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Abstract

In this paper we present a pipeline for rendering dynamic 2D/3D line drawings efficiently. Our main goal is to

create efficient static renditions and coherent animations of line drawings in a setting where lines can be added,

deleted and arbitrarily transformed on-the-fly. Such a dynamic setting enables us to handle interactively sketched

2D line data, as well as arbitrarily transformed 3D line data in a unified manner. We evaluate the proximity of

screen projected strokes to simplify them while preserving their continuity. We achieve this by using a special data

structure that facilitates efficient proximity calculations in a dynamic setting. This on-the-fly proximity evaluation

also facilitates generation of appropriate visibility cues to mitigate depth ambiguities and visual clutter for 3D

line data. As we perform all these operations using only line data, we can create line drawings from 3D models

without any surface information. We demonstrate the effectiveness and applicability of our approach by showing

several examples with initial line representations obtained from a variety of sources: 2D and 3D hand-drawn

sketches and 3D salient geometry lines obtained from 3D surface representations.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation

Line Rendering

Keywords: Line drawings, dynamic simplification, hierarchical simplification

1. Introduction

Line drawing has been a traditional art that aims to produce

abstract and “sketchy” illustrations to convey just the right

amount of information and hide unnecessary features. They

can be created from several forms of 2D and 3D data to

cater to specific application requirements. In this paper, we

present a pipeline to produce static renditions and coherent

animations of line drawings efficiently in a dynamic setting.

The nature of dynamism may change with the form of data

and the desired application. When 2D static line drawings

are zoomed in or out, simplification to preserve shape and

stroke density is a primary issue. Computer-based sketch-

ing using tablet devices creates data naturally in the form

of lines. In several artistic and conceptual design appli-

cations it is desirable to retain the original free-hand na-

ture of sketches instead of trying to refine them into for-

mal geometry [ZHH96, SC04]. Simplifying and rendering
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such sketches as line drawings while being able to interac-

tively add and delete strokes and transform them adds an

extra challenge. By supporting such a scenario, our pipeline

can act as a front-end to many existing sketching applica-

tions [Kal05, KHR04, DXS∗07, IOOI05].

Simplifying and rendering line drawings on-the-fly obtained

from 3D data presents two unique challenges. First, as 3D

line data may be subject to an arbitrary sequence of rigid,

deforming and projective transformations, simplifying them

efficiently on-the-fly is difficult. The second challenge con-

cerns the issue of visibility. Many techniques to create line

drawings from 3D geometry in the form of meshes [SP03,

GDS04, WM04, JNLM05, HZ00], points [XC04] and vol-

umes [BKR∗05] have been proposed in the past. Most pre-

vious work use attributes of the underlying surface geom-

etry to address visibility. However in many cases, using an

underlying surface to determine visibility between strokes

may be inappropriate (e.g. freehand strokes drawn on planes,

as in Mental Canvas [DXS∗07] and 3D6B [Kal05]) or even

impossible (interactively created wire frame CAD models).

In addition to stroke simplification, our pipeline generates,
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Figure 1: Line drawings of the Eiffel

Tower. Each column shows the Eiffel Tower

zoomed out to the same level (thumbnail)

and the thumbnail magnified. (a) the orig-

inal wireframe model. (b) the tower ren-

dered using only visibility cues that reduce

some of the clutter. Without simplification,

this figure is rendered at a very low frame

rate. (c) the tower rendered after simplifica-

tion and with visibility cues. Simplification

further reduces the clutter when zoomed out

to such a level in the thumbnail in (c) to re-

tain the overall shape of the tower but hide

the detailed truss structures.

(a) (b) (c)

without any surface information, local visibility cues for

3D line data that create a global occlusion effect. Thus,

we show that it is possible to generate many kinds of line

drawings without using any surface information. Due to this,

our pipeline can be used to generate line drawings from 3D

models, even with available surface representations by pre-

extracting salient geometry lines (Elber [Elb95] provides a

simple approach for this extraction). This creates the poten-

tial to create a generic lightweight line-based representation

to create line drawings, saving memory bandwidth and sim-

plifying graphical processing for conventional 3D models.

