
1Baoquan Chen 2015

Scan Conversion

• Drawing Lines

• Drawing Circles

2Baoquan Chen 2015

How to Draw This?

3Baoquan Chen 2015

Start From Simple

How to draw a line: y(x) = mx + b ?

4Baoquan Chen 2015

Scan Conversion, a.k.a. Rasterization

Ideal Picture Raster Representation

Scan Conversion: Process of converting ideal to raster

5Baoquan Chen 2015

Scan Conversion Algorithms
• A discrete set of pixels can only approximate a continuous

geometric object

• This means that scan conversion usually introduces error

• Properties of good scan conversion algorithms:

–Accuracy

–Efficiency

• Challenges

–Modify all the right pixels

–Modify only the right pixels

–Calculate their values correctly

–Do it quickly

• So, start with a correct algorithm and optimize it

6Baoquan Chen 2015

A Really Simple Line Algorithm
• Equation for a line: y(x) = mx + b (0<= x <1)

• Step along one pixel at a time in the “fast”

direction, here x direction, fill in one pixel per

column

• So, just evaluate for each xvoid line (int x0, int y0, int x1, int y1){
float m = whatever;
float b = whatever;
int x;
for(x=x0;x<=x1;x++) {

float y= m*x + b;
draw_pixel(x,Round(y));

}
}

• Certainly correct, but slow:

–integer add, cast to float, floating multiply and

add, plus round every step.

7Baoquan Chen 2015

Lines: DDA Algorithm

void line (int x0, int y0, int x1, int y1){
float y = y0;
float m = (y1 - y0)/ (float) (x1 - x0);
int x;
for(x=x0;x<=x1;x++) {

draw_pixel(x,Round(y));
y += m;

}
}

• Optimize the previous to remove multiply from inner loop.
• If we know y(x), we can calculate y(x+1):

y(x+1) = mx + m + b = y(x) + m

• This is called Digital Differential Analyzer (DDA)
• Problem: Floating-point add and rounds are expensive

8Baoquan Chen 2015

Bresenham’s Algorithm
This does the right thing (same as DDA) at
a cost of only 2 or 3 integer adds per point.
(assumes sorted endpoints, 0<slope<1)
void draw_line(int x0, int y0, int x1, int y1) {

int x, y = y0;
int dx = 2*(x1-x0), dy = 2*(y1-y0);
int dydx = dy-dx, F = dy-dx/2;
for (x=x0 ; x<=x1 ; x++) {

draw_pixel(x, y);
if (F<0) F += dy;
else {y++; F += dydx;}

}
}
why does this work?

9Baoquan Chen 2015

Implicit Function for a Line
Line L from [x 0, y0] to [x1, y1].
P0  [x 0, y0],
P1  [x1, y1].
dx  x1  x0 , dy  y1  y0
N  [dy, dx]
implicit function : F (P)  2N  (P  P0)
F  0  P is on L

P0
P1 F  0
F  0P

N

Why the factor of 2?Because we’re going to divide by 2 later.

10Baoquan Chen 2015

Line Drawing: Which Pixel is Next?
• Assume:

–0 < slope < 1

–sorted endpoints,

x
0

<x
1

• At each step:

–Current point is

(x,y)

–Next point is pixel

(x+1,?) that’s

closest to the

actual line

–Do we increment x

and y or only x?

• Use the implicit function

to decide!

(x,y) (x 1,y)

(x  1,y  1)
Go here next?Go here next?

11Baoquan Chen 2015

(x,y) (x  1,y)

(x  1,y  1)

Use the Implicit Function

F((x 1,y 1 2))  0 ?
yes: increment x and y
no : increment x

F((x 1,y 1 2))  0 ?
yes: increment x and y
no : increment x

• Idea: Test the half-way point (x+1, y+1/2)

12Baoquan Chen 2015

Trick: Incrementally Update F

• What we care about here is only the sign

of F, so multiply the function by 2 to

avoid floating point calculation







NP
PPNP

PPNP
P

)(
)()(

)()(
)2/1,1(),,(

0
0

F
F

F
yx

13Baoquan Chen 2015

Trick: Incrementally Update F

• Computing F(P) requires a dot product:

–2 multiplications and 1 add

• But computing F(P+) requires only 1 add
–The 2N•  term is constant - it only

needs to be calculated once

•  is [1,0] or [1,1]





NP

PPNP
PPNP

2)(
)(2)(

)(2)(
0

0

F
F

F

14Baoquan Chen 2015

Decision Variable F
• Initialize x, y, F

• Loop until end of line:

–draw pixel (x,y)

–increment x

–if F>0, increment y

–increment F according

to whether  is [1,0]

or [1,1]

F0  F(P0  [1,1/ 2])
 F(P0) N [2,1]

F  F  2N 
where

  [1,0] or [1,1]

N  [dy,dx]

i.e.,
F  F(P0)  2dy  dx
If F<0 F F  2dy

or
If F>=0 F  F2 dy  2dx (x,y) (x1,y)

