
Procedural Image Processing for Visualization

Xiaoru Yuan and Baoquan Chen

Department of Computer Science and Engineering
University of Minnesota at Twin Cities, MN 55455, USA

{xyuan, baoquan}@cs.umn.edu

Abstract. We present a novel Procedural Image Processing (PIP) method and
demonstrate its applications in visualization. PIP modulates the sampling po-
sitions of a conventional image processing kernel (e.g. edge detection filter)
through a procedural perturbation function. When properly designed, PIP can
produce a variety of styles for edge depiction, varying on width, solidity, and pat-
tern, etc. In addition to producing artistic stylization, in this paper we demonstrate
that PIP can be employed to achieve various visualization tasks, such as contour
enhancement, focus+context visualization, importance driven visualization and
uncertainty visualization.

PIP produces unique effects that often either cannot be easily achieved through
conventional filters or would require multiple pass filtering. PIP perturbation
functions are either defined by analytical expressions or encoded in pre-generated
images. We leverage the programmable fragment shader of the current graphics
hardware for achieving the operations in real-time.

1 Introduction

A key objective of visualization is to effectively deliver information by emphasizing im-
portant features while hiding unimportant ones. Image processing methods have been
employed as a viable tool for illustration[1] where geometric features such as silhou-
ettes, ridges, and valleys are extracted through image processing (e.g. edge detection)
on intermediately generated geometric images. However, while existing image pro-
cessing algorithms are effective in detecting features, they fall short in stylizing their
appearance.

In this paper, we propose a new image filtering operation termed procedural image
processing (PIP) that can stylize features during the process of detecting them. While
a conventional image filter is defined by a kernel matrix with a fixed sampling and
weighting pattern, a PIP filter has its sampling positions modulated by a perturbation
function. When the perturbation function is designed properly, the detected features can
be either enhanced or deprecated to display certain stylization. PIP produces unique ef-
fects that often either cannot be easily achieved through conventional filters or would
require multiple pass filtering. The PIP filter has been applied to visualize isosurface
in volume [2], in this paper, we extend its application in 2D image, 3D geometry vi-
sualization and 3D volume visualization. We discuss several perturbation functions or
patterns and demonstrate their effectiveness on various visualization tasks, such as con-
tour enhancement, focus+context visualization, and uncertainty or importance driven
visualization.

G. Bebis et al. (Eds.): ISVC 2006, LNCS 4291, pp. 50–59, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Procedural Image Processing for Visualization 51

The most recent advances in graphics hardware provide the ability to interactively
perform image processing on GPU [3]. PIP operation adds little overhead to a conven-
tional image filtering operation. When perturbation patterns encoded in a texture are
passed to GPU with a few additional parameters, the added computation for PIP imple-
mentation is a few texture lookup operations and texture coordinates calculation. All
PIP-based renderings are performed wholly on hardware through fragment program-
ming and real-time performance is achieved.

2 Related Work

Many visualization systems have been striving to achieve improved effectiveness by
selectively depicting important data features. For example, to visualize highly complex
volume data, gradient operations have been employed to enhance boundaries via opacity
modulation [4]. The more recent volume illustration systems have integrated gradient
modulation into volume stylization [5]. Gradient information has also been used in
high-dimensional transfer function design [6,7].

Image processing operators, including extracting edges, have been employed to
achieve non-photorealistic rendering (NPR) of 3D objects. Image processing is per-
formed on intermediately generated geometric images (G-buffer) to depict geometric
features such as silhouettes, ridges, and valleys [8,1]. As only 2D processing in im-
age space is required, image-based NPR methods can be more efficient than traditional
object-based NPR methods which perform geometric feature extraction operations on
3D geometry.

Generally, an image processing filter defines a weighting function that is usually
discretized and stored in a matrix, often called filter kernel. To process a pixel, the
filter kernel is centered at the pixel, neighboring pixels are sampled based on the matrix
grids and multiplied with matrix values (weights) and are finally summed together.
Traditionally a linear edge filter is fixed in terms of both its weights and sampling
pattern (matrix grid). Recently, a new filter called bilateral filter [9] has been proposed
in which the weight of each filter sample is changed based on the difference between its
value and the averaged value of all samples within the filter’s footprint. Nevertheless,
the output of a conventional filter is in the form of pixelized lines that lack solidity and
styles. Since images are processed pixel by pixel and edge information is available only
after the entire image processing is done, stylizing pixelized features such as halftoning
[10], or overdrawing parameterized strokes on them usually needs additional pass(es)
of processing.