Efficient and dynamic line simplification is one of our main

contributions. There are two generic principles governing

the process of line simplification: proximity (strokes near

each other should affect each other) and continuity (the in-

tegrity of each stroke must be preserved) as described by

Barla et al. [BTS05]. To adhere to these principles, some

form of a level-of-detail hierarchy of strokes can be built

based on proximity so that continuity is maintained during

rendering and animation. For static 2D line models (from

vectorized images or previously drawn digital sketches),

such a hierarchy can be generated off-line and only once.

To support progressive sketching and editing sessions or to

render 3D line models, this hierarchy must be created dy-

namically and interactively whenever strokes move on the

screen (e.g. view point changes) or are added/deleted. To in-

corporate all these scenarios, we use a state-of-the-art data

structure called a deformable spanner [GGN06] for efficient

dynamic queries to ascertain proximity of screen projected

line strokes. We use these queries to create and maintain a

time-coherent hierarchy for dynamic line merging and split-

ting, and generate appropriate visibility cues at no extra cost.

2. Related Work

The issue of line simplification that is central to our pipeline

has been addressed in several ways in NPR. Strokes are

simplified in a line drawing to maintain tone and overall

shape and possibly for rendering efficiency. Tone is quanti-

fied by measuring local screen-space density [GDS04], often

for static line drawings [WM04]. Simplification is typically

done by creating a level-of-detail (LOD) hierarchy of lines.

Lines are prioritized and rendered according to this hierar-

chy. Creation of these levels of detail under various settings

is the subject of many papers. Tonal art maps are used by

Praun et al. [PHWF01] as an image-based method to create

LODs in hatching. In the field of illustration, Winkenbach et

al. [WS94] introduce the concept of indication to prioritize

lines in textures to achieve control over density, albeit semi-

automatically. With a sketch drawn in real time as its input,

WYSIWYG-NPR [KMM∗02] takes a user-centric approach

by relying on manual specification of LODs when they can-

not be extracted automatically. All these approaches simplify

strokes using an accept/reject scheme, i.e. removing strokes

to simplify the drawing. An interesting approach by Cole et

al. [CDF∗06] uses priority buffers to modulate line density

for localized simplification effects. Their focus however, is

on user-assisted customization of line drawings created from

static models, and hence may not be suitable for automati-

cally simplifying interactively sketched line drawings.

Our work is partly inspired by that of Barla et al. [BTS05]

who merge strokes by using screen-space proximity and

color-based clustering. However there are three primary dif-

ferences between their work and ours. First, their hierarchy

can be created only once for a given drawing (possibly off-

line) as they assume that drawings can only be zoomed in

or out. We create and manage a time-coherent hierarchy

on-the-fly to allow an arbitrary sequence of 2D/3D trans-

formations in an interactive and dynamic setting. Secondly,

they rely on a manual classification of strokes as contour

and hatching and employ different simplification methods

for them. We present a unified and automatic simplifica-

tion strategy, whose advantages are discussed in Sections 4.2

and 6. Lastly, a change in their input parameters requires the
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hierarchy to be completely re-calculated (their ε-lines and

ε-groups change with ε). Our implementation based on a

spanner does not suffer from this restriction. This is an ad-

vantage because such parameters are model-dependent and

often have to be determined interactively by trial-and-error.

3. Overview

Representation: Our input is an unordered set of 2D or 3D

line strokes. Each stroke is in general a one-dimensional

(parametric) curve. We first sample each stroke uniformly

(in terms of its arc length) into a set of points and then rep-

resent the input model at two levels: strokes consisting of

points and an independent set of points from all strokes. As

we will see later, this dual representation is useful for prox-

imity determination and stylization during rendering. Every

point stores the tangent to the stroke at that point, its screen-

space position and orientation (projected tangent), and ren-

dering attributes like thickness, color, transparency, stroke

texture id, etc. Our processing pipeline works fully in screen

space.

