
1Baoquan Chen 2015

Modeling
Transformation

Trival Rejection

Illumination

Viewing
Transformation

Clipping

Projection

Display

The 3-D Graphics Rendering Pipeline

• Almost every discussion of 3-D graphics
begins here

• Seldom are any two versions drawn the same
way

• Seldom are any two versions implemented the
same way

• Primitives are processed in a series of steps
• Each step forwards its result on to the next

step

Rasterization &
Pixel Operation

2Baoquan Chen 2015

Modeling transformations
Modeling

Transformation

Trival Rejection

Illumination

Viewing
Transformation

Clipping

Projection

Display

• We start with 3-D models defined in their
own model space

• Modeling transformations orient models
within a common coordinate system called
world space

• All objects, light sources, and the viewer
live in world space

• Trivial rejection attempts to eliminate
objects that cannot possibly be seen (an
optimization)

Rasterization &
Pixel Operation

3Baoquan Chen 2015

Illumination
Modeling

Transformation

Trival Rejection

Illumination

Viewing
Transformation

Clipping

Projection

Display

• Next we illuminate potentially
visible objects

• Object colors are determined by
their material properties, and the
light sources in the scene

• Illumination algorithm depends on
the shading model and the surface
model

Rasterization &
Pixel Operation

4Baoquan Chen 2015

Viewing Transformation
Modeling

Transformation

Trival Rejection

Illumination

Viewing
Transformation

Clipping

Projection

Display

• Another change of coordinate systems

• Maps points from world space into eye
space

• Viewing position is transformed to the
origin

• Viewing direction is oriented along
some axis

• A viewing volume is defined

Rasterization &
Pixel Operation

5Baoquan Chen 2015

Clipping and Projection
Modeling

Transformation

Trival Rejection

Illumination

Viewing
Transformation

Clipping

Projection

Display

• Next we perform clipping of the scene's
objects against a three dimensional viewing
volume called a viewing frustum

• This step totally eliminates any objects (and
pieces of objects) that are not visible in the
image

• A clever trick is used to straighten out the
viewing frustum in to a cube

• Next the objects are projected into two-
dimensions

• Transformation from eye space to screen
space

Rasterization &
Pixel Operation

6Baoquan Chen 2015

Rasterization & Pixel Operation
Modeling

Transformation

Trival Rejection

Illumination

Viewing
Transformation

Clipping

Projection

Rasterization &
Pixel Operation

Display

• One last transformation from our screen-
space coordinates into a viewport
coordinates

• The rasterization step scan converts the
object into pixels

• Involve interpolating parameters as we go

• Purely 2D operation

• A lot going on here

7Baoquan Chen 2015

Transformation

1. 2D Transformation

2. 3D Transformation

3. Viewing Projection

8Baoquan Chen 2015

2D Translation





y

x

 t+y = y'
 t+ x = x'

9Baoquan Chen 2015

2D Rotation











siny cos x= y'
 siny - cos x= x'


















 


















y
x

y
x

M
y
x




sincos
sincos

'
'

Matrix and Vector format:

10Baoquan Chen 2015

Back to Translation





y

x

 t+y = y'
 t+ x = x'

Matrix format?



































y
x

y
x

M
y
x

????
????

'
'


















100
10
01

y

x

t
t

M



































































11
'
'

222120

121110

020100

y
x

mmm
mmm
mmm

y
x

M
w

wy
wx

Homogenous coordinates!

11Baoquan Chen 2015

2D Translation Properties

1.There exists an inverse mapping for each function
2.There exists an identity mapping





















100
10
01

1
y

x

t
t

M

)(
100
010
001

100
10
01

0
0 IIdentityt

t
M y

x

t
t

x

x









































12Baoquan Chen 2015

These properties might seem trivial at first glance, but they
are actually very important, because when these conditions
are shown for any class of functions it can be proven that
such a class is closed under composition (i.e. any series of
translations can be composed to a single translation). In
mathematical parlance this is the same as saying that
translations form an algebraic group.

x
T

TTTx n
'

' 21 

2D Translation Properties

13Baoquan Chen 2015

Back to Rotation

 














 


















y
x

y
x

M
y
x




cossin
sincos

'
'















 


100
0cossin
0sincos




RM


















100
0cossin
0sincos

1 


RM IdentityM R 0

14Baoquan Chen 2015

Transformation Order

Order matters!

translation ---> rotation rotation ---> translation

15Baoquan Chen 2015

Other 2D Transformations

X-shear Y-shear scaling

And more …….

16Baoquan Chen 2015

2D Rotation by Shears

http://www.cs.sdu.edu.cn/~baoquan/papers/rot2p.pdf

17Baoquan Chen 2015

http://www.cs.sdu.edu.cn/~baoquan/papers/rot.pdf

3D Rotation by Shears

18Baoquan Chen 2015

Affine transformation


















100
121110

020100

mmm
mmm

M

The coordinates of three corresponding points
uniquely determine any Affine Transform!!

Property: preserve parallel lines
Remember affine function on vector is equal to linear
plus translation

),(11 yx),(22 yx

),(33 yx

x

y

'x

'y

)','(11 yx)','(22 yx

)','(33 yx

19Baoquan Chen 2015

• Right-handed vs. left-handed

• Z-axis determined from X and Y by cross product: Z=X×Y

• Cross product follows right-hand rule in a right-handed
coordinate system, and left-hand rule in left-handed system.

From 2D to 3D: Preliminary

(out of page) X

Y

Z
X

Y

Z
(into page)

Z  X  Y 

X2Y3  X3Y2

X3Y1  X1Y3

X1Y2  X2Y1



















20Baoquan Chen 2015

Transformation

1. 2D Transformation

2. 3D Transformation

3. Viewing Projection

21Baoquan Chen 2015

3D Translation

T =
1 0 0 t0
0 1 0 t1
0 0 1 t2
0 0 0 1

22Baoquan Chen 2015

3D Scaling

S =
s0 0 0 0
0 s1 0 0
0 0 s2 0
0 0 0 1

23Baoquan Chen 2015

3D Rotation

Rx =

1 0 0 0
0 cos –sin 0
0 sin cos 0
0 0 0 1

Ry =

cos 0 sin 0
0 1 0 0

–sin 0 cos 0
0 0 0 1

Rz =

cos –sin 0 0
sin cos 0 0

0 0 1 0
0 0 0 1