In the remainder of the paper, we first introduce the basic elements of Procedural
Image Processing (PIP) (Section 3), then describe its various applications(Section 4).

3 Procedural Image Processing (PIP)

An image filter kernel can be represented by a matrix mask W . Let the input image F
be a pixel array f (v), where v is the vector representing pixel position (x,y); W denotes
a m×n filter kernel applied to the input image and the output image G has a pixel array
g(v). The output image can be computed by the expression:

52 X. Yuan and B. Chen

g(v) = F
⊗

W =
s=a

∑
s=−a

t=b

∑
t=−b

w(r) f (v + r), (1)

where a = (m− 1)/2, b = (n− 1)/2 and r denotes a filter element position (s, t). In
cases presented in this paper, m = n = 3 (i.e., 9 samples for each filter). The filtering
convolution of F

⊗
M at pixel f (v) is obtained as usual by centering the filter matrix

at the pixel, multiplying the matrix elements with their corresponding pixels and sum-
ming the results. Figure 2(a) illustrates an isosurface rendering image after conventional
Sobel edge filtering. Silhouette lines have a one-pixel width.

For PIP filtering, a filter’s sampling positions are perturbed by a procedural function
P(v,r), which is defined in the entire image domain:

gpip(v) =
s=a

∑
s=−a

t=b

∑
t=−b

w(r) f (v + P(v,r)). (2)

Let us draw upon some intuitions here. If P(v,r) = r, the equation 2 is equivalent to
the equation 1 and the filter becomes a regular filter. When the amplitudes of perturba-
tion function P(v,r) increases, sampling positions are moved away from the center pixel
v, and pixels further away from the filtering center will be sampled. This can be con-
sidered as enlarging the filter kernel size (but the number of samples is kept the same).
Therefore, slow pixel-value variations may be amplified, resulting in thicker edges. To
gain more flexible control over the perturbation functions, we decompose a perturba-
tion function into two components: scaling and translation. The resulting perturbation
function is then expressed as:

P(v,r) = Pscale(v)r + Ptrans(v). (3)

The scaling factor is uniform for every direction. Ptrans represents the translation
vector. The perturbation functions can be encoded in textures for GPU implementation.

The effects of applying PIP with scaling and translation perturbations are demon-
strated in Figure 1 for edge detection on 1D signals. Figure 1(a) is the original 1D
signal with an edge. Figure 1(b) is the output of Figure 1(a) applied with a regular edge
detection filter. The edge filter is a 1D matrix |−1,0,1|, each sampling position is ex-
actly on the pixel grid. In Figure 1(c), a PIP with Pscale = 1.5 is introduced. The result
edge is wider. We will demonstrated and discuss such edge widening effect in the next
section. In Figure 1(d), a translation with offset of 0.5pixel in negative axial direction
is applied. The resulting edge is shifting to positive axial direction correspondingly. In
above cases, the same PIP perturbation function is applied throughout whole input sig-
nal. When applying different PIP perturbation functions in different regions, stylization
variation can be introduced to the final rendering. By providing careful user control on
such perturbation functions, various visualization effects can be generated.

Figures 2(b) and (c) demonstrate the results after applying only scaling perturbation.
Larg constant scaling values are used throughout the entire respective image. Thicker
edges than those from regular Soble filter (Figure 2(a)) are obtained. Such edge thick-
ening cannot be achieved by simply decreasing the threshold, as that will introduce
unwanted noises (Figure 2(d)).

Procedural Image Processing for Visualization 53

Fig. 1. 1D Procedural Image Processing (Edge Detection). (a) input signal, (b) signal output of
a normal edge detection filter, (c) PIP filter (Pscale = 1.5), (d) PIP filter, shift a normal edge
detection filter 0.5 pixel leftwards, (Ptrans = −0.5).

(a) (b) (c) (d)

Fig. 2. 2D edge detection of isosurface (the isosurface is extracted from isosurface is extracted
from Bucky ball data): (a) regular filter (Pscale = 1.0), threshold= 0.65; (b) PIP filter (Pscale =
2.0), threshold= 0.65; (c) PIP filter (Pscale = 8.0), threshold= 0.65; (d) PIP filter (Pscale = 1.0),
threshold= 0.05

We must point out that the net behavior of the PIP filter also depends on the underly-
ing image contents. The goal of the perturbation function design is to make the resulting
feature illustration appearing random at small scales while conforming with large-scale
stylizations driven by large-scale perturbation patterns.