Stroke Proximity: Given a set of strokes projected on the

screen, we first determine which strokes are (at least par-

tially) “near enough” to other strokes to affect their appear-

ance. We define a parameter δ as the maximum distance be-

tween two strokes for them to affect each other. This param-

eter can be changed interactively. Section 4.1 explains stroke

proximity in detail. Proximity calculations are also used to

generate visibility cues to mitigate depth ambiguity and vi-

sual clutter. This is explained in Section 4.4.

Stroke Pairing And Simplification: To disambiguate mul-

tiple interactions (a single stroke can affect and be affected

by many strokes), we pair every stroke with one other stroke

that it affects the most, according to proximity, color, local

gradient and extent of overlap as a percentage ρ . This param-

eter can also be changed interactively. We merge two paired

strokes into a single stroke. Section 4.2 explains how we pair

strokes and simplify them.

Hierarchy Maintenance: Stroke simplification results in a

dynamic binary tree hierarchy. Whenever points move on

the screen, this hierarchy must be updated and an appro-

priate level in it must be chosen for rendering. Section 4.3

discusses how this hierarchy is maintained.

Rendering: Every point in the sampled stroke is rendered as

an oriented, alpha-textured quad with the stroke’s thickness

and color. Each point’s opacity modulates that of its texture

to produce the final result. The texture can be changed to

produce various styles.

4. Simplification and Rendering

In this section we explain our pipeline in detail. Sec-

tions 4.1, 4.2 and 4.3 discuss simplification, while Sec-

tion 4.4 discusses generation of visibility cues.

4.1. Proximity

Line simplification can be thought of as a localized process,

where strokes are affected only by other strokes near them.

If a shape-defining feature like a contour is specified using

many small strokes (a common sketching style), then prox-

imity groups such small strokes together so that they may

be approximated by a single long stroke. A local group of

hatching strokes may be approximated by fewer strokes to

maintain stroke density as the user zooms out. Thus, prox-

imity is an effective measure of identifying groups of strokes

that may be approximated by a different set of strokes.

To determine which strokes to simplify, one must determine

which strokes are near each other in screen space. Data struc-

tures employed for this purpose must support adding and re-

moving strokes efficiently. Moreover, as the strokes move in-

crementally on the screen, proximity should be re-calculated

quickly to maintain interactive rendering rates.

Given a set of curves, it is difficult to efficiently determine

proximity as they move. We resort to a divide-and-conquer

approach–we pool the underlying points of every stroke,

solve the proximity problem for points and then interpret

the results at the stroke level. In general, we estimate the

expected “pairability” E(S,T ) between strokes S and T as

E(S,T ) ∝ Co(S,T )∗ ∑
(p,q):p∈S,q∈T,d(p,q)≤δ

(~p.~q) (1)

where p and q are screen points with screen-space (normal-

ized) tangents ~p and ~q and d(.) is the Euclidean distance.

Co(.) is the color similarity between S and T , but may in-

clude other suitable metrics as well. If two strokes are very

near each other, then more pairs will be found, leading to a

greater expected value. Thus E(S,T ) measures how “near”,

“locally parallel” and similar in color S and T are.

Many solutions for point proximity problems exist in com-

putational geometry [CK95, Epp00]. As strokes can be

added, deleted, or dynamically modified, we require a data

structure that supports efficient nearest-point queries under

motion, dynamic insertion and deletion. Hence, we use the

(1+ ε)-deformable spanner by Gao et al. [GGN06].

(1+ ε)-deformable Spanner

For a set of points in R
d , an s-spanner is a graph on the set

such that any pair of points is connected via some path in the

spanner whose total length is at most s times the Euclidean

distance between the points. A (1 + ε)-deformable spanner

(for any ε > 0) is a sparse spanner that is suitable for dy-

namic sets of points. Because of its hierarchical construction

and sparseness, a (1 + ε)-spanner efficiently “repairs” itself

incrementally whenever points move continuously. Thus, in

the context of rendering, it works on the notion of using

results from the previous frame to determine those for the

current frame. Moreover it supports dynamic insertion and
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deletion of points, making it suitable for our setting. Specifi-

cally, for a set of n points in R
d bounded by an aspect ratio α

(the ratio of the maximum and minimum distance between

two points), the (1+ε)-spanner supports insertion and dele-

tion of a point in O( h
εd ) time, where h = O(log2 α). The

nearest-point query – given a set of points, for each point p,

enumerate all points within a distance δ from p is defined

as a standard operation on this spanner. For k such pairs, the

(1 + ε)-spanner supports this query in O(k + n) time. Our

pipeline uses this data structure as-is (like a black box). We

refer the reader to Gao et al. [GGN06] for further details.