)1,1( yx

15Baoquan Chen 2015

Bresenham Line Algorithm
This does the right thing (same as DDA) at
a cost of only 2 or 3 integer adds per point.
(assumes sorted endpoints, 0<slope<1)
void draw_line(int x0, int y0, int x1, int y1) {

int x, y = y0;
int dx = 2*(x1-x0), dy = 2*(y1-y0);
int dydx = dy-dx, F = dy-dx/2;
for (x=x0 ; x<=x1 ; x++) {

draw_pixel(x, y);
if (F<0) F += dy;
else {y++; F += dydx;}

}
}

16Baoquan Chen 2015

Line Drawing, Cases by Octant
• The algorithms for drawing lines need to step

along one pixel at a time in the “fast”

direction, which depends on the slope of the

line

• We also have to worry about reversed end point

order (drawing from large to small X, for

example).

• This gives us 8 cases.

x

y y

x

We’ll assume slope isbetween 0 and 1

17Baoquan Chen 2015

Bresenham Algorithm for Circles
• Same approach as line algorithm

–use a decision variable formula derived for a

circle (F = x² + y² - r²)

• Eightfold symmetry

–only compute the points for one octant - use sign

flips to give the rest

• Extends to general conics (ellipses...)

18Baoquan Chen 2015

Bresenham Circle Algorithm
This draws a circle by calculating in one octant
and re-using the resulting point 8 times
void draw_circle(int radius) {

int x = 0, y = radius;
int d = 1-radius;
while (y>x) {

if (d<0) /* select East point next */
d += 2*x + 3;

else { /* select South-East point next */
d += 2*(x-y) + 5;
y--;

}
x++;
draw_8_pts(x,y); /* draws point in each octant */

}
}

19Baoquan Chen 2015

Scan Converting Filled, Convex Polygons
• Find top and bottom vertices

• Make list of edges along left and right sides

• For each scanline from top to bottom

–There’s a single span to fill

–Find left & right endpoints of span, xl & xr, (can use

Bresenham’s algorithm

–Fill pixels inbetween xl & xr

• If you don’t do all of the above carefully, cracks or

overlaps between abutting polygons result!

xl xrxl xr

20Baoquan Chen 2015

Scan Converting Filled, Concave Polygons
• For each scanline

–Find all the scanline/polygon

intersections

–Sort them left to right

–Fill the interior spans between

intersections

–Parity Rule: odd ones are interior,

even are exterior

• Or, triangulation

21Baoquan Chen 2015

Color Interpolations
(a0,r0,g0,b0)

(a1,r1,g1,b1)
(a2,r2,g2,b2)

22Baoquan Chen 2015

Review on Interpolation

a b?
t 1-t

? = a(1-t)+bt
= a + (b-a)t

? = a(1-dx)+bdxa b
c ddx

dy
?

?

?
? = c(1-dx)+ddx
? = ?(1-dy)+?dy = ? + (?-?)dy

= a(1-dx)(1-dy)+bdx(1-dy)
+c(1-dx)dy+ddxdy

• Linear Interpolation

• Bilinear Interpolation

23Baoquan Chen 2015

Again, How to Draw This?

24Baoquan Chen 2015

Aliasing
Samples don’t capture geometry changes
- Not dense enough!

25Baoquan Chen 2015

Antialiasing: Super-sampling

Increasing resolution Back to screen resolutionscreen resolution

26Baoquan Chen 2015

Antialiasing: Unweighted Area Sampling

• Line with ‘thickness’
• Pixel’s color, here ‘blackness’, depends on the intersection area between the thick line and the pixel square

27Baoquan Chen 2015

Antialiasing: Unweighted Area Sampling

1. Intenstity soley based on intersection area
2. Equal areas equal intensity

Properties:

?

However, the same area closer to the pixel center should have greater influence than does one at a greater distance! This
consideration leads to
Weighted Area Sampling:
‘blackness’ = area*f(distance),
Where f: weighting function, dist: pixel center distance to the line

28Baoquan Chen 2015

Antialiasing: Weighted Area Sampling
We can define many weighting functions!
Can be anything, BUT,
1. Finite non-zero region
2. Meaningful (e.g., decreasing from high to zero value when distance increases
3. Full ‘area’ equal to 1

Box Tent/Bartlet

Gaussian Cone

29Baoquan Chen 2015

Extend Everything to 3D
Voxelization

30Baoquan Chen 2015

More Issues

1. Non-integer endpoints (occurs frequently when rendering 3D lines)
2. What if a line endpoint lies outside the viewing area?
3. How do you handle thick lines?
4. Optimizations for connected line segments
5. Lines show up in the strangest places
6. ……

The devils in the details:

31Baoquan Chen 2015

My Previous Works

http://www.cs.sdu.edu.cn/~baoquan/papers/fast.pdf http://www.cs.sdu.edu.cn/~baoquan/papers/fim.pdf