The perturbation function can be normalized to the range of [0,1]. Then at the pro-
cessing time, the looked-up perturbation value needs to be multiplied with a constant
scaling factor. Since the perturbation functions are usually periodic, we simply need to
store one cycle of the function, which can be encoded in a much smaller texture im-
age. During the processing, the texture image is tiled together to cover the entire image
domain. Translation perturbation can be encoded in similar forms.

4 Applications

We demonstrate the capability of PIP in both image processing and visualization.

4.1 2D Image Processing

Various filtering results can be obtained by applying PIP to 2D images. Figure 3 shows
several different PIP operations on the Lena image using different perturbation functions.

54 X. Yuan and B. Chen

(a) (b) (c)

Fig. 3. PIP processed results of the Lena image. For each image, the smaller image in the white
frame encodes scaling perturbation function.

Only the scaling perturbation is applied in all the examples here. For each image, the
smaller image in the top right encodes the scaling perturbation function. In Figure 3(a),
a constant scaling factor of 4 is used. Thickened edge lines are obtained. In Figure 3(b),
a regular dot pattern is used as the scaling perturbation. The processed edges demon-
strate a dot pattern, resembling a halftoning effect. In Figure 3(c), a swirl-like pertur-
bation texture is used; the swirling perturbation patterns are carried over to edge depic-
tion, resembling pen-and-ink drawing. In Figure 3(d), a water caustics texture is used as
perturbation function. The resulting image displays beehive patterns resembling cracked
painting.

4.2 Geometric Data Visualization

We demonstrate here different visualization effects that PIP can generate for 3D ge-
ometric models. The 3D rendered geometric buffers, like those used in image-based
NPR [1], can encode additional information such as depth and normal. We utilize this
additional information to modulate PIP operation to obtain additional control over data
visualization.

In the first example we use depth values to control the PIP operation for modulating
edge appearance based on depth, demonstrating a different kind of ‘depth cueing’. Fig-
ure 4(a) shows such a result. The scaling perturbation function is defined as a constant
(encoded in the left grey image in the bottom row). The depth image is on the right in
the bottom row, while the regular color image is in the middle and is the one on which
the PIP processing operates. Even though the scaling perturbation function is specified
as a constant, it is inversely scaled by the corresponding depth value at each pixel. Thus
more distant objects get a smaller scaling perturbation, resulting in a thinner detected
edge.

In the next example we demonstrate that a different image portion or different part
of a 3D object can use a different perturbation function to demonstrate different styles
across the image. This style difference can be used to emphasize different aspects or
convey certainty/uncertainty in data visualization. In our experiment, we define an im-
portance map with values between [0,1] (1: most important; 0: least important). We

Procedural Image Processing for Visualization 55

(a) (b)

Fig. 4. Various effects generated by PIP: (a) depth cueing and (b) attention depiction. The bottom
row of (a) shows (from left to right) the scaling perturbation pattern, the regular color image,
the depth image. The bottom tow of (b) shows (from left to right) the two scaling perturbation
functions for the most and least importance values and the importance map (bright pixel indicates
higher importance).

then define two separate scaling perturbation functions associated with 0 and 1 im-
portance value. For an importance value between 0 and 1, the perturbation function
is interpolated between the two pre-defined ones. In Figure 4(b), the first two images
in the bottom row illustrate the two pre-defined perturbation patterns; the uniform grey
pattern is used for the most important value as it tends to strengthen edges, while the dot
pattern will do the opposite. The rightmost image in the bottom row is the importance
map. The top left corner of this image (corresponding to the horse head) is specified
as the attention region (with high importance values). The resulting image shown on
the top conforms with the design – the head is illustrated using thick dark lines and the
rest of the body is depicted using small dots. Although in this example the importance
map is specified in the image domain, it can be generated dynamically in 3D rendering.
For example, when an attention point is specified on a 3D object, its projection on the
screen can be the attention center. The attention center can also be obtained through eye
or gaze tracking.

4.3 Volume Visualization

We also apply PIP to volume visualization. PIP operations on both isosurface rendering
and direct volume rendering are demonstrated in the following examples.

56 X. Yuan and B. Chen

Fig. 5. PIP enhanced silhouettes of two isosurfaces

Isosurface Rendering: The isosurface method renders the surface that is defined by an
isovalue in the volume. Same as for 3D polygon models, PIP generates silhouette and
contour edges from the intermediate geometric buffers of the isosurface(s). Figure 5
shows two layers of outlines generated by PIP. Silhouettes of the inner isosurface are
depicted by dashed lines The rendered silhouettes represent important geometry fea-
tures of the isosurface; the variation of stylization can be used to depict other associated
data information, such as uncertainty.