We project all strokes onto the screen and build the (1+ ε)-
spanner on these projected 2D points. After any screen-space

movement, we update(repair) the spanner and query it to

return all pairs of points that are within a distance δ (Sec-

tion 3) from each other. As long as the movement is incre-

mental (points do not move by a large distance abruptly), the

updating operation is efficient irrespective of the actual na-

ture of movement. Thus our pipeline is not limited to simple

rigid transformations–any incremental motion can be han-

dled. Please see the accompanying video for an example.

The parameter ε controls the extent of approximation of

level i in its parent level i−1 (we chose ε = 16 empirically

for all results in this paper). Our experiments indicated that

increasing the value of ε increases the time to “repair” the

spanner during every frame.

Henceforth, all screen-projected points are represented in

lower case while all strokes are represented in upper case.

A screen-projected point p has a screen-space orientation ~p.

Point Pairing

All pairs returned by the spanner are not useful in determin-

ing stroke-stroke proximity (e.g. the spanner returns pairs

of adjacent points along the same stroke due to the absence

of connectivity information in it). Intuitively, we try to se-

lect pairs that are near to each other, have similar colors and

screen-space orientations.

During every frame, we build two tables from all the pairs

returned by the spanner: C(p,S) that maintains the “clos-

est” point in every stroke S to a given point p, and Q(S,T )
that maintains the geometric likelihood that strokes S and

T will be paired together (Q is the summation part of Equa-

tion 1). Let p → q(p ∈ S,q ∈ T ) be a candidate pair of points

returned by the spanner. If S = T , we reject the pair. Oth-

erwise, we determine a score Sim(p,q) proportional to the

Euclidean distance and color difference between p and q.

We update the entries C(p,T ) and C(q,S) with Sim(p,q) if

necessary. Then we add ~p ·~q to Q(S,T ) and Q(T,S). Thus

Q(S,T ) maintains a score that is proportional to the num-

ber of pairs between points in S and T respectively, modu-

lated by the similarity between their local gradients. It may

be noted that C and Q are sparse as they contain data only

for points and strokes that are near each other.

4.2. Stroke Pairing and Simplification

Given updated sparse tables C and Q, we now consolidate

the results to pair strokes. Simplification happens at the

stroke level, maintaining continuity wherever appropriate.

We maintain continuity geometrically by preventing strokes

from disintegrating. Although apparent continuity (inter-

preting multiple short strokes as a single long stroke) is

maintained, it is not guaranteed (please refer to Section 6)†.

Intuitively, we pair stroke S with a stroke T if ρ% of the

points of S are paired to some point in T with comparable

corresponding local gradients. We select an ordered pair of

strokes (S,T ) for simplification if Co(S,T )Q(S,T ) ≥ ρ |S|.
‡ Our formulation allows us to handle fork cases (neither of

the end points of S pair with T ) seamlessly. Since entries in

Q are averaged over a stroke, they vary smoothly as points

move continuously. Thus simplification is also incremental

and smooth, providing temporal coherence.

It is important to note that once (S,T ) are paired and sim-

plified to U in a particular frame, no other strokes can pair

with either S or T until U again separates into them. Thus

in the case that multiple strokes have sufficient overlap with

a single stroke S to trigger simplification, the first of these

strokes (in the order in which they were created) is paired

with S, ruling out any other pairs with S during that frame.

Stroke Simplification

The problem of simplifying two strokes into one is diffi-

cult in general, because some correspondence between their

points must be known for any interpolation scheme. This

problem occurs in many applications: simplifying strokes in

NPR, representing rough over-traced sketches by a represen-

tative stroke, etc. It is often addressed by classifying strokes

and employing multiple simplifying strategies.

