColor becomes part of the state and will be used until changed

- Colors and other attributes are not part of the object but are assigned when the object is rendered
• We can create conceptual vertex colors by code such as

glColor
glVertex
glColor
glVertex
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Smooth Color
• Default is smooth shading

- OpenGL interpolates vertex colors across 
visible polygons

• Alternative is flat shading
- Color of first vertex 
determines fill color

•glShadeModel
(GL_SMOOTH)
or GL_FLAT
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Viewports
•Do not have use the entire window for the image: glViewport(x,y,w,h)
•Values in pixels (screen coordinates)