Direct Volume Rendering: Throughout the examples that we discuss here, we perform
gradient modulated volume rendering. The gradient is computed using 3D central dif-
ference. The computed gradient magnitudes further modulate the opacity of the sample.
Figure 6(a) and (b) show a conventional volume rendering of the Neghip data, without
and with gradient modulation, respectively.

Next we illustrate a variety of interesting visualizing effects that can be generated
by applying PIP at different stages of different purposed volume rendering. The first
example illustrates how PIP can be used for importance driven or focus emphasis visu-
alization. Research has been done to utilize different rendering methods such as direct
volume rendering, maximum intensity rendering and NPR rendering to differentiate fo-
cus and context regions [11,12]. Here we seek to design perturbation functions in PIP
to achieve the same goal. We define a scalar value d to represent the degree of interest.
In the region of interest (ROI), d = 1.0, otherwise d < 1.0. We then use this d value
as the scaling factor in PIP kernel. Features (surface boundaries) are indeed much en-
hanced in the ROI when this PIP is applied to gradient modulated volume rendering
(like in Figure 6(b)), while becoming less visible in regions outside the focus center.
Figure 6(c) illustrates the result.

The fourth example shows application of PIP to uncertainty visualization [13,14]. To
simulate an uncertainty distribution, we assume the data at the ROI is the most accurate,
but uncertainty increases when moving away from the ROI. There are several possible
ways of achieving this. One intuitive way is to generate a noise function (ranging from
0 to 1) and then directly modulate opacity with this noise value.

We now describe our approaches of using PIP for achieving uncertainty visualiza-
tion. First, we define a noise function, which is multiplied by 1− d and added with d
and is then used as the the scaling function of PIP. Hence, the ROI receives no noise

Procedural Image Processing for Visualization 57

(a) (b) (c)

(c) (d) (e)

Fig. 6. Various effects of volume rendering: (a) regular volume rendering; (b) gradient enhanced
volume rendering (regular filter); (c) importance driven visualization; (d-f) uncertainty visual-
ization ((d) opacity directly modulated by noise, (e) noise as the translation function in PIP, (f)
similar to (e), but with lower noise frequency)

while the noise values increase as one moves away from the focus center. The conse-
quence is that the thickness of the boundary is randomly varied (hence appearing rough)
in the uncertainty region. Figure 6(d) illustrates this effect. Our method to depict un-
certainty is to define a translation function of PIP. The translation direction is constant,
but the amount of translation is determined by (1− d) ∗ noise. Figure 6(e) shows the
resulting effect in which the surface boundaries become cloudy at the uncertain region.
In Figure 6(f), we apply a lower frequency noise than that is used in Figure 6(e). In this
image, surface boundaries can be seen as being randomly deformed. Through the above
examples, PIP provides another set of opportunities for visualizing data uncertainty,
especially when surfaces boundaries are to be depicted.

5 Implementation Notes, Discussions and Conclusion

All our experiments have been performed on a Dell Precision 530 workstation with a
256MB GeForce FX5900 Ultra graphics card. We use the newly introduced Cg lan-
guage [15] for hardware fragment programming. Specifically, NV fragment program
(fp30 profile in Cg program) OpenGL extension [3] is used in our implementation. All
the operations involved in PIP are implemented in hardware. Perturbation functions are
encoded in texture images. Texture lookup, sample transformation and interpolation, and

58 X. Yuan and B. Chen

filter convolution are some typical sub-operations in the implementation of the PIP op-
eration. The PIP implementation can be fully integrated with hardware assisted volume
rendering, which leverages 3D texture mapping hardware [16]. The PIP filter operation
is directly performed in the fragment program where 3D texture lookups are performed.
The overhead of PIP operation is almost negligible. Because of the hardware implemen-
tation, all rendering demonstrated in the paper is real time. The rendering times for the
stylized Lena images in Figures 3 are around 0.15 ms. The 2D image rendering time is
close to the PIP processing time which is much smaller comparing with model render-
ing time of mesh or volume. The rendering time of the horse model (97K triangles) in
Figure 4 is 11.2 ms and the hand model (655K triangles) is 68 ms. We didn’t observe
obvious performance difference when the PIP operation is turned on.

Although PIP represents a simple extension of conventional image processing, a va-
riety of effects can be achieved during image filtering without resorting to any pre- or
post-processing. The stylization is achieved by perturbation patterns which modulate
filters’ sampling positions. The effects are unique that often either cannot be achieved
through conventional filters or would require multiple pass filtering. Our method works
on both 2D images and 3D data and can achieve a wide range of visualization tasks,
such as depth cueing, focus+context visualization, importance driven visualization, and
uncertainty visualization.