If the two strokes were parameterized in a common domain,

the parametrization would serve as an implicit correspon-

dence. There are existing methods to fit curves to noisy point

data [Gos00] that parameterize points in a common domain.

The strategy is to define a reference parameterized curve.

Then for every point, the point on the curve that is nearest to

it is determined and parameterized accordingly. While this

seems inefficient for an interactive setting, we reuse the point

pairs from the spanner to determine this correspondence.

Noting that at least ρ% of points of S are paired to some

point in T for a pair (S,T ), we choose T as our refer-

ence curve and parameterize it in (0,1) using arc-length

parametrization. For every point p ∈ S, if C(p,T ) exists, the

† Maintaining the integrity of special strokes like dashed lines de-

pends on how they are represented in the application–if passed to

the pipeline as one long stroke, continuity is maintained.
‡ It may happen that Co(S,T )Q(S,T ) ≥ ρ |S| but

Co(T,S)Q(T,S) ≤ ρ |T |. This happens if S is shorter than and

so overlaps only a small portion of T .
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parameter value at p is trivially known. This scheme divides

S into a set of alternating parameterized (green above) and

(possibly) unparameterized (red above) segments. We pa-

rameterize these segments using interpolation (if it lies be-

tween two parameterized segments) or extrapolation (other-

wise). Another pass through S makes this parametrization

consistent (monotonically increasing/decreasing). Then we

sort the points in S and T according to the common param-

eter and fit a curve through this point set (a similar tech-

nique for parameter propagation was used by Kalnins et

al. [KDMF03] to produce coherent silhouette animations).

In regions where S and T do not coincide, this point set

may cause a zig-zagged curve. To minimize this effect we

choose Rational Gaussian curves [Gos95] for interpolation.

RaG curves work by centering a Gaussian function at ev-

ery control point and using these weights to calculate inter-

polating points on the curve. They offer good control over

local and global smoothness by changing the standard de-

viations of the interpolating Gaussians (we use σ = 3
|S+T |

for all models). We use pre-computed Gaussian tables to im-

prove speed. Figures 2 and 4 show how this single simpli-

fication scheme works well for both contour strokes (main-

taining shape in the Gandhi and boat sketches) and hatching

strokes (hull of the boat).

For a pair (S,T ) simplified to a stroke U , U records a rep-

resentative pair of points (pS ∈ S,qT ∈ T ) and the Euclidean

distance d f irst(pS,qT ) between them at the time of simplifi-

cation. They are used to decide whether to move down the

hierarchy (replace U with S and T ).

4.3. Hierarchy Maintenance

Simplification creates a localized hierarchy of strokes.

Strokes should smoothly merge into their parent, or should

smoothly separate into their children for coherent animation.

Based on strokes S and T simplified into stroke U with the

parameters (pS,qT ) and d f irst(pS,qT ) as explained previ-

ously and distance dcurr(pS,qT ) in the current frame, a life

cycle of U can be defined in terms of the following phases:

Separation phase (red phase;right)

In this phase characterized by dcurr(pS,qT ) >

l ∗ d f irst(pS,qT ), S and T are apart enough to exist as

separate strokes. Thus we descend one level down the

hierarchy and render them instead of U . Points of S and

T are added to the spanner, and those of U are deleted.

l > 1 provides a wider hysteresis loop (so that points are

not repeatedly added to/deleted from the spanner between

frames).

Transition phase (yellow phase;middle)

In this phase characterized by k ∗ d f irst(pS,qT ) <

dcurr(pS,qT ) ≤ l ∗d f irst(pS,qT ), U , S and T are rendered as

if in transition between the two levels. Their opacity is gov-

erned by dcurr(pS,qT ), such that α(S) = α(T ) ∝
dcurr(pS,qT )
d f irst (pS,qT )

,

α(U) = 1−α(S). 0 ≤ k ≤ 1 creates a smooth transition.

