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The 3-D Graphics Rendering Pipeline

• Almost every discussion of 3-D graphics 
begins here

• Seldom are any two versions drawn the same 
way

• Seldom are any two versions implemented the 
same way

• Primitives are processed in a series of steps
• Each step forwards its result on to the next 

step 

Rasterization & 
Pixel Operation
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• We start with 3-D models defined in their 
own model space

• Modeling transformations orient models 
within a common coordinate system called 
world space

• All objects, light sources, and the viewer 
live in world space

• Trivial rejection attempts to eliminate 
objects that cannot possibly be seen (an 
optimization) 

Rasterization & 
Pixel Operation
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• Next we illuminate potentially 
visible objects

• Object colors are determined by 
their material properties, and the 
light sources in the scene

• Illumination algorithm depends on 
the shading model and the surface 
model

Rasterization & 
Pixel Operation
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• Another change of coordinate systems

• Maps points from world space into eye 
space

• Viewing position is transformed to the 
origin

• Viewing direction is oriented along 
some axis

• A viewing volume is defined 

Rasterization & 
Pixel Operation
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Clipping and Projection
Modeling 

Transformation

Trival Rejection

Illumination

Viewing 
Transformation

Clipping

Projection

Display

• Next we perform clipping of the scene's 
objects against a three  dimensional viewing 
volume called a viewing frustum

• This step totally eliminates any objects (and 
pieces of objects) that are not visible in the 
image

• A clever trick is used to straighten out the 
viewing frustum in to a cube

• Next the objects are projected into two-
dimensions

• Transformation from eye space to screen 
space 

Rasterization & 
Pixel Operation
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Rasterization & Pixel Operation
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• One last transformation from our screen-
space coordinates into a viewport 
coordinates

• The rasterization step scan converts the 
object into pixels

• Involve interpolating parameters as we go 

• Purely 2D operation

• A lot going on here
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Transformation

1. 2D Transformation

2. 3D Transformation

3. Viewing Projection
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2D Translation
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2D Rotation
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Matrix and Vector format:
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Back to Translation
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2D Translation Properties

1.There exists an inverse mapping for each function 
2.There exists an identity mapping 
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These properties might seem trivial at first glance, but they 
are actually very important, because when these conditions 
are shown for any class of functions it can be proven that 
such a class is closed under composition (i.e. any series of 
translations can be composed to a single translation). In 
mathematical parlance this is the same as saying that 
translations form an algebraic group.
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2D Translation Properties
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Back to Rotation
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Transformation Order

Order matters!

translation ---> rotation rotation ---> translation
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Other 2D Transformations

X-shear Y-shear scaling

And more …….
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2D Rotation by Shears

http://www.cs.sdu.edu.cn/~baoquan/papers/rot2p.pdf
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http://www.cs.sdu.edu.cn/~baoquan/papers/rot.pdf

3D Rotation by Shears
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Affine transformation
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The coordinates of three corresponding points 
uniquely determine any Affine Transform!!

Property: preserve parallel lines
Remember affine function on vector is equal to linear 
plus translation
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• Right-handed vs.           left-handed

• Z-axis determined from X and Y by cross product: Z=X×Y

• Cross product follows right-hand rule in a right-handed 
coordinate system, and left-hand rule in left-handed system.

From 2D to 3D: Preliminary
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Transformation

1. 2D Transformation

2. 3D Transformation

3. Viewing Projection
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3D Translation

T = 
1 0 0 t0
0 1 0 t1
0 0 1 t2
0 0 0 1
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3D Scaling

S = 
s0 0 0 0
0 s1 0 0
0 0 s2 0
0 0 0 1
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3D Rotation

Rx = 

1 0 0 0
0 cos –sin 0
0 sin cos 0
0 0 0 1

Ry = 

cos 0 sin 0
0 1 0 0

–sin 0 cos 0
0 0 0 1

Rz = 

cos –sin 0 0
sin cos 0 0

0 0 1 0
0 0 0 1