We have identified two immediate avenues for future work. First, we plan to inves-
tigate more perturbation functions in hope of achieving additional effects. Along this
line, we seek to understand the relationship between perturbation functions and their
resulting effects in greater depth. Second, although we have concentrated on edge de-
tection filter so far, we aim to extend the PIP concept to other filters as well, such as
unsharp masking filter [17].

Acknowledgements

Support for this work includes University of Minnesota Computer Science Department
Start-up funds, University of Minnesota Digital Technology Center Seed Grants 2002-4,
NSF ACI-0238486 (CAREER), NSF DMS-0528492, and the Army High Performance
Computing Research Center under the auspices of the Department of the Army, Army
Research Laboratory cooperative agreement number DAAD19-01-2- 0014. Its content
does not necessarily reflect the position or the policy of this agency, and no official
endorsement should be inferred.

The Skeleton hand model is from the Stereolithography Archive at Clemson Univer-
sity. The volumetric CT scanned engine data is from General Electric. The Neghip is a
VolVis distribution of SUNY Stony Brook. The Bucky ball data set has been created by
Dr. Oliver Kreylos at the University of California, Davis.

References

1. Saito, T., Takahashi, T.: Comprehensible rendering of 3-D shapes. In: Proceedings of SIG-
GRAPH 1990. Volume 24. (1990) 197–206

2. Yuan, X., Chen, B.: Illustrating surfaces in volume. In: Proceedings of Joint IEEE/EG
Symposium on Visualization (VisSym’04), the Eurographics Association (2004) 9–16

Procedural Image Processing for Visualization 59

3. Nvidia: Nv fragment program. NVIDIA OpenGL Extension Specifications for the CineFX
Architecture (NV30) (2003)

4. Levoy, M.: Display of surfaces from volume data. IEEE Computer Graphics and Application
8 (1988) 29–37

5. Ebert, D., Rheingans, P.: Volume illustration: Non-photorealistic rendering of volume mod-
els. In: Proceedings of IEEE Visualization ’00. (2000) 195–202

6. Kindlmann, G., Durkin, J.W.: Semi-automatic generation of transfer functions for direct
volume rendering. In: Proceedings of IEEE 1998 Symposium on Volume Visualization.
(1998) 79–86

7. Kniss, J., Kindlmann, G., Hansen, C.: Interactive volume rendering using multi-dimensional
transfer functions and direct manipulation widgets. In: Proceedings of IEEE Visualization
’01. (2001) 255–262

8. Hertzmann, A.: Introduction to 3d non-photorealistic rendering:silhouettes and outlines.
ACM SIGGRAPH 99 Course Notes (Non-Photorealistic Rendering) (1999)

9. Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. Proceedings of the
1998 IEEE International Conference on Computer Vision (1998) 836–846

10. Ostromoukhov, V., Hersch, R.D.: Artistic screening. In: Proceedings of SIGGRAPH 1995,
ACM Press (1995) 219–228

11. Hauser, H., Mroz, L., Bischi, G.I., Gröller, M.E.: Two-level volume rendering. IEEE Trans-
actions on Visualization and Computer Graphics 7 (2001) 242–252

12. Zhou, J., Hinz, M., Tönnies, K.D.: Focal region-guided feature-based volume rendering.
In: Proceedings of First International Symposium on 3D Data Processing Visualization and
Transmission. (2002) 87–90

13. Grigoryan, G., Rheingans, P.: Probabilistic surfaces: Point based primitives to show surface
uncertainty. In: Proceedings of IEEE Visualization ’02. (2002) 147–154

14. Johnson, C.R., Sanderson, A.R.: A next step: Visualizing errors and uncertainty. IEEE
Computer Graphics and Application 23 (2003) 6–10

15. Mark, W.R., Glanville, R.S., Akeley, K., Kilgard, M.J.: Cg: a system for programming graph-
ics hardware in a C-like language. ACM Transactions on Graphics (TOG) 22 (2003) 896–907

16. Van Gelder, A., Kim, K.: Direct volume rendering with shading via three-dimensional tex-
tures. In: Proceedings of the 1996 Symposium on Volume visualization. (1996) 23–30

17. Luft, T., Colditz, C., Deussen, O.: Image enhancement by unsharp masking the depth buffer.
ACM Transactions on Graphics 25 (2006) 1206–1213

	Introduction
	Related Work
	Procedural Image Processing (PIP)
	Applications
	2D Image Processing
	Geometric Data Visualization
	Volume Visualization

	Implementation Notes, Discussions and Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