Simplified phase (green phase;left)

In this phase characterized by dcurr(pS,qT ) ≤
k ∗ d f irst(pS,qT ), S and T are too near each other to

exist as separate strokes. If they were in the transient phase

in the previous frame (they would have had low opacity

then to be in this phase now), we stop rendering them and

set U at full opacity. Points of S and T are removed from the

spanner, and those of U are added.

We implement this scheme using two lists. At every frame,

one list is marked as the current list. Any strokes created

during that frame (by simplification) are added to this list.

We check every stroke in the list, and either push it (yellow

phase) or its children (red phase) into the other list. The lists

are swapped in the next frame. Any stroke that has already

been paired (i.e. its ancestor exists in the list) is neglected.

To summarize, the following high-level operations are per-

formed in order during every frame:

1. Verify the hierarchy. (Section 4.3)

2. Update the spanner, get and process all pairs. (Section 4.1)

3. Determine strokes pairs and simplify them. (Section 4.2)

4. Render the strokes.

4.4. Visibility Cues

If surfaces are available in case of 3D models, visibility cu-

ing by occlusion may be performed easily in some cases.

However in the general case of 3D curves, such occlusion

may not be possible or desirable even if the surfaces that they

lie on are available. For example, consider two 3D curves

that lie on two known surfaces. How does one decide the

surface bounds to get occluding polygons? Is it always con-

ceptually sensible for one curve to occlude another?

We generate cues to alleviate depth ambiguity and visually

de-emphasize distant parts of the model by further modulat-

ing the transparency of every stroke. Our technique is similar

to the haloed line effects proposed by Appel et al. [ARS79]

and Elber [Elb95]; however our pipeline implements it at

no extra cost. For every intersection point of two strokes

on the screen, we locally increase the transparency of the
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(a) (b)

Figure 2: Results on 2D sketches of objects. Column (a)

shows the original sketch zoomed out to a certain level

(thumbnail), while column (b) shows the sketch zoomed

out and simplified to the same level (thumbnail) and the

thumbnail magnified. The top row shows a sketched boat

(δ = 4,ρ = 85), while the bottom row shows a sketched

sailboat(δ = 8,ρ = 85).

stroke that is behind by a certain amount. Thus, the stroke

appears “lighter” or hidden behind the stroke that is in front.

These intersection points can be approximated from the pairs

of points returned by the spanner. Such local modulation of

transparency values results in a global visibility cuing effect.

In Figure 3(b), the right wheel of the cart appears occluded

due to these cues. In Figure 1(b), these cues reduce clutter

when the Eiffel Tower is rendered from different distances.

5. Results

Figure 2 shows how our system can be used to render 2D

sketches. These sketches were drawn on a tablet PC, using

a simple program that allowed the user to draw strokes by

tracing a photograph. Row 1 shows the 2D sketch of a boat.

Notice how the hatching strokes on the hull and the contours

of the boat are simplified correctly with our unified simplifi-

cation technique. Row 2 shows another 2D sketch of a sail-

boat. The thumbnail shows how the wrinkles on the sail were

simplified upon zooming out.

Figure 4 shows how our system can be used to render cre-

ative sketches directly drawn on computer by an artist. Typ-

ically, such sketches are ambiguous and are drawn by over

sketching with many small strokes. The first row shows a

character sketch of Mahatma Gandhi. Notice how various

silhouettes are drawn with multiple smaller strokes. Col-

umn (b) shows our simplified rendering where such strokes

are consolidated into fewer strokes, thereby preventing them

from thickening and darkening. The second row shows a

sketch of a lamp. While sketching, the artist went over the

same regions with strokes of multiple colors, due to which

there is some color mixing as the sketch is zoomed out

(a) (b)

Figure 3: Results on 3D sketches (created using the 3D6B

interface [Kal05]). Column (a) shows the original sketch

zoomed out to a certain level (thumbnail). Column (b)

shows the sketch zoomed out and simplified to the same

level(thumbnail) and the magnified thumbnail. First row: 3D

sketch of a cart (δ = 5,ρ = 85). Second row: two facades of

a clock tower (δ = 5,ρ = 80).

(thumbnail in (c)). Some parts (yellow shading on the lamp

shade) were drawn using a few long, winding strokes. The

lamp simplifies into (d) if such strokes are taken in their

entirety. It can be seen that such strokes are not simplified

significantly as their length mitigates sufficient overlap with

any other stroke to trigger simplification. To improve this,

we first segment such strokes by monitoring abrupt curvature

changes. Simplification after such segmentation is shown in

(e). Notice how the lamp is now simplified to a greater extent

and resembles the original sketch more (the two thumbnails),

in terms of stroke placement and density.

Figure 5 shows a comparison with a result from Barla et

al. [BTS05] by using the data of one of their sketches.

Our pipeline simplifies the hatching strokes similar to theirs

(without explicitly labeling them so). Result (c) was ob-

tained by fixing δ and ρ so that zooming out to the same size

as the thumbnail in (b) results in an image that looks similar

to the original sketch in terms of shape and tone. Notice how

the overall appearance of the thumbnail of (c) matches that

of the original sketch. In particular, notice the locally darker

hatches on the big branch on the right that are somewhat pre-

served in our thumbnail. This is reflected in the sparse dark

stroke on this branch in the magnified thumbnail in (c).

Figure 3 shows how 3D sketches (here drawn using the

3D6B interface [Kal05]) can be rendered using our system.

Notice how our visibility cues correctly depict the depth by
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(a) (b)

(c) (d) (e)

Figure 4: Results on artistic sketches. First row: (a) a sketch of Mahatma Gandhi made by an artist, zoomed out to a certain level

(thumbnail). (b) the simplified sketch zoomed out to the same level (thumbnail) and the thumbnail magnified (δ = 5,ρ = 80).

Notice the typical over-tracing sketching style in the sketch that is suitably simplified by our rendering. Second row: (a) an

artistic sketch of a lamp, zoomed out to a certain level (thumbnail). This sketch was made by the artist by sketching repeatedly

with overlapping strokes of various colors, giving it a composite appearance. Notice how parts of the lamp shade are sketched

using a single winding stroke. If such strokes are taken in their entirety, the simplified result appears as in (b)(δ = 6,ρ = 85).

To improve on this, we break the stroke into segments so that they may be simplified, producing the result in (c). Notice how the

strokes in the lamp shade have been simplified correctly due to this segmentation.

“occluding” the right wheel of the cart (first row). In the

second row , notice how the tone of the dense strokes on

the roof, the shingle pattern and the shape of the clocks

are retained. Figure 1 shows how our system can be used

to render 3D wireframe CAD models (δ = 3,ρ = 80). This

Eiffel Tower model was obtained from Google 3D Ware-

house [goo] and rendered without any surface information.

Table 1 shows the average frame rates for the results shown

in this paper. These frame rates were calculated for a resolu-

tion of 950×950 on a desktop machine with a 3.0 GHz Intel

Pentium 4 processor and 1 GB RAM. The implementation

is fully CPU-based. As the screen size decreases, the num-

ber of points in the spanner decreases due to simplification,

leading to faster frame rates.

Our system maintains consistent stroke density and creates

smooth transitions as the model moves. The accompany-

ing video shows how various models shown here simplify

as they are transformed, preventing strokes from smearing

each other. Temporal coherence can be appreciated more by

closely observing parts of the video where a model is simpli-

fied but rendered at its original size, as it undergoes smooth

and often unnoticeably gradual transitions.

6. Qualitative Analysis and Limitations

The main highlight of our pipeline is that it works in a dy-

namic setting for an arbitrary sequence of transformations.

Towards this goal, the most expensive operation is to de-

termine proximity between strokes, which we perform ef-

ficiently with the (1 + ε)-spanner. The cost of dynamism

c© 2008 The Author(s)

Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.



Amit Shesh & Baoquan Chen / Efficient and Dynamic Simplification of Line Drawings

Figure 5: Comparison with previous work. (a) A

sketch from Barla et al. [BTS05]. (b) Their re-

sult upon zooming out. (their result was darkened

to better compare with our rendering style. The

number and shapes of strokes were unchanged.

Reproduced with permission from the authors) (c)

Our result when zoomed out to the level shown in

the bottom left thumbnails (δ = 6,ρ = 90). Our

simplification preserves the apparent tone pro-

duced by the hatching strokes as in their result,

shown in (b). The result was obtained by fixing δ
and ρ empirically and zooming out till a satisfac-

tory image at the same size was obtained.

(a) (b) (c)

Model Nstrokes Npts(initial) FRavg( f ps)

Sailboat 281 4817 7.7

Boat 359 6000 9.24

Gandhi 757 7197 12.52

Lamp 2559 31444 3.16

Tree 2376 34424 11.3

Clock tower 961 21445 2.69

Cart 162 8851 5.45

Eiffel 2742 22119 5.11

Table 1: Performance results. Nstrokes: number of strokes

in the model, Npts(initial): number of points initially added

into the spanner. All frame rates were captured at a 950×
950 resolution.

principally comes in the form of per-frame updates of the

spanner, which is why the performance of our pipeline is in-

teractive, but not real-time. It may be possible to improve

the performance of the spanner if only specific transforma-

tions are allowed. Implementation of the spanner as-is on the

GPU will greatly boost performance without compromising

on generality. We have reserved this for the near future.

The main advantage of a unified simplification strategy (Sec-

tion 4.2) is that strokes need not be annotated (e.g. “contour”

and “hatching”) explicitly. In a sketching session, this may

have to be done manually which would seem contextually

unnecessary. However the notion of continuity may be com-

promised in some cases. Consider a (implied) long stroke

that is drawn using two strokes A and B overlapping end-to-

end. If a third stroke C pairs with A to create a simplified

stroke D, then D and B may not look like a continuous long

stroke as A and B were meant to be. As small values of δ are

normally used to prevent over-simplification, such an effect

is usually not obvious. However it is theoretically possible.

The two parameters δ and ρ offer limited control over sub-

jective simplification effects. Both δ and ρ are applied glob-

ally, i.e. to the entire (projection of) model. Although this

approach makes them intuitive to change, it makes local cus-

tomizations difficult. For example, it is not possible to sim-

plify a local region more while retaining the original sim-

plification elsewhere. A possible solution could be to allow

additional localized simplification effects like those by Cole

et al. [CDF∗06] as a post-process. Another issue concerns

the “constancy” of δ , i.e. although δ can be changed by the

user, it is independent of the actual scale of the model. This

creates artifacts when the model is scaled down greatly. At

that stage the model may be over-simplified. A better strat-

egy could be to modulate the value of δ with the overall scale

of the model, but achieving a proper control is difficult be-

cause this correspondence is often model-dependent. Such a

strategy may also make δ less intuitive to change.

Another issue concerns our stroke simplification algorithm.

Our parameter propagation when creating a merged stroke

is based on a simple merging procedure. This may cause

strokes to jump (spatially, not temporally) from the unpaired

parts to those that are paired. This, along with our method of

determining the standard deviations of the RaG curves some-

times creates wiggly strokes (some strokes in Figure 5(c)).

7. Conclusions and Future Work

In this paper, we introduce a pipeline that performs line

simplification and visibility cuing to create line drawings

from purely 2D/3D line-based models obtained from various

types of data. By using a (1+ε)-spanner to determine stroke

proximity, we dynamically build and maintain a stroke hier-

archy based on the high-level principles of proximity and

continuity. We also generate localized visibility cues at no

extra cost to produce a globally less ambiguous and unclut-

tered line drawing. The line drawings thus created are geo-

metrically meaningful and temporally coherent.

Synthesis of line drawings is a complementary and more

difficult problem, in which strokes are synthesized (instead

of simplified) to achieve the same goals of shape and tone

preservation. In the future, we wish to extend our pipeline

to synthesize line drawings. In addition to line-based NPR,

we would like our pipeline to support other styles of ab-

stract drawings like point stippling. Point-based and line-
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based NPR effects are often treated exclusively because of

operations required to realize each of them. We envision a

hybrid pipeline that feeds off a common efficient representa-

tion of underlying data, supports both styles simultaneously

and switches between them interactively, and that offers in-

tuitive controls for an artistic user.
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